Как измерить сопротивление изоляции мегаомметром: Как пользоваться мегаомметром

Содержание

Какое напряжение мегаомметра использовать для измерения сопротивления изоляции?

Итак, испытательное напряжение 1 кВ используют для измерения сопротивления изоляции электропроводок, к которым относятся изолированные установочные провода всех сечений и небронированные кабели с резиновой или пластмассовой изоляцией в металлической, резиновой или пластмассовой оболочке с сечением фазных жил до 16 мм2 включительно.
Испытательное напряжение 2,5 кВ используют для проверки сопротивления изоляции силовых кабельных линий до 1 кВ, к которым относятся кабели с сечением фазных жил от 25 мм2 включительно.

Далее будут приведены требования из таблицы 37 приложения 3.1 к ПТЭЭП; они могут быть скорректированы или ужесточены для отдельных элементов электроустановок отраслевыми нормативными документами:

1) Электроизделия и аппараты на номинальное напряжение до 50 — напряжение мегаомметра 100В;
2) Электроизделия и аппараты на номинальное напряжение свыше 50 до 100 — напряжение мегаомметра 250В;
3) Электроизделия и аппараты на номинальное напряжение свыше 100 до 380 — напряжение мегаомметра 500-1000В;
4) Электроизделия и аппараты на номинальное напряжение свыше 380 — напряжение мегаомметра 1000-2500В;
5) Распределительные устройства, щиты и токопроводы — напряжение мегаомметра 1000-2500В;
6) Электропроводки, в том числе осветительные сети — напряжение мегаомметра 1000В;
7) Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т. п. — напряжение мегаомметра 1000-2500В;
8) Краны и лифты — напряжение мегаомметра 1000В;
9) Стационарные электроплиты — напряжение мегаомметра 1000В;
10) Шинки постоянного тока и шинки напряжения на щитах управления — напряжение мегаомметра 500-1000В;
11) Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500-1000В, присоединенных к главным цепям — напряжение мегаомметра 500-1000В;
12) Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение до 60В — напряжение мегаомметра 100В;
13) Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение свыше 60В — напряжение мегаомметра 500В.

Измерение сопротивления изоляции электропроводки: мегаомметром 1000В

По токоведущим жилам проводов и кабелей ток течет в нужном направлении. А изолирующее покрытие этих жил препятствует прохождению тока в места, где ему нельзя появляться. Это исключает случайное прикосновение людей к токоведущим частям, предотвращает короткие замыкания в распределительных сетях.

Измерение сопротивления изоляции

Но оболочки проводников – вещь непрочная. Уже в процессе прокладки кабеля их можно передавить или содрать об острые кромки предметов, попадающихся на трассе. При разделке концов кабеля можно случайно порезать ножом изоляцию токоведущих жил. При пайке поливинилхлорид плавится и теряет изоляционные свойства, а резина со временем высыхает и трескается, обнажая покрытые ею проводники.

Причины ухудшения изоляции

Способствует ухудшению изоляционных свойств кабелей и локальные нагревы контактных соединений. Тепло, распространяясь по металлической жиле, нагревает материал покрытия, снижая его изоляционные свойства. Это относится и к соединительным коробкам, и к местам подключения проводников к автоматическим выключателям, нулевым шинам, розеткам.

Повреждение изоляции из-за перегрева

Корпуса коммутационных аппаратов: выключателей, автоматов, рубильников – выполняются из изоляционных материалов. Снижение изоляции происходит, если на них оседает пыль, грязь, металлические опилки. Уменьшению изоляционных свойств содействует перегрев корпусов, обугливание их после коротких замыканий.

Бич электрощитовых – влажность. Повреждения трубопроводов, образование конденсата, подтопление подвальных помещений с распределительными устройствами – все это приводит к появлению капелек воды между выводами электрооборудования, находящихся под разными электрическими потенциалами. Вода в чистом виде электрический ток не проводит. Но, попадая на грязь и пыль, покрывающую корпуса электроприборов, она растворяет находящиеся в ней вещества, становясь проводником электрического тока. Происходит короткое замыкание.

Повреждение изоляции кабеля в процессе монтажа

Наибольший риск встретить поврежденную изоляцию возникает после монтажных работ. Второй пик проблем встречается уже в эксплуатации, через некоторое количество лет после монтажа. Отдельным видом выделяются повреждения, связанные с неправильной эксплуатацией электроприборов и электропроводки, затопления квартиры соседями и вбитые в трассу гвозди при попытке повесить картину на стену.

Отличие мегаомметра от мультиметра

Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.

Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита. Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине. Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.

Устройство мегаомметра

Для измерений этот прибор выдает в проверяемую цепь постоянный ток. Переменный для этой цели не годится, поскольку все кабельные линии обладают емкостным сопротивлением. А конденсаторы переменный ток проводят. Это приведет к искажению результатов измерений.

В зависимости от рабочего напряжения сети и тестируемой аппаратуры, выпускаются мегаомметры с напряжением 100, 500, 1000 и 2500 В. Стовольтовые используются для проверки изоляции низковольтных кабелей и полупроводниковой техники, на 500 В – обмоток электрических машин небольшой мощности. Приборы с напряжением 2500 В предназначены для измерений на высоковольтных аппаратах, кабельных и воздушных линиях. Какой прибор выбрать для проведения измерений – указано в нормативно-технической документации по наладке или эксплуатации, ПУЭ, паспортах на электрооборудование.

Для измерения сопротивления изоляции в бытовых осветительных и розеточных сетях используются мегаомметры на напряжение 1000 В.

В устаревших конструкциях мегаомметров для выработки измерительного напряжения использовался генератор, ротор которого приводился во вращение рукояткой. Ее раскручивали до скорости 120 оборотов в минуту, иначе напряжение на выходе оказывалось ниже номинального. Измерительный механизм у таких устройств – аналоговый, со шкалой и стрелкой. Шкала делилась на две части – верхнюю и нижнюю, соответствующие двум диапазонам измерения сопротивлений. Отметки на шкале располагались неравномерно, что усложняло отсчет показаний. Да и снимать эти показания, одновременно вращая ручку мегаомметра, было не очень-то удобно – корпус прибора дергался, стрелка прыгала. К тому же у пользователя были заняты обе руки: одной он удерживал прибор на месте, другой – крутил ручку. Измерительные щупы на контактах удерживал его помощник, либо к ним припаивали зажимы типа «крокодил».

Мегаомметр М4100

Для каждого измерительного напряжения выпускался свой мегаомметр. Лишь модель типа ЭСО 202 содержала переключатель на 500, 1000 или 2500 В. Для выполнения измерений в электролабораториях содержали целый парк мегаомметров.

Мегаомметр ЭСО 202/2

Современные приборы стали полупроводниковыми. Выбор пределов измерений у них происходит автоматически, а испытательное напряжение выбирается перед измерениями в меню или с помощью переключателя. Габариты прибора позволяют его удерживать в руке совместно с одним из щупов, что позволяет проводить измерения единолично. Некоторые модели снабжаются кнопкой запуска на одном из щупов.

Мегаомметр Fluke

Но многие современные мегаомметры имеют один существенный недостаток, переводящий их в режим обычного пробника. По правилам, измеренным сопротивлением изоляции является величина, показанная прибором через 60 секунд после начала испытания. Большинство же моделей выдают испытательное напряжение на несколько секунд и не имеют режима длительной генерации напряжения. Не все дефекты можно выявить за столь короткое время.

Правила проведения измерений мегаомметром

Мегаомметр относится к приборам, измеряющим характеристики электрооборудования, связанные с определением возможности его безопасной эксплуатации. А на его выводах при измерениях присутствует опасное для жизни напряжение. Поэтому его применение возможно в случаях:

  1. Прибор должен проходить метрологическую поверку один раз в год.
  2. Пользоваться мегаомметром дозволяется обученному персоналу.
  3. Правом выдачи протокола с заключением о пригодности электропроводки к дальнейшей эксплуатации обладает только лицензированная электротехническая лаборатория. Измерения, проведенные другими лицами, юридической силы не имеют.

Если в вашем распоряжении оказался мегаомметр, то измерять сопротивление изоляции вы можете только по личной инициативе. Закончили монтаж электропроводки соседу, измерили — убедились в отсутствии дефектов. Но если при подключении соседского домика к сети энергоснабжающая организация потребует протокол измерений – ваши труды не зачтутся. Соседу придется вызывать специалистов и платить им деньги за ту же самую работу.

В детских садах, школах, учреждениях и на предприятиях сопротивление изоляции электропроводок измеряется регулярно. Результаты оформляются протоколами, которые требуют представители пожарной охраны и энергонадзора. К протоколам прикладываются регистрационные документы лаборатории, выполнившей измерения. Без них они – никому не нужная бумажка.

Протокол измерения сопротивления изоляции

Если в помещении организации произойдет пожар, первым делом от ее руководителей требуют протоколы измерений изоляции. Если их нет – виновные определяются автоматически. То же происходит и при поражении сотрудника электрическим током. Даже, если он сам засунул в розетку отвертку, держась за ее стержень. Если при расследовании несчастного случая не обнаружится протокол измерений изоляции – проблемы руководству обеспечены.

Тем не менее, мегаомметр – прибор, полезный для людей, занимающихся монтажом электропроводки. Лучше найти дефект сразу, до приезда специально обученных персон. Иначе они приедут еще раз, после устранения дефекта. Искать его самостоятельно персонал лаборатории не обязан. Вернувшись, они заставят владельца выложить дополнительную сумму за труды. Скорее всего, он вычтет ее из вашего гонорара.

После замены электропроводки в квартире измерения изоляции официально не требуются. Поэтому их не помешает выполнить для самоуспокоения, а в глазах клиента ваш рейтинг в итоге только возрастет.

Правила измерения изоляции мегаомметром

Перед каждым использованием у любого мегаомметра проверяют целостность изоляции измерительных проводов. Это важно, так как повреждения приводят к электротравмам.

На мегаомметре устанавливают необходимое испытательное напряжение , затем проверяют исправность измерительной цепи и прибора. Для этого щупы соединяют накоротко, производят измерение. Прибор покажет ноль. Щупы рассоединяют и снова проводят измерение. Прибор покажет бесконечность. Эти манипуляции производят регулярно, чтобы своевременно обнаружить сбитые настройки, оборвавшийся провод, ослабевший контакт или неисправность мегаомметра.

Правила измерений сопротивления изоляции требуют, чтобы для кабельной линии была измерена изоляция между жилами во всех возможных комбинациях. Для трехжильного кабеля – три измерения, для четырехжильного – шесть, пятижильного – десять. В реальности реализовать эту проверку можно, имея в наличии кабель с отключенными жилами. Отключать их для проверки после монтажа – операция сложная.

Измерение сопротивления изоляции кабельной линии

Поскольку в системах с глухозаземленной нейтралью нулевой рабочий и защитный проводники соединены между собой, то и прибор между ними покажет ноль. Но, даже если отключить от объекта питающий кабель, все нулевые рабочие и защитные проводники, объединенные на шинах, покажут одно и то же сопротивление между собой. Если оно укладывается в норму, то все хорошо. А если нет – придется их отсоединять от шин по очереди, следя за изменениями изоляции.

Упрощенный способ измерения для розеточных групп – измерить сопротивление фазного проводника от автоматического выключателя питания относительно нулевой и РЕ шины.

