Как найти конденсатор формула – Емкость конденсаторов: определение, формулы, примеры.

Содержание

Ёмкость конденсатора | Все формулы

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng! 
Занимаюсь там сам — очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Электрическая ёмкость — характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.


Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Так же есть:

Энергия конденсатора:

Ёмкость цилиндрического конденсатора :

Ёмкость плоского конденсатора :

Емкость сферического конденсатора :

В формуле мы использовали :

— Электрическая ёмкость (ёмкость конденсатора)

— Заряд

— Потенциал проводника (Напряжение)

— Потенциал

— Относительная диэлектрическая проницаемость

— Электрическая постоянная

— Площадь одной обкладки

— Расстояние между обкладками

xn--b1agsdjmeuf9e.xn--p1ai

Ёмкость конденсатора | Все Формулы

   

Электрическая ёмкость — характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

   

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

   

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Так же есть:

Энергия конденсатора:

   

Ёмкость цилиндрического конденсатора :

   

Ёмкость плоского конденсатора :

   

Емкость сферического конденсатора :

   

В формуле мы использовали :

C — Электрическая ёмкость (ёмкость конденсатора)

q — Заряд

U — Потенциал проводника (Напряжение)

   

— Потенциал

   

— Относительная диэлектрическая проницаемость

   

— Электрическая постоянная

S — Площадь одной обкладки

d — Расстояние между обкладками

xn—-ctbjzeloexg6f.xn--p1ai

Формула заряда конденсатора, q

По назначению конденсатор можно сравнить с батарейкой. Но имеется принципиальное отличие в работе данных элементов. Существуют отличия в предельной емкости и скорости зарядки конденсатора и батарейки.

Формула заряда конденсатора

Величина заряда конденсатора (q) связана с его емкостью (C) и разностью потенциалов (U) между его обкладками как:

   

где q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками.

Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Заряд на пластинах плоского конденсатора равен:

   

где – электрическая постоянная; – площадь каждой (или наименьшей) пластины; – расстояние между пластинами; – диэлектрическая проницаемость диэлектрика, который находится между пластинами конденсатора.

Заряд на обкладках цилиндрического конденсатора вычисляется при помощи формулы:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Заряд на обкладках сферического конденсатора найдем как:

   

где – радиусы обкладок конденсатора.

Заряд конденсатора связан с энергией поля (W) внутри него:

   

Из формулы (6) следует, что заряд можно выразить как:

   

Рассмотрим последовательное соединение из N конденсаторов ( рис. 1).

   

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении, обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды.

При параллельном соединении конденсаторов (рис.2), соединяют обкладки, имеющие заряды одного знака. Суммарный заряд соединения (q) равен сумме зарядов конденсаторов.

   

Примеры решения задач по теме «Заряд конденсатора»

ru.solverbook.com

Как найти напряжение в конденсаторе. Что такое конденсатор

ОПРЕДЕЛЕНИЕ

Емкость — один из основных параметров характеризующих конденсатор.

Если q — величина заряда одной из обкладок конденсатора, а — разность потенциалов между его обкладками, то величина C, равная:

называется емкостью конденсатора. Это постоянная величина, которая зависит то размеров и устройства конденсатора.

Рассмотрим два одинаковых конденсатора, разница между которым заключается только в том, что между обкладками одного вакуум (или часто говорят воздух), между обкладками другого находится диэлектрик. В таком случае при равных зарядах на конденсаторах разность потенциалов воздушного конденсатора будет в раз меньше, чем между обкладками второго. Значит емкость конденсатора с диэлектриком (C) в раз больше, чем воздушного ():

где — диэлектрическая проницаемость диэлектрика.

За единицу емкости конденсатора принимают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) служит фарад (Ф).

Формула электрической емкости плоского конденсатора

Поле между обкладками плоского конденсатора обычно считают однородным. Его однородность нарушается только около краев. При вычислении емкости плоского конденсатора этими краевыми эффектами часто пренебрегают. Это следует делать, если расстояние между пластинами мало в сравнении с их линейными размерами. Для расчета емкости плоского конденсатора применяют формулу:

где — электрическая постоянная; S — площадь каждой (или наименьшей) пластины; d — расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

Формула электрической емкости цилиндрического конденсатора

Цилиндрический конденсатор представляется собой две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость цилиндрического конденсатора вычисляется как:

где l — высота цилиндров; — радиус внешней обкладки; — радиус внутренней обкладки.

Формула электрической емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

где — радиусы обкладок конденсатора.