Для осветительной сети все сложнее. Под фазным потенциалом при работе светильников оказывается участок от автомата питания до осветительного прибора, проходящий через выключатель. Если не вывернуть лампу из светильника, прибор покажет его сопротивление. Поэтому при измерениях сопротивления изоляции осветительных сетей лампы выворачивают, а выключатели переводят во включенное положение. Так тестируется участок, реально находящийся под напряжением в эксплуатации.

И не забываем про полупроводниковые ПРА. У них на входе выпрямитель. Чтобы его не повредить, провода от светильника отключают. Хотя современные мегаомметры, почуяв неладное, резко снижают испытательное напряжение до минимальной величины. Полупроводниковые элементы редко выходят из строя, но испытывать судьбу лишний раз не стоит.

Результаты измерений для бытовой электропроводки должны уложиться в предел 0,5 МОм. Все, что ниже этой планки, подлежит устранению. На самом деле, новые кабельные линии имеют сопротивление изоляции сотни и тысячи мегаом. Значения ниже сотни характерны для старой электропроводки, да еще и порядком изношенной.

Оцените качество статьи:

прибор для измерения сопротивления изоляции

Мегаоомметр – прибор для измерения сопротивления изоляции. Его устройство основано на схеме логарифмического измерителя отношений. Основные узлы мегаомметра – электронный измеритель, электромеханический генератор, преобразователь. Генератор постоянного тока в мегаомметре представляет собой гальванические элементы или аккумуляторные батареи, в ранних моделях, которые по возрасту начитывают уже более полувека, ток подавался через динамо-машину, в которой, для того, чтобы она заработала, надо было покрутить ручку. Тем не менее, как прибор для проверки и измерения сопротивления изоляции, мегаомметр М1101М, например, вполне годится: как и полвека назад, он показывает высокую точность измерений.

Мегаомметр работает так: измерительное напряжение поступает через входящий резистор R11 одновременно на резисторы R16, R33, R32 и измеряемый резистор (см. схему). Ток измерителя рассчитывается по формуле:

где К — коэффициент пропорциональности, Rх — измеряемое сопротивление, R16, R17, R18, R32, R33 — сопротивления. Из приведенной выше зависимости следует, что ток измерителя пропорционален логарифму отношения сопротивлений и не зависит от измерительного напряжения.  

Обычно мегаомметр, являясь прибором для измерения сопротивления изоляции, имеет токонепроводящий корпус – пластмассовый, или обрезиненный, как, например, в Е6-32. Это создает дополнительное удобство есть защита от поражения электрическим током.

Сопротивление изоляции: как и для чего измерять

Итак, мегаомметр – средство измерений, которое проводит замеры с использованием повышенного выпряиленного напряжения, исключает необходимость подключения к сети, а также имеет несколько фиксированных значений выходного напряжения на зажимах, что дает возможность проводить измерения по разным нормативным требованиям. Мегаомметр применяется как прибор для измерения сопротивления изоляции в различных областях, например в производстве: как правило, требуются замеры обмоток электрических машин и трансформаторов, сопротивления изоляции проводов и кабелей, разъемов, поверхностных и объёмных сопротивлений изоляционных материалов.

Мегаомметр как прибор для измерения сопротивления изоляции довольно редко имеется в организациях, непрофильных электроизмерениям, несмотря на его доступность и широкую распространенность: низкие напряжения измеряются омметром, и еще один прибор, как правило, не приобретают – тем более, что для измерений требуется не только мегаомметр, но и допуск соответствующего уровня.

Почему такое важное значение придается изоляции, измерению ее сопротивления, испытаниям?

В силовых кабелях и проводах изоляция разделяет токоведущие жилы, в ячейках распредустройств — отделяет токоведущие установки от заземления, создает систему безопасности при работе с электроустановками и силовыми линиями. Если значение сопротивления изоляции ниже нормируемого, то возможно наступление сразу нескольких последствий: это пожарная опасность – от задымления ядовитыми веществами от горящей изоляции до постоянных утечек тока. И первое, и последнее создает серьезную угрозу жизни и безопасности обслуживающего персонала электрооборудования. При этом измерение сопротивления изоляции, особенно в организациях, занимающихся обслуживанием потребителей (обывателей, покупателей, клиентов), которые, в отличие от персонала, могут не иметь даже минимальной грамотности в сфере электробезопасности – единственная возможность избежать несчастных случаев.

Повреждения изоляции могут возникать по разным причинам.

Это заломы и повреждения при транспортировке, перетирание из-за неправильной установки, деградация изоляции вследствие времени, агрессивной среды, температурных воздействий, перепадов напряжения, по каким-либо иным причинам. С помощью мегаомметра – прибора для измерения сопротивления изоляции – при проведении измерений сопротивления изоляции силами специалистов электролаборатории — можно выявить место утечки и впоследствии ликвидировать нарушения в кратчайшие сроки. Нельзя также исключать человеческий фактор – ошибочные действия персонала также могут повредить изоляцию, причем повреждения могут быть системными, поэтому измерение сопротивления изоляции требуется проводить согласно графику измерительных работ и испытаний, утвержденных в нормативных документах: ПУЭ, ПТЭЭП ОиНИЭ, ГОСТ. Измерение для различных видов электрооборудования проводят при значениях постоянного (выпрямленного)  напряжения U=250,500,1000,2500,5000В. Значения измеряемого напряжения указываются в методиках, пособиях, руководствах на оборудование.

Специфика измерения сопротивления изоляции

Первым этапом проверки изоляции электропроводки является визуальный осмотр, во время которого можно выявить серьезные нарушения: оплавление изоляции, разрывы, заломы, отсутствие частей изолирующего покрытия, трещины, съеживание или провисание. Точно так же перед тем, как использовать прибор для измерения сопротивления изоляции, необходимо проинспектировать места стыка кабелей, присоединение их к шинам, контакты распределительной коробки, клеммы и пр. Несмотря на то, что, в отличие от показаний мегаомметра при измерениях, визуальный осмотр не дает точных численных значений , его результаты также заносятся в протокол и подшиваются к акту.

Затем производится полное отключение оборудования: силовых трансформаторов, кабельных линий , в электроустановках до 1000В остаточное напряжение снимается, выкручиваются лампы накаливания, выключатели переводятся в режим включения. Это делается для того, чтобы при измерении сопротивления изоляции контуры были замкнуты, но при этом не произошло перегорание «слабых звеньев», не рассчитанных на перепады напряжения.

При использовании мегаомметра — прибора для проверки и измерения сопротивления изоляции – проводятся следующие работы:

  1. измерение сопротивления между токоведущими частями электроустановок и заземляющими элементами;
  2. измерение сопротивления между обмотками первичного и вторичного напряжения в силовых и измерительных трансформаторах;
  3. измерение сопротивления изоляции между нейтралью и землей, между фазными проводниками и землей, между фазой и нулем, между фазными проводниками.

В любом случае, проверка должна выявить либо полное соответствие ПУЭ и ПТЭЭП, либо некоторое несоответствие, которое измеряется дополнительно – если это необходимо — фиксируется и заносится в акт проверки. Проверочное напряжение мегаомметра может быть разным, поэтому измерения классифицируются еще и для разного типа оборудования:

  1. напряжение 1 кВ используется при проверке проводов, кабелей  до 1000В в соответствии с требованиями НД.  
  2. напряжение 2,5 кВ используется для магистральных кабельных линий до 1000В и оборудования выше 1000В.

Отметим, что сотрудникам электротехнической лаборатории, проводящим проверку, необходимо иметь достаточный уровень квалификации: для работ с мегаомметром производителю работ IV группу по электробезопасности, членам бригады —  III  группу по электробезопасности, при этом в бригаде должно быть не менее двух человек.

Правила эксплуатации мегаоомметра

Правила эксплуатации мегаомметра – прибора для проверки и измерения сопротивления изоляции описаны в Руководстве по эксплуатации средства измерений.

«5.4.1. Измерения мегаомметром в процессе эксплуатации разрешается выполнять обученным работникам из числа электротехнического персонала. В электроустановках напряжением выше 1000 В измерения производятся по наряду, в электроустановках напряжением до 1000 В — по распоряжению. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.

5.4.2. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

5.4.3. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг). В электроустановках напряжением выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками.

5.4.4. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления».

При работе с мегаомметром нашими специалистами, все правила по предварительной подготовке измерений, безопасности труда, проведению измерений и фиксации их результатов соблюдаются неукоснительно, что обеспечивает высокое качество выполнения исследований. Сотрудники электролаборатории имеют необходимые допуски, а организация –разрешительные документы на виды деятельности. Работы проводятся на территории Северо-Западного Федерального Округа.

 

Если проверка сопротивления изоляции выявила несоответствие показаний требованиям нормативных документов (например ПТЭЭП или  ПУЭ), то данное испытуемое оборудование бракуют, о чем делают запись в протоколе и ведомости дефектов.

Измерение сопротивления изоляции кабелей, имеющих фазные жилы, сечение которых – 16мм2 или меньше, выполняется при помощи мегаомметра (проверочное напряжение — 1000В).

Измерение сопротивления изоляции кабелей и проводов, фазные жилы которых имеют сечение больше 16мм2, осуществляется мегаомметром (проверочное напряжение — 2500В).

Удовлетворительным принято считать сопротивление изоляции линий напряжением до 1000В при значении между любыми её проводами не больше 0,5МОм.

Для силовых кабельных линий значение  сопротивления не нормируется.

Для оборудования электроустановок до и выше 1000В нормируемые значения сопротивления изоляции используют из НД : ПУЭ , 7-е изд., гл.1.8., ПТЭЭП, ОиНИЭ, паспорта заводов –производителей оборуования.

Работы выполняются специалистами имеющими III гр. по ЭБ для членов бригады и IV гр. по ЭБ до и выше 1000В для производителя работ.

Как выполняется замер сопротивления изоляции электропроводки

Замер сопротивление изоляции мегаомметром

Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.

Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.

Работа с мегаомметром

Что такое мегаомметр?

Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

Итак:

  • На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.

На фото изображен универсальный мегаомметр

  • По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

Кто и когда имеет право производить замеры мегаомметром

Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.
Итак:

  • Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

Обратите внимание! Наружная электропроводка и проводка, выполненная в особо опасных помещениях, должна проходить замер сопротивления изоляции ежегодно. Кроме того ежегодно проходит проверку электропроводка кранов, лифтов, детских и оздоровительных учреждений.

  • Периодичность проверки сопротивления изоляции электропроводки электрических печей составляет 1 раз в полгода. При этом замеры должны производиться во время максимально нагретого состояния печи.
    Кроме того раз в полгода следует визуально осматривать состояние заземления печи. Эти же нормы проверки относятся и к сварочным аппаратам.

Как работать с мегаомметром?

Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

Схема подключения мегаомметра в трехфазной цепи

Обратите внимание! Для работы с мегаомметром во всех электроустановках, на которых предстоит производить замеры, следует снять напряжение. Кроме того следует снять напряжение с соседних электроустановок, к которым возможно случайное прикосновение.

Итак:

  • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
  • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
    1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
    2. После этого включаем все выключатели сети освещения.
    3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
    4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.

Обратите внимание! При выполнении замера должны быть приняты меры по предотвращению повреждения полупроводниковых и микроэлектронных приборов в цепи. Поэтому если в вашей цепи таковые присутствуют, их необходимо «выцепить» до проведения замеров.

  • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
  • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.

  • Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

Несколько слов о мультиметре

Мультиметр

Большинство мультиметров имеют функцию замера сопротивления. Но измеряют они не сопротивление изоляции, а сопротивление электрической цепи.

Поэтому для проведения периодических проверок сопротивления изоляции он не предназначен. Мультиметр позволит вам своими руками отыскать место повреждения провода, найти плохой контакт, проверить целостность заземляющего проводника, а также еще целый ряд необходимых задач. Но замерить сопротивление изоляции он не способен.

Вывод

Надеемся, наша инструкция поможет вам определиться со сроками и методами проведения проверки сопротивления изоляции. Ведь многочисленные видео в сети интернет зачастую дают информацию несоответствующую действительности о возможности использования для этих целей мультиметра.

Недаром в большинстве случаев такими измерениями занимаются специальные высоковольтные лаборатории, которые имеют все необходимое оборудование, специалистов и сертификацию, согласно действующего законодательства.

Мегаомметры (INSULATION TESTERS) — приборы для измерения сопротивления изоляции кабелей

Мегомметр, мегаомметр (от мегаом и -метр) — прибор для измерения больших значений сопротивлений. Отличается от омметра тем, что измерение сопротивления производятся на высоких напряжениях, которые прибор сам и генерирует. В мегаомметрах М4122 производства ООО «БрисЭнерго» измерительное напряжение регулируется в диапазоне от 100 до 2500В с шагом в 50В. Предел измерений составляет 200ГОм. Приборы японской компании KYORITSU обеспечивают измерения на наряжении до 12кВ и пределом измерений до 35ТОм.

В приборах старых конструкций для получения напряжений обычно используется встроенный механический генератор, работающий по принципу динамомашины. Современные цифровые мегаомметры М4122 работают от встроенных аккумуляторов, внешней сети 220В/50Гц и бортовой сети автомобиля (12В), что особенно ценится специалистами при работе на выездах.

Наиболее часто применяется для измерения сопротивления изоляции кабелей. Мегаомметр используется для измерения высокого сопротивления изолирующих материалов (диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты диэлектрической абсорбции (увлажненности изоляции, Dielectric Absorbtion Ratio, DAR) и индекса поляризации (старения изоляции, Polarization Index, PI). Мегаомметры М4122 обеспечивают выполнение этих функций и дополнительно могут использоваться в качестве вольтметра.

При проведении диагностики кабельных линий и измерении сопротивления изоляции можно провести дополнительные измерения и вычислить параметры, характеризующие качество изоляции:

  • индекс поляризации (Polarization Index, PI), свидетельствующий о степени старения изоляции;
  • коэффициент диэлектрической абсорбции (Dielectric Absorbtion Ratio, DAR), характеризующий увлажненность изоляции;
  • показатель разряда диэлектрика (Dielectric Discharge, DD), позволяющий выявить ухудшение состояния многослойной изоляции;
  • измерение ступенчатым напряжением (Step Voltage, SV), позволяющий выявить проблемы изоляции на основе последовательных измерений при различных напряжениях.

Что такое индекс поляризации или степень старения изоляции (Polarization Index, PI)? Как вычислить индекс поляризации? Как интерпретировать значение индекса поляризации?

Это показатель свидетельствующий о степени старения изоляции  и расчитываемый на основе увеличения токов утечки, текущих по изоляции в интервале времени.

Для определения индекса поляризации, сначала измеряется сопротивление изоляции в течение 1 мин. с интервалами 10 мин. Затем необходимо разделить конечное значение на первоначальные показания и вычислить коэффициент. PI зависит от формы изоляции, на него влияет влагопоглощение, поэтому, проверка PI является важным фактором в диагностике изоляции кабелей.

Индекс поляризации = значение сопротивления изоляции в интервале от 3 до 10 минут после начала измерения / значение сопротивления изоляции в интервале от 30 сек до 1 минут после начала измерения.

При полученном значении, равном 4.0 или более, качество изоляции оценивают как отличное, в диапазоне 4. 0 — 2.0 — хорошее, 2.0 — 1.0 — удовлетворительное, 1.0 или менее — плохое.

Что такое

коэффициент диэлектрической абсорбции (Dielectric Absorbtion Ratio, DAR)? Как вычислить коэффициент диэлектрической абсорбции? Как интерпретировать значение коэффициента диэлектрической абсорбции?

Коэффициент диэлектрической абсорбции показывает степень увлажненности изоляции.

Для определения коэффициента абсорбции измеряется значение сопротивление изоляции через 15 (или 30) секунд и 1 минуту после начала ипытаний. Отношение второго показателя к первому является искомым значением.

Коэффициент абсорбции = значение сопротивления изоляции в интервале от 30 сек до 1 минуты после начала измерения / значение сопротивления изоляции в интервале от 15 сек до 30 сек после начала измерения.

При полученном значении, равном 1.4 или более, качество изоляции оценивают как отличное, в диапазоне 1.25 — 1.0 — хорошее, 1. 0 или менее — плохое.

Что такое

разряд диэлектрика (Dielectric Discharge, DD)? Как вычислить показатель разряда диэлектрика (Dielectric Discharge, DD)? Как интерпретировать значение показателя разряда диэлектрика (Dielectric Discharge, DD)?

Данный способ измерения обычно используется для диагностики многослойной изоляции, которая требует от прибора измерения тока и емкости тестируемого объекта в течение 1 минуты после прекращения подачи испытательного напряжения. Это хороший способ диагностики изоляции, позволяющий выявить повреждение в многослойной изоляции. Данный критерий не является эталонным и может быть немного изменен и адаптирован под определенные тестируемые объекты, основываясь на практическом опыте пользователей. Данный способ разработан для тестирования высоковольтных генераторов установленных на электростанциях в Европе.

Показатель вычисляется как отношение значения тока, измеренного через 1 минуту после завершения испытаний к произведению показателя напряжения в момент окнчания испытания и емкости.

Разряд диэлектрика (Dielectric Discharge, DD) = значение тока через 1 минуту после выполнения измерений (мА) / значение напряжения после окончания измерения х  Емкость (Ф).

При полученном значении, равном 2.0 или менее, качество изоляции оценивают как хорошее, в диапазоне 2.0 — 4.0 — удовлетворительное, 4.0 — 7.0 — плохое, 7.0 или более — очень плохое.

Что такое измерение

ступенчатым напряжением (Step Voltage, SV)?

Это измерение, основанное на том принципе, что идеальная изоляция будет генерировать идентичные показания при всех напряжениях, в то время как перенапряженная изоляция покажет более низкие значения изоляции при более высоких напряжениях. Во время тестирования, подаваемое напряжение пошагово увеличивается, при этом производится 5 последовательных измерений. Состояние изоляции можно поставить под сомнение если сопротивление изоляции становится ниже при подаче более высоких напряжений.

Измерение сопротивления изоляции аккумуляторных батарей • Energy-Systems

Как проводятся работы по измерению сопротивления изоляции аккумуляторных батарей

Такая характе

ристика изоляции, как сопротивление, относится к числу важнейших показателей надёжной и эффективной работы электрической системы любого объекта. Поскольку под воздействием многих различных факторов состояние изоляции неизбежно ухудшается и она утрачивает свои защитные свойства, необходимо регулярно осуществлять замеры сопротивления для недопущения аварийных ситуаций и несчастных случаев.

Процесс измерения сопротивления изоляции аккумуляторных батарей осуществляется на электрических подстанциях и представляет собой комплекс различных мероприятий, который включает в себя помимо непосредственно измерительных работ также проверку ёмкости батареи, температуры электролита в каждой из банок, плотности и напряжения.

Для того, чтобы выполнить подобные замеры, применяется мегаомметр с напряжением до 1000 вольт. Этим прибором по очереди замеряется уровень напряжения каждого полюса по его отношению к земле, а также уровень напряжения между самими полюсами.

Пример технического отчета

Назад

1из27

Вперед

Полученный результат измерений сопротивления изоляции должен соответствовать норме, которая при уровне напряжения в 24 В составляет 14 кОм, при уровне в 48 В – 25 кОм, при уровне в 110 В – 50 кОм, наконец, при уровне напряжения в 220 В показатель сопротивления изоляции должен быть не менее 100 кОм.

Необходимо придерживаться при проведении измерения сопротивления изоляции аккумуляторных батарей чёткого и строгого правила, согласно которому все замеры должны выполняться только одним прибором для недопущения расхождения в результатах.

Кто должен проводить измерения сопротивления изоляции и какие требования предъявляются к оборудованию

Работы по измерению сопротивления изоляции относятся к числу важных и ответственных операций, поэтому их проведением должны заниматься исключительно специалисты специализированных электролабораторий. Технический персонал таких измерительных электролабораторий должен регулярно и своевременно проходить переподготовку, обладать всеми необходимыми сертификатами, лицензиями и допусками. Выполнять все необходимые измерения работники лаборатории могут только прошедшим сертификацию оборудованием. Стоит ещё акцентировать внимание на том, что, помимо работников, сама электролаборатория должна иметь необходимые для проведения измерений сопротивления изоляции разрешения и допуски. Необходимо учитывать, что далеко не все лаборатории могут выполнять работы по тем или иным видам измерений.

На все виды измерений составляется соответствующий протокол, который служит основанием для признания электрооборудования пригодным или не пригодным к эксплуатации. Без такого заключения лаборатории никакие измерения не имеют законной силы.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Онлайн расчет стоимости проектирования

Проверка изоляции кабеля с помощью мегаомметра | Энергофиксик

Сопротивление изоляции — это наиболее важный параметр работоспособности кабеля, и как только сопротивление падает ниже определенного уровня, то кабель признается негодным и подлежит незамедлительной замене. В этой статье я расскажу о причинах, приводящих к ухудшению изоляции, и как правильно проверить ее уровень с помощью мегаомметра.

Оглавление

Почему изоляция ухудшается.

Техника безопасности при работе с мегаомметром.

Проверка работоспособности мегаомметра.

Как понять, что изоляция стала негодной.

Почему изоляция ухудшается

Существует целый ряд факторов, влияющих на величину сопротивления изоляции, а именно:

1. Атмосферные условия. Если кабель будет постоянно окружен влагой, то даже микротрещина в изоляционном материале приведет к тому, что сопротивление изоляции резко ухудшится. Именно поэтому в дождливую погоду электроприборы, подключенные через кабель, с плохой изоляцией могут просто напросто не работать.

2. Неправильная укладка кабеля. Если при укладке кабеля допустить повреждение изоляционного материала, то даже новый кабель (при образовании сырости) может показать низкий показатель сопротивления изоляции.

3. Устаревание изоляции. Как ни крути даже самый качественный провод со сверх надежной изоляцией с течением времени придет в негодность из-за постоянного воздействия окружающей среды.

Чтобы вовремя выявить проблемный кабель и не допустить аварийной ситуации, как раз и применяется для периодической проверки состояния такой прибор как мегаомметр.

Существуют как механические, так и электронные измерительные приборы. Далее я расскажу о процессе проверки кабеля механическим Мегаомметром ЭС0202/2-Г.

Техника безопасности при работе с мегаомметром

Для осуществления безопасной проверки в Правилах по охране труда при эксплуатации электроустановок (в редакции Приказа Минтруда России от 12.02.2016 № 74н) звучат следующие требования:

Примечание. Конечно, во вторичных цепях подсоединять и отсоединять концы с помощью изолирующих штанг никто не будет, но вот использовать диэлектрические перчатки все-таки стоит.