Примеры решения задач по теме «Емкость конденсатора»

ПРИМЕР 1

Задание Какова электрическая емкость плоского двуслойного конденсатора? Один из слоев диэлектрика — фарфор с толщиной =2мм; второй слой — эбонит ( мм). Площадь пластин конденсатора равна 0,01 м 2 .
Решение Для решения этой задачи проще всего применить формулу для расчета емкости слоистого плоского конденсатора, учитывая, что мы имеем всего два слоя:

Конденсатор это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины

. Самой простой моделью конденсатора является два электрода, между которыми находится любой диэлектрик. Роль диэлектрика в нем выполняют бумага, воздух, слюда и другие изолирующие материалы, задача которых не допустить соприкосновения обкладок.

Свойства

Емкость . Это основное свойство конденсатора. Измеряется в Фарадах и вычисляется по следующей формуле (для плоского конденсатора):

где С, q, U — это соответственно емкость, заряд, напряжение между обкладками, S –площадь обкладок, d – расстояние между ними, — диэлектрическая проницаемость, — диэлектрическая постоянная, равная 8,854*10^-12 Ф/м..

Полярность конденсатора ;

Номинальное напряжение ;

Удельная емкость и другие .

Величина емкости конденсатора зависит от

Площадь пластин . Это понятно из формулы: емкость прямо пропорциональна заряду. Естественно, увеличив площадь обкладок, получаем большее количество заряда.

Расстояния между обкладками . Чем они ближе расположены, тем больше напряженность получаемого электрического поля.

Устройство конденсатора

Наиболее распространенные конденсаторы — это плоские и цилиндрические. Плоские состоят из пластин, удаленных друг от
друга на небольшое расстояние. Цилиндрические, собираются при помощи цилиндров равной длины и разного диаметра. Все конденсаторы, в принципе, устроены одинаково. Разница, в основном, в том, какой материал используется в качестве диэлектрика. По типу диэлектрической среды и классифицируют конденсаторы, которые бывают жидкими, вакуумными, твердыми, воздушными.

Как заряжается и разряжается конденсатор?

При подключении к источнику постоянного тока, обкладки конденсатора заряжаются, одна приобретает положительный потенциал, а другая отрицательный. Между обкладками противоположные по знаку, но равные по значению, электрические заряды создают электрическое поле. Когда напряжения станут одинаковыми и на обкладках, и на источнике подаваемого тока, движение электронов прекратится и зарядка конденсатора закончится. Определенный промежуток времени конденсатор сохраняет заряды и выполняет функции автономного источника электроэнергии. В таком состоянии он может находиться достаточно долгое время. Если вместо источника, включить в цепь резистор, то конденсатор разрядится на него.

Процессы, происходящие в конденсаторе

При подключении прибора к переменному или постоянному току в нем будут происходить разные процессы. Постоянный ток не пойдет по цепи с конденсатором. Так как между его обкладками находится диэлектрик, цепь фактически разомкнута.

Переменный ток , за счет того что периодически меняет на

walls-club.ru

Электрическая емкость. Конденсаторы. Емкость конденсатора.

Электрическая емкость. Конденсаторы.

Емкость уединенного проводника.

Уединенным будем называть проводник, размеры которого много меньше расстояний до окружающих тел. Пусть это будет шар радиусом r. Если потенциал на бесконечности принять за 0, то потенциал заряженного уединенного шара равен:  , где e — диэлектрическая проницаемость окружающей среды.  Следовательно: 

эта величина не зависит ни от заряда, ни от потенциала и определяется только размерами шара (радиусом) и диэлектрической проницаемостью среды. Этот вывод справедлив для проводника любой формы.

 

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу: .

Емкость определяется геометрической формой, размерами проводника и свойствами среды (от материала проводника не зависит). Чем больше емкость проводника, тем меньше меняется потенциал при изменении заряда.

Емкость шара в СИ:

  —

Единицы емкости.

Емкостью (фарад) обладает такой проводник, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл.

Емкостью   обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца.

Емкость Земли  700 мкФ

Если проводник не уединенный, то потенциалы складываются по правилу суперпозиции и емкость проводника меняется.

1 мкФ=10-6Ф

1нФ=10-9Ф

1пФ=10-12Ф

Конденсаторы (condensare — сгущение) .

Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы — лейденская банка (Мушенбрук, сер. XVII в.).

 

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз.  обкладками  конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

На рисунке — плоский и сферический конденсаторы. Поле плоского конденсатора почти все сосредоточено внутри (у идеального — все). Усферического — все поле сосредоточено между обкладками.

 

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками: .

При подключении конденсатора к батарее аккумуляторов происходит поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды — конденсатор заряжается. Электрические поля окружающих тел почти не проникают через металлические обкладки и не влияют на разность потенциалов между ними.

 

Емкость плоского конденсатора.

, т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

Емкость сферического конденсатора .