Проверка работоспособности мегомметра

Перед непосредственными измерениями изоляции необходимо проверить работоспособность самого измерительного прибора. Для этого выполните следующие действия:

— Достаньте прибор из чехла и внимательно осмотрите его щупы. На них вы не должны обнаружить повреждения изоляционного материала;

— Затем вставляем щупы, выставляем регуляторы как показано на картинке и прокручиваем ручку несколько раз и убеждаемся, что стрелка стремится к показу бесконечного сопротивления;

— Следующим шагом замыкаем щупы между собой (с помощью крокодилов) и так же делаем несколько оборотов и убеждаемся, что стрелка показывает нулевое значение;

Итак, убедившись в полной исправности измерительного аппарата, можно приступать к дальнейшим действиям.

Проверка изоляции кабеля

1. Перед проверкой кабель отключаем от электроустановки с двух сторон и заземляем его.

2. Затем подсоединяем мегаомметр к измеряемой жиле и заземляющему контуру (или к двум соседним жилам, если проверяем сопротивление изоляции между жилами), при этом сам прибор должен быть установлен на горизонтальной поверхности.

Примечание. В зависимости от положения переключателя Мегаомметр ЭС0202/2-Г способен измерять сопротивление до 50 и до 10 000 МОм.

3. Далее снимаем заземление с измеряемых жил.

4. Начинаем крутить ручку и следим за показателями прибора. Причем если мы производим измерение высоковольтного кабеля, то устанавливаем регулятор напряжения на 2 500 V.

Если на первом пределе показания прибора зашкаливают, то переводим его на второй предел и теперь в показаниях будет учавствовать верхняя шкала.

Примечание. На первом пределе значения возрастают справа налево, а на втором переделе слева направо.

5. Затем фиксируем показания. А потом специальной перемычкой (сойдет обычный кусок провода) снимаем остаточный заряд с измеряемой жилы (соединяя ее с землей) и устанавливаем заземление обратно.

6. Все, измерения конкретно этой жилы или жил считается оконченным. Измерения других концов кабеля происходит точно так же. Но по условиям работы данного мегаомметра перерыв между каждым измерением должен быть равен двум минутам.

При этом выбор напряжения для испытания регламентируется ПУЭ 7-е издание п. 1.8.7

Примечание. Если вы проверяете изоляцию проводки, то не забывайте отсоединять нулевой проводник от общей нулевой шины. Если вы этого не сделаете, то вы будете видеть изоляцию самого слабого участка и не узнаете истинной изоляции отдельных участков проводки.

Как понять, что изоляция стала негодной

Согласно требованиям технической документации нижний предел изоляции после которого замена кабеля неизбежна, равняется 0,5 МОм

Но для лучшего ориентирования в степени качества изоляции кабеля можно воспользоваться следующей таблицей

Этого будет вполне достаточно, чтобы понять степень изношенности изоляции конкретного кабеля.

Это все, что я хотел вам рассказать о проверке изоляции кабеля с применением мегаомметра. Если статья была вам интересна или полезна, то оцените ее лайком.

Спасибо за ваше внимание!

Тестер изоляции против мегомметра | Fluke

Проверка сопротивления изоляции необходима для обеспечения правильной работы проводов и двигателей. Мегомметры позволяют быстро и легко определить состояние изоляции проводов, генераторов и обмоток двигателя. Мегомметр — это электрический счетчик, который измеряет очень высокие значения сопротивления, посылая сигнал высокого напряжения на проверяемый объект. Однако обычно это единственная функция, которую выполняет мегомметр.

Хотя мегомметры часто неофициально называют тестерами изоляции, строго говоря, это неточно.Почему? В чем разница между мегомметром и тестером изоляции? Тестер изоляции выполняет основную функцию измерения, которую выполняет мегомметр — измеряет очень высокие значения сопротивления, посылая сигнал высокого напряжения на проверяемый объект, — и часто он делает гораздо больше; обычно он выполняет больше функций, включая более сложные испытания и запись измерений.

Полнофункциональный тестер изоляции может выполнять испытания сопротивления изоляции высоким напряжением и многое другое.

Чем отличаются тестеры изоляции

Например, в отличие от мегомметров, тестеры изоляции также могут измерять напряжение и ток.Мультиметр изоляции Fluke 1587 FC, например, может выполнять испытания изоляции при напряжении до 1000 вольт, И это полнофункциональный цифровой мультиметр. Fluke 1550c может генерировать до 5000 вольт для испытаний изоляции. Тестеры изоляции также могут выполнять более сложные тесты, такие как компенсация условий окружающей среды, таких как влажность и температура, во время теста, чтобы предоставить информацию о том, как двигатели работают в меняющихся условиях. Поскольку условия окружающей среды и / или химическое загрязнение ускоряют ухудшение изоляции, очень важно сравнивать результаты испытаний сопротивления изоляции, скорректированные для различных условий испытаний.

Тестеры изоляции, такие как Fluke 1587 FC и Fluke 1550c, обладают еще одним преимуществом перед мегомметрами. Хранение в памяти с помощью Fluke Connect® сохраняет измерения на вашем телефоне или в облаке, поэтому вам не нужно записывать результаты. Это экономит время, уменьшает количество ошибок и сохраняет данные для исторического отслеживания с течением времени.

Выбор между тестером изоляции и мегомметром зависит от потребностей вашего бизнеса. Все, что вам нужно, — это мег-тест. Но если вам нужна повышенная мощность, удобство, профилактика и безопасность, лучшим выбором может стать тестер изоляции.

Сравнение тестеров изоляции и мегомметров

Fluke 1587 FC Измеритель изоляции Fluke 1550c Измеритель изоляции Megger MIT230 Extech 380363
Испытательное напряжение 50 В, 100 В, 100 В, 100 В В, 500 В, 1000 В 250 В, 500 В, 1000 В, 2500 В, 5000 В 250 В, 500 В, 1000 В 250 В, 500 В и 1000 В
Измерения сопротивления 2. 2 ГОм 2 ТОм 1 ГОм 10 ГОм
PI / DAR x x
Температурная компенсация x x
Запись данных Без ограничений с Fluke Connect® 99 внутренних, без ограничений с FC Ввод вручную 9 записей
Передача данных x x
Измерение напряжения 0-1000 В 25 В — 600 В 999 В
Измерение тока 400 мА переменного или постоянного тока
Тест диодов x
Проверка целостности x x x
Измерение частоты 99.99 кГц
Измерение емкости 9999 мкФ 15 мкФ
Измерение температуры от -40 ° C до 537 ° C
от -40 ° F до 998 ° F

Получите бесплатную демонстрацию

Измерения мегомметра и приборы для проверки изоляции

Измерения мегомметра теперь могут быть более точными, быстрыми и безопасными, чем когда-либо прежде.

JEFF JOWETT, MEGGER
Значительное количество электронщиков, работающих в электротехнической промышленности, прошли военную подготовку. И многие из них учились на простом аналоговом измерителе с ручным заводом, правильное название которого — мегомметр, или тестер изоляции. Эти тестеры обычно представляли собой блоки на 500 В, которые измеряли до нескольких сотен МОм и могли выполнять проверку целостности цепи, возможно, до 100 Ом. Испытательные напряжения поступали от бортового генератора, приводимого в действие оператором, вращающим ручку, с выпрямителем, преобразующим выходной сигнал в постоянный ток.Переключатель предоставлял возможность проверки изоляции с высоким сопротивлением или проверки целостности цепи с низким сопротивлением. Многие из этих тестеров все еще находятся в рабочем состоянии, и при условии, что они находятся в хорошем состоянии и откалиброваны, нет причин, по которым они не должны работать.

Техник проверяет сопротивление изоляции обмоток двигателя с помощью ручного мегаомметра. Мегомметры

на протяжении десятилетий оставались весьма схожими по конструкции и функциям. Различия заключались в основном в качестве изготовления. Но революция в микроэлектронных схемах привела к взрыву быстрого перехода на новые и лучшие конструкции.Теперь измерения могут быть более точными, быстрыми и безопасными, чем когда-либо прежде.

Сначала основы: мегомметр измеряет качество электрической изоляции, прикладывая напряжение к изоляции и измеряя величину тока, который «протекает» через нее (отсюда и термин «ток утечки»). Напряжения обычно применяются при номинальном рабочем напряжении для текущего обслуживания или в два раза выше номинального для устранения неисправностей. Токи очень малы … обычно наноамперами … и поэтому тестер должен иметь исключительную чувствительность.Сила тока всего 5 мА достаточно, чтобы шокировать человека. Испытательное напряжение и измеренный ток преобразуются в сопротивление в миллионах Ом (мегом, МОм). Все, что меньше МОм, обычно считается непригодным для эксплуатации (исключение составляют оборудование, работающее при очень низких напряжениях, и узлы, которые будут заключены в дополнительную изоляцию внутри более крупного оборудования).

Все это сделали оригинальные тестеры, но не более того. Испытания на электрическую изоляцию определили, что необходимо очистить, отремонтировать или утилизировать, а что может оставаться в эксплуатации.Испытания изоляции — жизненно важное звено в противопожарной защите, устранении дорогостоящих отказов в процессе эксплуатации и обеспечении безопасной работы. Простые инструменты могут выполнять эти функции достаточно хорошо, и за те десятилетия, которые они эксплуатировали, вокруг них выросло определенное количество знаний.

Все оригинальные тестеры имели аналоговые механизмы. Они должны были; не было микроэлектроники. Стрелки находились на верхнем уровне, в начале теста были зафиксированы на низком уровне из-за емкостных зарядных токов, а затем устойчиво смещались (как хотелось) обратно к верхнему пределу или останавливались при измерении.Многие операторы научились наблюдать за поездками и стали меньше обращать внимание на реальные цифры.

Этому навыку было трудно научить; его нужно было изучить, и он до сих пор практикуется опытными техническими специалистами. Но аналоговые движения были чувствительны и выдерживали небольшие удары. Они также могут пострадать от параллакса и интерпретации оператором того места, где остановился указатель.

Современные мегомметры: семейство MIT4002 от Megger. Обратите внимание на использование цифрового и аналогового отображения сопротивления в логарифмической шкале.

LCD представили цифровые измерения. Эти устройства обычно можно было сбросить и снова ввести в эксплуатацию, при условии, что они не приземлялись прямо на дисплей; огромный бонус в экономии времени и средств. Цифровые измерения также могут быть чрезвычайно точными, с точностью до одного-двух процентов по качеству инструментов, и не требуют интерпретации. Но дорожка указателя, которую так заветно считали ветераны техники, была потеряна.

Тогда технологии снова пришли на помощь! Комбинированные дисплеи доступны в качественных приборах с электронной стрелкой и цифровым результатом в состоянии покоя.Помните: ищите логарифмическую дугу, которая расширена для лучшего разрешения на очень важном нижнем конце шкалы. Простая изогнутая гистограмма не ведет себя как настоящий аналог.

Специалисты по аналоговым технологиям привыкли к хорошей изоляции, измеряющей верхний предел шкалы, отмеченный символом бесконечности. Это всегда желательно, но не всегда понимается.

Infinity — это не измерение; это просто означает, что изоляция лучше, чем тот конкретный тестер может измерить в пределах заявленных параметров.Старые оригинальные тестеры могли достичь только 200 МОм, или, что более вероятно, 1000 МОм (1 гигаом). Этого было достаточно, чтобы отсеять плохое или неисправное оборудование. Но больше информации там не было.

Тестеры качества

теперь измеряют в диапазонах гигаом или тераом (1000 ГОм). У этого расширенного ассортимента есть два основных преимущества. Сопротивление изоляции медленно и неуклонно снижается во время работы и может действовать как автомобильный одометр в обратном направлении; чем меньше число, тем меньше оставшийся срок службы.

Это поведение можно изменить, чтобы указать график технического обслуживания и замены. Более высокие значения позволяют заранее предупредить, если сопротивление быстро падает, например, из-за попадания влаги или ближайших источников загрязнения. Во-вторых, производители изоляционных материалов постоянно разрабатывают более крупные сшитые макромолекулы, которые повышают качество и повышают значения ранних измерений. Измерительные возможности тестеров должны идти в ногу с такими разработками.

Наконец, вы должны записать результат, если ваш тест действительно выходит на бесконечность (выход за пределы диапазона), и знать, какую высоту ваш тестер может измерить.Предел диапазона обычно увеличивается с увеличением испытательного напряжения, поэтому помните об используемом напряжении и ограничении этого диапазона. Затем запишите его как значение, превышающее
этого предела (например,> 100 ГОм). Нет ничего плохого в
на пределе диапазона.

РУЧНАЯ КОЛОДКА VS АККУМУЛЯТОР

Линия питания не подходила для многих сред, в которых проводились испытания, таких как строительные площадки и удаленные электрические цепи, поэтому ручные рукоятки с годами приобрели значительную загадочность. Когда батареи начали использоваться, они усилили, а не вытеснили мистику ручного управления.Ранняя работа с батареями была нестабильной и заработала плохую репутацию, вплоть до изгнания в некоторых кругах. Батареи могут разрядиться до конца смены, оставив техника без инструмента. Хуже того, когда они теряли заряд, показания могли стать регрессивно менее точными.

К концу 1970-х годов технология аккумуляторов значительно улучшилась, и эти проблемы можно было избежать. Качественный тестер изоляции теперь может провести 2000 тестов с одним комплектом. Более того, все указанные возможности доступны вплоть до появления предупреждения LO BAT.Тем не менее, ручные рукоятки настолько укоренились, что продолжают широко использоваться. Опытные операторы могут настаивать на том, что они могут сказать что-нибудь о качестве тестового объекта по очереди генератора. Но, как и ощущение управляемости автомобиля, это утверждение не поддается количественной оценке с научной точки зрения.

По-прежнему можно получить тестеры изоляции с рукояткой. Примером является MJ159, который также имеет несколько тестовых напряжений для точечного и ступенчатого тестирования напряжения, защитный терминал для исключения поверхностного тока утечки и считывание без масштабных множителей, чтобы избежать возможных ошибок чтения оператора.

Измерители изоляции обеспечивают высокое напряжение, но малую мощность. Поначалу это может показаться нелогичным, но небольшое размышление проясняет это. Тестируемый элемент, который пропускает более нескольких миллиампер, больше не подходит в качестве изоляции. Следовательно, мегомметры обычно ограничиваются выходным сигналом примерно до 5 мА или меньше. Этот низкий уровень делает тестер по существу безопасным, но не тестируемый объект. Испытываемые предметы с высокой емкостью (длинные участки кабеля, большие обмотки двигателей и трансформаторов) могут накапливать достаточно энергии, чтобы привести к летальному исходу.Когда тест заканчивается и градиент напряжения, создаваемый мегомметром, прекращается, вся эта накопленная энергия разряжается.

В прошлом защита от таких трудностей в основном предоставлялась хорошей рабочей практике. У некоторых тестеров были выключатели разряда, но их можно было случайно не заметить. Практическое правило заключалось в том, чтобы выпустить в пять раз больше длины теста; то есть десятиминутный тест был оставлен заземленным на пятьдесят минут перед отключением, предполагая, что этого будет более чем достаточно.

Сейчас на повестке дня избыточная безопасность.Безопасная работа дополняется разрядным контуром в приборе со звуковыми и визуальными предупреждениями. Оператору нужно только наблюдать за тем, как процесс разгрузки отображается на дисплее. Защитная схема также присутствует в начале и во время теста. Если цепь находится под напряжением или становится под напряжением во время теста, современные тестеры предупреждают оператора и отключают тестирование.

Раньше тестеры изоляции обычно возвращались для «гарантийного» ремонта с прожженными следами по всем направлениям. Живое общение; ошибка оператора; нет гарантии.

Теперь тестер качества определяет напряжение под напряжением и отключает тестирование. Это еще не все. Для проверки целостности цепи — следствия проверки изоляции для проверки правильности подключения цепей — требуется испытательная цепь с низким импедансом. Но цепь разряда с высоким сопротивлением остается включенной до тех пор, пока тестер не обнаружит, что оба провода подключены к безопасной цепи с низким сопротивлением.

Старые тестеры когда-то приходили со стопкой тестовых карточек.Техник записывал данные и иногда соединял точки для построения графика. Их часто вешали на машины в водонепроницаемых куртках. Эта практика отнимала много времени и была подвержена человеческим ошибкам. Современные тестировщики сохраняют данные одним нажатием кнопки; даже все данные длительной процедуры. Помимо удобного хранения, такая практика также исключает множество споров с третьими сторонами и властями. Протоколы испытаний и сертификаты печатаются так же легко. А математические вычисления, такие как поправка на температуру, выполняются автоматически и без ошибок.

ИСПЫТАТЕЛЬНОЕ НАПРЯЖЕНИЕ

Испытания изоляции однажды проводились при одном напряжении, к которому было добавлено несколько важных вариантов выбора переключателя. Но только один читал напрямую. Остальные измерения пришлось скорректировать с помощью множителя или деления, которые были напечатаны на селекторе. Variacs обеспечивает бесступенчатую регулировку напряжения, но только одна или две позиции читаются напрямую. Все остальные пришлось скорректировать на коэффициент, указанный на шкале. В конце концов, появилось несколько позиций селектора, которые можно было читать напрямую.Они оказали огромную помощь и доминировали около полувека. Теперь опытные тестировщики предоставляют возможность прямого считывания с шагом 1 В по всему диапазону тестера.

Кроме того, тестеры могут измерять несколько параметров, помимо сопротивления изоляции, напрямую отображая ток утечки (обратный сопротивлению), частоту, фактическое испытательное напряжение, емкость и другие параметры. Можно настроить звуковые индикаторы прохождения / непрохождения и одновременное отображение нескольких измерений. Стандартные процедуры могут выполняться автоматически, пока оператор занимается другой задачей.

Международные стандарты обеспечивают рабочие процедуры и анализ результатов. Двумя наиболее важными из них являются IEC 61010, который определяет общие требования безопасности для нескольких типов электрического оборудования, и рейтинг IP (степень защиты от проникновения). Рейтинг IEC CAT, или категория, указывает на уровень защиты от вспышки дуги / дугового разряда. Всегда знайте рейтинг CAT инструмента и применяйте его соответствующим образом.

Проникновение посторонних материалов… пыли, влаги… не смертельно для оператора, но может быть опасным для прибора.Корпуса значительно улучшились по сравнению со старыми бакелитовыми и фенольными материалами. Рейтинг IP дает количественную оценку характеристик корпуса, объективно и надежно указывая, в каких условиях окружающей среды прибор будет продолжать работать. Существует даже рейтинг погружения, хотя испытания изоляции обычно не проводятся под водой.

В целом, эволюция приборов за столетие значительно снизила вероятность ошибки. Но есть еще несколько передовых методов, которые следует учитывать при проведении испытаний изоляции: Тестирование должно соответствовать правилам безопасной работы работодателя, профсоюза или источника стандартов.Изолируйте тестовый предмет и держите его недоступным для посторонних или прохожих. Проведите тест производительности на тестовом оборудовании и подключите провода. Поврежденные потенциальные клиенты часто остаются незамеченным источником запутанных или неточных результатов.

Знать основную электрическую конфигурацию объекта испытаний; вы должны проверить изоляцию между выводами. У двигателей и трансформаторов будут открытые обмотки, поэтому вы не проводите проверку целостности цепи. Закройте открытые концы крышкой или разделите их, чтобы исключить возможность возникновения дуги.Знайте единицу измерения, чтобы не путать МОм с ГОм или ТОм. Хороший тестер покажет единицы измерения на дисплее, но операторы иногда не обращают на это внимания.

Прежде всего, обязательно учитывайте время и температуру. Оба глубоко влияют на показания. Установите обычную температуру, используя коэффициент изоляционного материала (часть технических характеристик). Снимайте показания в одно и то же время теста, как только цифры установятся (например, 30 секунд, 1 минута).

Наконец, одножильный кабель нельзя протестировать традиционным способом, потому что нет места для присоединения второго провода.Можно сделать специальные приспособления для тестирования одиночных проводников, но не ожидайте, что будут применяться стандартные процедуры для многоядерных.

Что такое тест Megger и как он проводится

Устройство используется с 1889 года, популярность возросла в течение 1920-х годов, так как давно разработанное устройство не изменилось с точки зрения его использования и целей тестирования, в последние годы появилось мало реальных улучшений в дизайне и качестве тестера. Теперь доступны качественные варианты, которые просты в использовании и достаточно безопасны.Тест Меггера — это метод тестирования использования измерителя сопротивления изоляции, который поможет проверить состояние электрической изоляции.

Качество сопротивления изоляции электрической системы ухудшается со временем, условиями окружающей среды, т. Е. Температурой, влажностью, влажностью и частицами пыли. На него также оказывают негативное воздействие из-за наличия электрического и механического напряжения, поэтому стало очень необходимо регулярно проверять ИК (сопротивление изоляции) оборудования, чтобы избежать смертельного исхода или поражения электрическим током.

IR позволяет измерить стойкость изолятора к рабочему напряжению без каких-либо путей утечки тока. Он дает представление о состоянии изолятора. Он измеряется с помощью прибора под названием Megger, способного регистрировать напряжение постоянного тока между двумя датчиками, автоматически вычисляя и затем отображая значение IR.

Megger настолько популярен, что термины «сопротивление изоляции» и «Megger» используются как синонимы.

Почему проводится тестирование Megger?

Сопротивление изоляции электрической системы со временем ухудшается, условия окружающей среды i.е. температура, влажность, влажность и частицы пыли. На него также оказывают негативное воздействие из-за наличия электрического и механического напряжения, поэтому стало очень необходимо регулярно проверять ИК (сопротивление изоляции) оборудования, чтобы избежать смертельного исхода или поражения электрическим током.

Другой сценарий: в вашем доме только что произошел пожар, и пожарная часть покинула место происшествия. Электрическая компания отключила у вас газ и электричество, и вы в темноте.По милости Божьей все, что повреждено, — это ваш дом, и вам нужно начать процесс восстановления. Ваша страховая компания сообщает вам, что местная юрисдикция или сама страховая компания требуют проведения «теста Megger Test» для проверки целостности системы электропроводки в вашем доме.

Когда происходит пожар или другое событие с высокой температурой (молния, взрыв и т. Д.), Проводка и соответствующие ей элементы (изоляция и т. Д.) Подвергаются сильному нагреву. Все металлы и физические соединения имеют точку плавления.Во время некоторых пожаров достигается эта точка плавления и нарушается целостность проводки по току. Изоляция могла расплавиться внутри или оплавился и провод, и изоляция. Когда это происходит, у вас есть карман сопротивления, который образуется, когда электрический ток пытается течь через эту расплавленную область. По мере того, как ток увеличивается, чтобы попытаться пересечь карман, он выделяет тепло. Это тепло может создать достаточно температуры, чтобы вызвать еще один пожар. Именно то, что вам не нужно! Самое страшное в этих поврежденных проводах заключается в том, что вы можете не знать, что это произошло, поскольку провод может быть скомпрометирован за стенами или на вашем чердаке

Тестирование

Megger не вызывает никаких повреждений, что делает его хорошим вариантом, когда кто-то не хочет проделывать дыры в стенах для проверки электрической изоляции на предмет каких-либо проблем или проблем. Тестовое устройство работает только от 500 до 1000 вольт, что относительно мало. Из-за низкого напряжения некоторые проколы в изоляции остаются незамеченными. Как правило, он предоставляет информацию о токе утечки и о том, есть ли на изоляционных участках чрезмерная грязь или влажность, а также о количестве влаги, износе и неисправностях обмотки.