Если зазор между обкладками мал по сравнению с радиусами, то формула переходит в формулу емкости плоского конденсатора.

Виды конденсаторов

При подключении электролитического конденсатора необходимо соблюдать полярность.

Назначение конденсаторов

  1. Накапливать на короткое время заряд или энергию для быстрого изменения потенциала.
  2. Не пропускать постоянный ток.
  3. В радиотехнике: колебательный контур, выпрямитель.
  4. Фотовспышка.

 

www.eduspb.com

Конденсаторы

Электрическая емкость

      При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q.

  . (5.4.1) 

      Коэффициент пропорциональности С называют электроемкостьюфизическая величина, численно равная заряду, который необходимо сообщить проводнику для того, чтобы изменить его потенциал на единицу.

  . (5.4.2) 

      Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

      Если потенциал поверхности шара

  (5.4.3) 

то

  (5.4.4) 

      По этой формуле можно рассчитать емкость Земли. Если диэлектрическая проницаемость среды ε = 1 (воздух, вакуум) и  то имеем, что CЗ = 7·10–4 Ф или 700 мкФ.

      Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10–9 Ф и 1пкФ (пикофарада) = 10–12 Ф.

      Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции.

      Конденсатор – это два проводника, называемые обкладками, расположенные близко друг к другу.

      Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

      Конденсаторы бывают плоские, цилиндрические и сферические.

      Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

      Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

  (5.4.5) 

      Помимо емкости каждый конденсатор характеризуется Uраб (или Uпр.) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

      Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

      1) Параллельное соединение конденсаторов (рис. 5.9):

Рис. 5.9

      В данном случае общим является напряжение U:

     .

Суммарный заряд:

Результирующая емкость:

      Сравните с параллельным соединением сопротивлений R:

.

      Таким образом, при параллельном соединении конденсаторов суммарная емкость

.

Общая емкость больше самой большой емкости, входящей в батарею.

      2) Последовательное соединение конденсаторов (рис. 5.10):

      Общим является заряд q.

Рис. 5.10

            или    , отсюда

  (5.4.6) 

      Сравните с последовательным соединением R:

      Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

Рис. 5.11

Напряжение между обкладками:

где  – расстояние между пластинами.

Так как заряд , то

  . (5.4.7) 

      Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

      Из (5.4.6) можно получить единицы измерения ε0:

  (5.4.8) 

.

2. Емкость цилиндрического конденсатора

      Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

где λ – линейная плотность заряда,R1 иR2 – радиусы цилиндрических обкладок,l– длина конденсатора, .

Рис. 5.12

Тогда, так как , получим

  (5.4.9) 

      Понятно, что зазор между обкладками мал:  то есть

Тогда

  (5.4.10) 

3. Емкость шарового конденсатора (рис. 5.13)

Рис. 5.13

      Из п. 3.6 мы знаем, что разность потенциала между обкладками равна:

Тогда, так как , получим

.

      Это емкость шарового конденсатора, где R1 и R2 – радиусы шаров.

      В шаровом конденсаторе

   – расстояние между обкладками. Тогда

  (5.4.11) 

      Таким образом, емкость шарового конденсатора с достаточной степенью точности можно рассчитать так же, как и емкость плоского, и цилиндрического конденсаторов.


ens.tpu.ru

как рассчитать с помощью онлайн калькулятора

Конденсаторы – это компоненты, способные хранить электрозаряд или электрическую энергию. Простейшая форма элемента – это две пластины из металла с диэлектриком между ними, не допускающим электрического соединения обкладок. При подаче напряжения в межобкладочном пространстве образуется электрическое поле, с положительным зарядным знаком на одной пластине и с отрицательным – на другой. Распределение заряда одинаково с обеих сторон.

Различные типы конденсаторов

Емкость конденсатора

Для конденсаторного элемента емкость – это потенциальная мера хранения энергии. Она имеет символ С и рассчитывается в фарадах (Ф). Наиболее часто можно встретить единицы, масштабированные в меньшую сторону: микро-, нано-, пикофарады.

Емкость конденсатора можно выразить через заряд (q) и напряжение (V):

C = q/V = (I x t)/V, где:

  • t – время,
  • I – сила тока.

Емкость определяется также структурными размерами конденсатора:

C = (ε x ε0 x S)/d.

Из этой формулы получается, что емкость тем больше, чем:

  • больше поверхность пластины S;
  • меньше расстояние между ними d;
  • лучше дипольное образование в изоляторе (больше диэлектрическая проницаемость ε):

ε0 = 8,85 х 10 ( в -12 степени), Ф/м – диэлектрическая проницаемость в вакууме.