Что делается во время тестирования Megger?

Мы можем протестировать ваши цепи на наличие существующих соединений и участков с расплавленными неисправностями, которые могли возникнуть во время пожара.Затем эти результаты анализируются, и определенные цепи могут быть изолированы и заменены, чтобы убедиться, что в затронутых цепях больше нет проблем. Если у вас был пожар, поговорите со своим Настройщиком и посмотрите, требуется ли тестирование мегомметром. Обычно это покрывается страховкой, поскольку последнее, что они хотят сделать, — это оплатить еще одну претензию через месяц после того, как вы сможете восстановить свое место жительства.

Carelabs имеет под рукой оборудование и опыт для проведения тестирования Megger и регистрации этих результатов в вашей страховой компании, а также в местном строительном департаменте.Мы здесь, чтобы помочь вам убедиться, что ваша существующая проводка безопасна, и, конечно же, при необходимости установить новую проводку. Мы готовы удовлетворить все ваши потребности в электричестве.

Как выполняется тестирование Megger?

Мультиметр используется в качестве измерителя сопротивления изоляции в некоторых условиях, и в основном выполняется только проверка целостности цепи. Но для обнаружения и тестирования тока утечки в нормальных условиях или в условиях перегрузки используется специальный прибор, известный как тестер изоляции.

Мы измеряем утечку тока в проводе, и результаты очень надежны, так как мы будем пропускать электрический ток через устройство во время тестирования. Мы проверяем уровень электрической изоляции любого устройства, например двигателя, кабеля, обмотки генератора или общей электрической установки. Это очень важный тест, который проводится очень давно. Необязательно, он показывает нам точную область электрического прокола, но показывает величину тока утечки и уровень влажности в электрическом оборудовании / обмотке / системе.

Процедура испытания сопротивления изоляции или мегомметра приведена ниже:

  • Сначала отключим все линейные и нейтральные клеммы трансформатора.
  • Провода
  • мегомметра подключены к шпилькам вводов НН и ВН для измерения значения сопротивления изоляции IR между обмотками НН и ВН.
  • Провода
  • мегомметра подключаются к шпилькам высоковольтного ввода и точке заземления бака трансформатора для измерения значения сопротивления изоляции IR между обмотками высокого напряжения и землей.
  • Провода
  • мегомметра подключаются к шпилькам вводов низкого напряжения и точке заземления бака трансформатора для измерения значения сопротивления изоляции IR между обмотками низкого напряжения и землей.

Эмпирическое соотношение, приведенное ниже, дает рекомендуемое минимальное значение для IR, его единица составляет мега Ом (МОм). . Показатели стоимости дают нам представление о прочности изоляции кабеля и о том, повреждена она или нет.

IRmin (в МОм) = кВ + 1

Где кВ = номинальное рабочее напряжение в кВ

Бывают случаи, когда измеренное значение IR почти в 10–100 раз превышает значение IRmin, полученное из приведенного выше уравнения.

Общая процедура измерения состоит из измерения IR между тремя фазами, а также между отдельной фазой и землей. IR также измеряется для корпуса оборудования. Процедура варьируется от оборудования к оборудованию. Существуют разные уровни напряжения, которые применяются к кабелям в зависимости от их номинала и размера. Для выполнения мегомметра кабеля HT 33 кВ. Применяемый уровень напряжения составляет 5000 В, а значение IR может находиться в диапазоне от 1 Гига Ом до 200 Гига Ом.

Когда мы используем мультиметр, мы измеряем сопротивление, напряжение и ток.Исходя из этого, я надеюсь, что мы знакомы с термином «изоляция». Это означает, что ток не может проходить или течь через определенный проводящий провод, если он должным образом изолирован или защищен. Эти провода могут быть внутри здания, бытовой техники или электродвигателя.

Вы в основном проверяете сопротивление провода. Например, если вы хотите проверить, неисправен ли двигатель, вы проведете «мегомметр», проверяя каждую из трех фаз двигателя на землю и друг на друга, чтобы увидеть, не замкнут ли он на землю или на саму себя.

Принцип работы Megger
  • Напряжение для тестирования, производимое ручным мегомметром при вращении кривошипа, в случае ручного типа, для электронного тестера используется батарея.
  • 500 В постоянного тока достаточно для проведения испытаний оборудования с напряжением до 440 Вольт.
  • От 1000 В до 5000 В используется для тестирования высоковольтных электрических систем.
  • Отклоняющая катушка или токовая катушка, подключенные последовательно и позволяющие пропускать электрический ток, принимаемый проверяемой цепью.
  • Управляющая катушка, также известная как катушка давления, подключена к цепи.
  • Токоограничивающий резистор (CCR и PCR), включенный последовательно с управляющей и отклоняющей катушками, для защиты от повреждений в случае очень низкого сопротивления во внешней цепи.
  • В ручном мегомметре эффект электромагнитной индукции используется для создания испытательного напряжения, т. Е. Якорь перемещается в постоянном магнитном поле или наоборот.
  • Где, как и в электронном мегомметре, используются батареи для создания испытательного напряжения.
  • По мере увеличения напряжения во внешней цепи отклонение указателя увеличивается, а отклонение указателя уменьшается с увеличением тока.
  • Следовательно, результирующий крутящий момент прямо пропорционален напряжению и обратно пропорционален току.
  • Когда проверяемая электрическая цепь разомкнута, крутящий момент, создаваемый катушкой напряжения, будет максимальным, а стрелка показывает «бесконечность», что означает отсутствие короткого замыкания во всей цепи и максимальное сопротивление в тестируемой цепи.
  • Если есть короткое замыкание, указатель показывает «ноль», что означает «НЕТ» сопротивления в проверяемой цепи.

Типы мегомметров

Это можно разделить в основном на две категории:

  1. Электронный (работает от батарей)
  2. Ручного типа (с ручным управлением)

A Преимущества электронного мегомметра
  • Уровень точности очень высокий.
  • ИК-значение цифрового типа, легко читаемое.
  • Один человек может работать очень легко.
  • Прекрасно работает даже в очень загруженном пространстве.
  • Очень удобный и безопасный в использовании.

Преимущества ручного мегомметра
  • По-прежнему играет важную роль в мире высоких технологий, так как это самый старый метод определения значения IR.
  • Для работы не требуется внешний источник.
  • На рынке дешевле.

Но есть и другие типы мегомметров, которые являются двигательными, которые не используют батарею для создания напряжения. Для этого требуется внешний источник для вращения электрического двигателя, который, в свою очередь, вращает генератор мегомметра.

Испытание сопротивления изоляции или инфракрасное излучение проводится инженерами по техническому обслуживанию для проверки работоспособности всей системы изоляции силового трансформатора. Он отражает наличие или отсутствие вредных загрязнений, грязи, влаги и грубого разложения. Для сухой системы изоляции ИК обычно будет высоким (несколько сотен МОм). Инженеры по обслуживанию используют этот параметр как показатель сухости системы изоляции.

Это испытание выполняется при номинальном напряжении или выше него, чтобы определить, есть ли пути с низким сопротивлением к земле или между обмоткой к обмотке в результате ухудшения изоляции обмотки.На значения тестовых измерений влияют такие переменные, как температура, влажность, испытательное напряжение и размер трансформатора.

Это испытание следует проводить до и после ремонта или при выполнении технического обслуживания. Данные испытаний должны быть записаны для будущих сравнительных целей. Для сравнения значения испытаний следует нормализовать до 20 ° C.

Общее практическое правило, которое используется для приемлемых значений для безопасного включения питания: 1 МОм на 1000 В приложенного испытательного напряжения плюс 1 МОм.

Меры предосторожности Megger

При использовании мегомметра вы можете получить травму или повредить оборудование, с которым работаете, если не соблюдаете следующие МИНИМАЛЬНЫЕ меры безопасности.

  • Используйте мегомметр только для измерений высокого сопротивления, таких как измерения изоляции или для проверки двух отдельных проводников на кабеле.
  • Ни в коем случае не прикасайтесь к измерительным проводам, пока ручка вращается.
  • Обесточьте и полностью разрядите цепь перед подключением мегомметра.
  • Отключите проверяемый элемент от других цепей, если возможно, перед использованием мегомметра.

Преимущества тестирования Megger
  • Проактивный анализ состояния оборудования
  • Снижение риска отказа системы аварийного электроснабжения
  • Застрахованная доступность
  • Профилактический ремонт
  • Управление активами
  • Прогнозируемый ожидаемый срок службы оборудования

Рабочие, строительные и меры безопасности

Испытание мегомметром также называется испытанием сопротивления изоляции (IRT) или испытанием портативных устройств (PAT). Тестирование PAT характерно для Великобритании, Австралии и некоторых частей Европы, где тестирование бытовой техники проводится в общественных местах, таких как отели, дома, больницы, магазины для тестирования электрического оборудования для защиты от повреждений. Основная концепция испытания изоляции полностью основана на испытании изоляции. Тестирование мегомметром происходит от импорта Mega-Ohm, который представляет собой измерение результатов для проверки изоляции. Также компания Megger предоставляет испытательное оборудование для проверки изоляции; тестирование проводится на каком-либо электрическом проводе или электрическом оборудовании.

Зачем нужен тест Megger?

Все электрические системы, используемые в различных областях, таких как промышленность, больницы, дома, автомобили и т. Д., Соединяются между собой электрическими проводами. Необходимо убедиться, что соединения выполнены надлежащим образом с использованием электрических проводов для хорошей изоляции, чтобы защитить электрические системы от любых внутренних или внешних повреждений.

Чтобы проверить правильность выполнения соединений, мы используем электрический прибор под названием мегомметр. При испытании изоляции мы посылаем испытательное напряжение через электрическую систему, чтобы проверить, нет ли утечки тока, который прошел через изолированную проводку всех устройств машины.Для этого в большинстве случаев мы посылаем более высокое напряжение, чем стандартное, для испытания проводов под давлением и проверки их поведения.

Хорошая аналогия в повседневной жизни — это водопровод в нашем доме и водопровод, когда водопроводчик проверяет, нет ли утечки воды, при установке дома. Например, если рассматривать водопроводную трубу с манометром и насосом на конце. Труба закрывается с другой стороны.

проточная вода в трубе

Случай (i): Сантехник хочет показать, что утечки нет, он приложит небольшое давление к трубопроводу.Трубопровод может быть в порядке, а значит, утечки нет.

Дело (ii): Если он применяет большее давление, чтобы узнать о дефектах. Если в трубе есть небольшое отверстие, и вода течет внутри трубы, произойдет некоторая утечка. Это означает, что есть потеря воды и есть отклонение стрелки манометра, на основе этого он может обнаружить и устранить проблему. Таким же образом, если мы проводим испытание под давлением в электрической системе, мы прикладываем высокое напряжение, и манометр используется для измерения сопротивления, где мы следуем закону Ома.

Что такое хорошая изоляция?

По закону Ома

В = ИК …… (1)

В = напряжение; I = текущий ток; R = Сопротивление.

R = V / I …… (2)

Если мы считаем напряжение «V» постоянным, а «I» изменяется, то «R» изменяется.

Аналогично примеру подключения к водопроводу

Где изоляция = труба, по которой проходит вода

ток, протекающий внутри кабеля, провод

Случай (i): Если у нас есть небольшой ток при подаче постоянного напряжения , тогда сопротивление упадет.

Случай (ii): Если у нас нет тока, сопротивление будет высоким. В качестве альтернативы, когда мы проводим испытания электрических систем под давлением, необходимо поддерживать более высокое значение сопротивления. Что является условием хорошей изоляции?

Что такое тестирование Megger?

Megger — это электрический прибор, который используется для проверки сопротивления изоляции и обмоток машин для защиты всего электрического оборудования от серьезных повреждений.

Процедура проверки мегомметром

Чтобы измерить утечку тока в проводе, мы пропускаем ток через устройства; мы проверяем уровень электрической изоляции любого устройства, такого как двигатель, кабель и трансформатор.Результат этого можно измерить в мегаомах.

Работа Megger

  • Для электрических систем с высоким напряжением для тестирования требуется от 1000 В до 5000 В.
  • Отключающая катушка должна подключаться последовательно, чтобы протекающий ток протестировал цепь.
  • Эта цепь соединена с катушкой ПК.
  • Для защиты цепи два резистора (резистор токовой катушки и резистор катушки давления) подключены последовательно, а также
  • с использованием двух катушек, таких как управляющая катушка и отклоняющая катушка.
  • В мегомметре с ручным управлением испытательное напряжение генерируется эффектом электромагнитных помех.
  • Когда напряжение увеличивается, указатель отклонения показывает на бесконечность. Точно так же, если ток увеличивает отклонение
  • , указатель показывает ноль.

Следовательно

Момент α Напряжение,… .. (3)

Момент α 1 / Ток. …. (4)

При коротком замыкании стрелка показывает 0 показаний.

Блок-схема Megger

Megger Test for Cables

Проверка сопротивления изоляции кабеля с помощью мегомметра — это проверка целостности цепи, при которой питание цепи отключено.

Например, если кабель имеет емкость 5 ампер, мы можем передавать ток, меньший или равный 5 ампер, но не более того. Если мы отправим более 5 ампер, это может привести к выходу из строя кабеля. Поэтому мы проводим испытание сопротивления изоляции, чтобы узнать, какое сопротивление она может выдержать. Сопротивление изоляции всегда измеряется в мегаомах. Устройство, используемое для измерения ИК-излучения, известно как Меггер.

Токоведущий кабель

Этот кабель применяется в энергосистемах, где мы проводим ИК-тестирование для надлежащего обслуживания системы.Чтобы мы могли знать значение IR для лучшей производительности.

Megger Test для кабелей
Construction

Megger — это генератор постоянного тока. Он состоит из трех клемм

  • Линейная клемма,
  • Защитная клемма,
  • и клемма заземления.

В приведенной выше схеме ограждение подключается поверх изолятора, линейный вывод подключается к проводнику, который должен быть проверен, а заземляющий контакт заземляется.

Более высокое сопротивление = более высокая изоляция = отсутствие тока.

Шаги

  • Подключите цепь, как описано выше.
  • Нажмите кнопку тестирования на мегомметре, мегомметр будет генерировать ток.
  • Этот ток течет по кабелю, значение сопротивления в шкале находится в диапазоне от 35 до 100 МОм.
  • Обратите внимание, чтобы поддерживать этот контакт в течение 30–60 секунд.
  • Допустимое ИК-излучение для электрического кабеля = 1 МОм для 1000 В.

Результат

Если показанный диапазон составляет от 35 до 100 МОм, это означает, что это хороший изолятор.

Megger Test for Transformer

Трансформатор — это электрическое устройство, в основе которого лежит принцип взаимной индукции. ИК-тест выполняется, чтобы убедиться в отсутствии утечки магнитного потока в трансформаторе.

Тест-мегомметр для трансформатора
Порядок работы

Ниже приведены шаги для проверки изоляции трансформатора,

  • Шаг 1 : Снимите все клеммные соединения.
  • Шаг 2: Соединение между двумя выводами мегомметра и LV — низкое напряжение и HV — высокое напряжение вводятся шпильками трансформатора.Чтобы мы могли записать диапазоны значений IR от LV до HV.
  • Шаг 3: Соединение между выводами мегомметра и шпилькой высоковольтного ввода трансформатора и клеммой заземления трансформатора. IR измеряется между обмотками трансформатора высоковольтного заземления.
  • Шаг 4: Когда выводы мегомметра подключены к трансформатору, шпилька проходного изолятора низкого напряжения и клемма заземления трансформатора. IR измеряется между обмоткой низкого напряжения — землей.

Результат

  • Значения IR записываются каждые 10 секунд, 15 секунд и 1 минуту.
  • При увеличении приложенного напряжения значение сопротивления изоляции также увеличивается.
  • Коэффициент поглощения задается как значение 1 мин / 15 сек.
  • Поляризация индекса составляет 10 мин. Значение / 1 мин.
Меры безопасности при выполнении теста мегомметром
  • Используйте мегомметр для более высокого сопротивления
  • Пока устройство находится в режиме тестирования, не прикасайтесь к проводам.
  • Перед подключением мегомметра убедитесь, что электрическая система отключена.
Преимущества теста Megger

Преимущества прибора Megger для тестирования:

  • Можно уменьшить количество аварийных отказов в системе питания
  • Ремонт можно спрогнозировать заранее
  • Прогнозирование ведет к увеличению срока службы электрической системы , который проходит тестирование.

Здесь мы описали, почему мы проводим тестирование сопротивления изоляции или мегомметр для электрических систем, а также мы видели, как сопротивление изоляции или процедуру тестирования мегомметром и результаты, выполненные для кабеля и трансформатора, а также меры предосторожности и преимущества.Вот вопрос: почему бы нам не использовать мультиметр для проверки электрической системы вместо мегомметра?

Высокоэффективные тестеры изоляции от производителей

ИСПЫТАНИЕ ИЗОЛЯЦИИ

Электрооборудование Испытание изоляции потребности существуют столько же, сколько и сами электрические активы. Хорошо задокументированные недостатки ранних систем изоляции стали очевидны почти сразу после того, как более 125 лет назад были заложены первые системы освещения. Хотя с тех пор изоляционные системы претерпели значительные изменения, необходимость в их тестировании никогда не исчезает.Последствия неудачи слишком велики.

ИСПЫТАНИЯ ИЗОЛЯЦИИ ПОСТОЯННОГО ТОКА

Самые ранние испытания систем изоляции включали приложение постоянного напряжения к изоляции и измерение утечки или резистивного тока через нее. Истоки мостов постоянного тока восходят к 1833 году и относятся к Сэмюэлю Хантеру Кристи, который изобрел первый мост — известный как мост Уитстона в честь Чарльза Уитстона, который просто намного более четко описал схему Кристи и ее преимущества. Первый портативный тестер изоляции постоянного тока был разработан в 1889 году нашими основателями Сиднеем Эвершедом и Эрнестом Виньолесом, а к 1903 году продавался как тестер изоляции Megger®.

Проверка сопротивления изоляции, также известная как «тест мегомметра», актуальна как никогда и во многих случаях предпочтительнее других методов проверки изоляции. Сегодня Megger предлагает лучшую линейку тестеров сопротивления изоляции 5 кВ, 10 кВ и 15 кВ (постоянного тока), доступных в любом месте. В частности, наша линейка тестеров изоляции серии S1 предлагает непревзойденные возможности, включая работу от батареи или линии, лучшие диапазоны измерения, высочайшую шумостойкость, пять автоматических тестов, хранение данных, загрузку через RS232 или USB и МНОГОЕ ДРУГОЕ.

ИСПЫТАНИЯ ИЗОЛЯЦИИ ПЕРЕМЕННОГО ТОКА

В начале 1900-х годов, по мере совершенствования систем изоляции, возникла необходимость обнаруживать различные типы повреждений диэлектрика. Например, испытание коэффициента мощности (также известное как тангенс дельта или испытание на рассеяние) стало важным испытанием диэлектрика из-за его уникальной способности обнаруживать локальные загрязнения в многослойной системе изоляции. Емкостный проходной изолятор, исторически известный как конденсаторный изолятор и представленный около 1910 года, является наиболее узнаваемым активом с такой системой изоляции; Широкое распространение этих вводов, следовательно, закрепило популярность теста коэффициента мощности. Между тем, в литературе говорится, что производители кабелей использовали тесты изоляции коэффициента мощности в лаборатории с самого начала 1900-х годов.

Серия Delta 4XXX — это специальный прибор Megger для измерения коэффициента мощности / коэффициента рассеяния (PF / DF) и измерения емкости для использования в полевых условиях. TRAX в сочетании с TDX также обеспечивает возможности тестирования PF / DF. Это не обычные наборы коэффициента мощности. Они однозначно корректируют влияние температуры на результаты испытаний PF / DF (см. Бюллетень ITC TLM) — необходимо, чтобы укрепить уверенность в ваших выводах по результатам испытаний — и позволяют проводить измерения частотной характеристики узкополосной диэлектрической проницаемости (NB DFR) — следующий шаг вперед в тестировании коэффициента мощности .

ТЕСТ ЧАСТОТНОГО ДОМЕНА

Опыт и исследования показали, что традиционный тест коэффициента мощности не очень чувствителен к механизмам полностью диэлектрического повреждения. Например, факторы проводящих потерь (например, вода), если они присутствуют на низких уровнях, практически останутся незамеченными, если полагаться на одно измерение коэффициента мощности. Этот недостаток может быть восполнен путем повторения испытаний коэффициента мощности на нескольких заданных частотах (также известных как диэлектрическая частотная характеристика или DFR).

Компания Megger продолжает оставаться лидером в области диэлектрической оценки и сегодня, поскольку мы были в авангарде разработки испытательного оборудования для измерения диэлектрической проницаемости, представив первый коммерчески доступный инструмент для измерения диэлектрической проницаемости более 20 лет назад — IDAX. Большинство аспирантов, изучающих диэлектрики, расширили свои знания за счет использования IDAX.

Область диэлектриков большая. Методы оценки широки, потому что есть много параметров тестирования, таких как уровень стресса (т.е., величина источника испытания), которой должен подвергаться испытательный образец во время испытания, и особенности применения, в котором используются системы изоляции. Например, кабели создают проблемы для испытаний на переменном токе, потому что они представляют собой очень большие емкостные образцы, особенно когда кабели становятся довольно длинными.

ИЗОЛЯЦИЯ КАБЕЛЯ — ИСПЫТАНИЯ AC, DC и СНЧ

В конкретном приложении для оценки кабеля, в дополнение к возможностям тестирования DFR, Megger предлагает различные решения для тестирования изоляции переменного, постоянного и СНЧ.VLF-тестирование сочетает в себе преимущества тестирования переменного тока с преимуществами, присущими источнику тестирования постоянного тока.

Омметр — объяснение конструкции и эксплуатации

Самым важным фактором для персонала, работающего на борту судов (или в любой другой отрасли), является — личная безопасность и средства безопасности, встроенные в механизмы и системы.

Электрические компоненты и механические системы, находящиеся в машинном отделении, в основном обслуживаются электриком.