Для увеличения емкости плоского конденсатора надо увеличить плоскость его пластин, уменьшить межобкладочное расстояние или применить для изолятора материал с большим значением ε.

Формулы емкости для различных конденсаторов

Элементы обладают фиксированной емкостью, определенной производителем, значение которой нельзя изменить.

Конденсаторы с переменной емкостью

Для этих элементов характерна способность менять емкость. Простейший из них состоит из нескольких половин дисков (одной), фиксированных и электрически связанных друг с другом.

Другая группа аналогичных половин диска установлена на общей оси. При вращении вала фиксированная на нем половина диска устанавливается между неподвижными половинами, и происходит изменение емкости.

Конденсатор с переменной емкостью

Характеристики конденсатора

  1. Диэлектрическая постоянная ε является мерой того, как изолирующий материал влияет на емкость конденсатора;
  2. Диэлектрическая прочность определяет самое высокое напряжение, которое может быть приложено к конденсаторному элементу. В случае его превышения происходит пробой;
  3. Температурная зависимость. В фильтрах и резонансных схемах важную роль играет температурный коэффициент ТК. В зависимости от температуры, меняется отдаваемая мощность. Изменение может быть со знаком «плюс» и «минус». Некоторые схемы требуют точности расчета конденсатора.

Соединение конденсаторов

В электрических цепях нередко производят подключения, состоящие из нескольких конденсаторов, имеющих разные типы соединений.

Последовательное соединение

Если левая пластина первого конденсатора несет заряд со знаком «плюс», правая из-за электростатической индукции получит его со знаком «минус». При этом он будет смещен от левой обкладки второго конденсатора, что, в свою очередь, положительно зарядит ее и т. д.

Последовательное соединение конденсаторных элементов

Напряжение, приложенное к общей емкости конденсаторов, будет складываться из напряжений на каждом из них:

V = V1 + V2 + V3 + …

Так как:

  • V1 = q/С1;
  • V2 = q/С2;
  • V3 = q/С3,

а для всей батареи последовательных элементов:

V = q/С,

то q/С = q/С1 + q/С2 + q/С3.

Количество электричества в последовательной цепи одинаково, значит допустимо разделить обе части уравнения на q.

Рассчитать емкость элементов, собранных в последовательную цепь, можно по формуле:

1/С = 1/С1 + 1/С2 + 1/С3 + …

Важно! Величина, обратная суммарной емкости конденсаторных элементов, соединенных в последовательную цепь, составляет сумму обратных величин емкостей отдельных компонентов.

Параллельное соединение

Когда емкость конденсаторов мала, они включаются параллельно. Как рассчитать общую емкость такой цепи, определяется теми же зависимостями, но с учетом того, что напряжение на конденсаторных пластинах будет одинаковым:

V = V1 = V2 = V3 = …

Параллельное соединение конденсаторных элементов

Количество электричества на каждом конденсаторе составит:

q1 = V x C1, q2 = V x C2, q3 = V x C3.

Общий заряд конденсаторной батареи:

q = q1 + q2 + q3 = V/C1 + V/C2 + V/C3 = V x (C1 + C2 + C3), а С = С1 + С2 + С3.

Важно! При параллельном соединении конденсаторных элементов каждый из них подключен на полное напряжение электроцепи, а общая емкость суммируется.

В сети есть сайты, имеющие калькулятор для расчета конденсатора при разных конфигурациях электросхемы, а также позволяющих определить емкость, задавая свои структурные параметры, как для плоских, так и для цилиндрических элементов.

Расчет конденсатора для электродвигателя

Трехфазный электромотор можно подключить к однофазной линии, которая позволит управлять им с помощью конденсатора. При этом надо произвести расчет емкости конденсатора.

Чтобы узнать значение в микрофарадах, которое нужно получить от конденсаторного элемента, и найти оптимальный пусковой момент в однофазной линии, надо знать технические характеристики мотора.

Схемы включения электромотора с конденсатором

  1. Активная мощность определяется:

Р = √3 x V x I x соsφ.

Она может быть указана на таблице, прикрепленной к мотору. Напряжение – 220 В в однофазном режиме. Величина соsφ также указывается производителем (обычно для электродвигателей соsφ = 0,8-0,85).

  1. Отсюда можно найти силу тока:

I = P/(√3 x V x  соsφ).

  1. Емкость конденсатора для соединенных звездой двигательных обмоток Сраб = 4800 x I /V, для соединенных в Δ – Сраб = 2800 x I/V;
  2. Для пускового конденсаторного элемента Спуск = 2,5 С.

Сетевой калькулятор онлайн производит и такой тип расчетов. Для этого вводятся параметры электромотора и питающей сети, в результате получается емкостное значение.

Видео

Оцените статью:

jelectro.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о