Регламентное обслуживание электрического оборудования включает проверку сопротивления изоляции, которая выполняется с помощью прибора, называемого «омметром».

Испытание сопротивления изоляции проводится для проверки целостности, т. Е. Для сопротивления току, протекающему вне оборудования, и удержания его в пределах выделенных частей.

Измеряемое «IR» (сопротивление изоляции) может быть связано с проводом, кабелем или обмотками двигателя / генератора. Проще говоря, каждая электрическая изоляция должна иметь характеристики, противоположные проводнику.

Прочтите по теме: Важность сопротивления изоляции в морских электрических системах

Для e.g., в корпусе насоса и трубопроводах в водопроводной системе действует как изоляция, предотвращающая утечку воды. Точно так же в системе электропроводки изоляция провода предотвращает утечку тока, который проходит по медному проводу.

Сопротивление изоляции — важность и причины снижения

Сопротивление изоляции (I.R) является критическим параметром, так как он напрямую связан с личной безопасностью, безопасностью оборудования и надежностью электроснабжения.

Значение I.R электрического устройства изменяется при старении, механических и электрических напряжениях, температуре, загрязнении, атмосфере, влажности и т. Д.

Поэтому важно, чтобы инженеры и электрики идентифицировали это обнаружение, чтобы избежать несчастных случаев на борту судов из-за поражения электрическим током.

Связанное чтение: Как снизить риск поражения электрическим током на корабле?

Еще одна частая причина уменьшения значения сопротивления изоляции — попадание воды.Если электрическое оборудование намокло из-за пресной воды, его можно сразу высушить для проверки значений ИК.

Однако в случае попадания морской воды в первую очередь необходимо промыть ее пресной водой для удаления солевых отложений, которые вызовут коррозию металлических деталей и изолирующей поверхности.

Удалите масло и жир с такого оборудования с помощью подходящего растворителя.

Любое мокрое оборудование на судне подвержено пробоям напряжения. Поэтому при использовании омметра на стадии сушки следует использовать низковольтный омметр для проверки изоляции (100 или 250 В постоянного тока).

Если низковольтный омметр недоступен, для достижения результатов можно использовать медленный запуск в механическом омметре 500 В.

Иногда электрический омметр также снабжен контрольным диапазоном в киломах (кВт). Это измерение диапазона испытаний является идеальной начальной проверкой для затопленного оборудования.

Почему проводится проверка омметром?

Как упоминалось ранее, сопротивление изоляции электрической системы со временем ухудшается из-за нескольких факторов.Необходимо проверить сопротивление изоляции, чтобы проверить качество изоляции (проколы изоляции) электрической системы и избежать серьезных или незначительных поражений электрическим током операторов.

Таким образом, тестирование омметром проводится для получения информации о токе утечки и областях, где изоляция ухудшилась из-за чрезмерной влажности и грязи в электрических цепях.

Любая конкретная неисправная цепь затем изолируется и заменяется / ремонтируется, чтобы избежать дальнейших проблем и обеспечить безопасность экипажа.

Связанное чтение: Затопление машинного отделения: устранение неполадок и немедленные действия

Использование омметра на корабле (и в других отраслях)

Омметр широко и часто используется офицером корабля для следующих работ:

При использовании в нормальной атмосфере омметр не представляет опасности возгорания. Однако при использовании прибора для тестирования оборудования, расположенного в воспламеняющейся или опасной атмосфере, это может привести к взрыву из-за искры, возникающей при использовании прибора.

Не используйте испытательное оборудование омметра во взрывоопасной атмосфере (например, на палубе нефтяного танкера).

Типы омметров

Омметр — это портативный прибор, который используется для измерения сопротивления изоляции электрического оборудования или системы. Он может работать от батареи или механически (ручной генератор постоянного тока) и дает прямые показания в омах. По этой причине его еще называют омметром.

На борту корабля присутствуют различные системы с большим номинальным напряжением, поэтому омметр выпускается в диапазоне 50, 500, 1000, 2500 и 5000 В, что делает омметр пригодным для применения на оборудовании с нормальным напряжением для более требовательных высоковольтных приложений. .

Категории испытательного оборудования омметра можно разделить на две:

  • Электронный тип (с питанием от батарей)
  • Ручного типа (с ручным управлением)

На рынке доступны другие типы омметров, которые работают от присоединенного двигателя, для вращения которого требуется внешний источник питания.

Затем этот двигатель вращает генератор, установленный в омметре. Поскольку общий размер такого счетчика увеличивается из-за добавления двигателя и их зависимости от источника энергии, они не особенно предпочтительны для использования на кораблях.

Омметр электронного типа:

Электронный омметр, также известный как электрический омметр, компактен всех типов и использует для работы аккумулятор. Важные части этого испытательного оборудования омметра:

Цифровой дисплей: — Для отображения значения сопротивления изоляции в цифровой форме

Провода для тестирования: — Двухпроводные провода для соединения омметра с внешней электрической системой для последующего тестирования.

Переключатели выбора: — На измерителе предусмотрены различные диапазоны параметров, которые можно выбирать с помощью переключателей выбора.

Индикаторы: — В прибор встроены различные индикаторы для визуальной и звуковой индикации включения прибора, предупреждения, состояния параметра и т. Д.

Конструкция и детали электрического омметра могут отличаться в зависимости от производителя, однако основная конструкция и принцип действия остаются неизменными.

Преимущества электронного омметра
  1. Имеет очень высокую точность измерения
  2. Простота эксплуатации для одного человека
  3. Цифровой дисплей позволяет легко считывать значение IR
  4. Прочный и безопасный в использовании
  5. Меньше обслуживания по сравнению с другими типами
  6. Хорошо работает в перегруженных помещениях
  7. Удобный и компактный для переноски
  8. Менее трудоемкая операция

Недостатки электронного омметра
  • Требуется внешний источник энергии для подачи энергии i.е. Сухая камера
  • Высокая начальная стоимость
Читать по теме: Опасности, связанные с изоляцией электрических кабелей в случае пожара

Ручной омметр:

Портативный омметр до сих пор используется на корабле, поскольку он обеспечивает обслуживание без использования батареи и внешнего источника питания. В состав такой установки для проверки омметра входят:

Дисплей: — Имеется аналоговый дисплей, представляющий собой указатель и шкалу, для отображения записи значения ИК.

Ручной кривошип: В качестве омметра с ручным управлением предусмотрен ручной кривошип, который можно вращать для создания необходимого напряжения, которое проходит через электрическую систему для проверки сопротивления изоляции.

Выводы: — Предусмотрены двухпроводные выводы, которые можно подключить к электрической системе, которую необходимо проверить.

Преимущества ручного омметра
  • Для работы внешний источник не требуется
  • Отличный выбор для аварийного использования
  • Дешевле электрического омметра

Недостатки ручного омметра
  • Для работы с портативным омметром требуется не менее 2 судовых работников.один для вращения кривошипа, а другой для подключения проводов для проверки ИК оборудования
  • Не такой точный, как электронный омметр, поскольку значение будет меняться в зависимости от вращения рукоятки.
  • Требуется стабильное место для работы и записи значения IR, которое немного сложно найти на рабочих местах.
  • Нестабильное размещение тестера может повлиять на результат значения IR.
  • Обеспечивает аналоговый результат отображения.
  • Требуют очень осторожного и безопасного использования при их использовании.
  • Работа, требующая много времени

Принцип работы омметра

Омметр работает по принципу прибора с подвижной катушкой, который утверждает, что когда проводник, по которому проходит ток, помещается в магнитное поле, на проводник действует сила.

Как видно на рисунке ниже, когда токопроводящий проводник попадает в магнитное поле постоянного магнита, возникает дефектный крутящий момент, который перемещает указатель на шкале.

Конструкция омметра

Важные конструктивные особенности омметра состоят из следующих частей:

  1. Управляющая и отклоняющая катушки : Обычно они устанавливаются под прямым углом друг к другу и подключаются параллельно генератору. Полярность такова, что создаваемый ими крутящий момент находится в противоположном направлении
  2. Постоянный магнит : Постоянный магнит с северным и южным полюсами для создания магнитного эффекта для отклонения стрелки.
  3. Указатель и шкала : Указатель прикреплен к катушкам, и конец указателя перемещается по шкале, которая находится в диапазоне от «нуля» до «бесконечности». Единица измерения — «Ом».
  4. Подключение генератора постоянного тока или аккумулятора : Испытательное напряжение подается от ручного привода D.Генератор C для омметра с ручным управлением и аккумулятор и электронное зарядное устройство для омметра автоматического типа.
  5. Катушка давления и катушка тока : Предусмотрены для предотвращения повреждения прибора в случае низкого сопротивления внешнего источника.

Рабочий омметр

Напряжение для испытаний подается от ручного генератора, встроенного в прибор, либо от аккумулятора, либо от электронного зарядного устройства. Обычно это 250 В или 500 В и меньше по размеру.

  • Испытательное напряжение 500 В постоянного тока подходит для тестирования судового оборудования, работающего при 440 В переменного тока. Испытательное напряжение от 1000 до 5000 В используется на борту для системы высокого напряжения на борту.
  • Токопроводящая катушка (отклоняющая катушка) подключена последовательно и пропускает ток, принимаемый проверяемой цепью. Катушка давления (катушка управления) подключена к цепи.
  • Токоограничивающий резистор — CCR и PCR соединены последовательно с катушкой давления и тока, чтобы предотвратить повреждение в случае низкого сопротивления внешнего источника.
  • В ручном генераторе якорь движется в поле постоянного магнита или наоборот, генерируя испытательное напряжение за счет воздействия электромагнитной индукции.
  • С увеличением потенциального напряжения во внешней цепи отклонение стрелки увеличивается; и с увеличением тока отклонение стрелки уменьшается, поэтому результирующий крутящий момент при движении прямо пропорционален разности потенциалов и обратно пропорционален сопротивлению.
  • Когда внешняя цепь разомкнута, крутящий момент, создаваемый катушкой напряжения, будет максимальным, и стрелка будет показывать «бесконечность».В случае короткого замыкания указатель покажет «0».

Общий осмотр омметра

— Проверить надежность соединений, дефектную изоляцию и чистоту

— Проверить ограничитель и стрелку счетчика на предмет повреждений

— Проверить футляр для переноски на предмет коррозии, пенообразования и т. Д.

— Проверка механического омметра

на легкость проворачивания.

— Проверить прокладку из поролона, если есть

— Проверить уровень заряда батареи цифровым омметром

— Убедитесь, что все индикаторы работают нормально

Омметр общего обслуживания:
  • Цифровой мультиметр снабжен предохранителем.Заменить, если не работает омметр
  • Очистить поверхность от пыли, грязи, жировых грибков и т. Д.
  • Удалите пыль и грязь с клемм с помощью мягкой щетки
  • Очистите дисплей мягкой тканью
  • Очистите кабели, стекло счетчика и внешнюю поверхность чистой мягкой тканью. При необходимости смочите ткань водой

Что записывать после проверки омметром?

При проведении испытания омметром машин или оборудования необходимо записать следующее:

  • Наименование и расположение оборудования / электропроводки
  • Дата проведения теста
  • Значения сопротивления изоляции результатов испытаний вместе со временем
  • Диапазон, напряжение и серийный номер используемого омметра
  • Температура аппарата во время ИК-теста
  • При проведении ИК-тестирования более крупных машин, таких как генератор переменного тока, трансформатор и т. Д.Следует обратить внимание на температуры по влажному и сухому термометрам и определение точки росы
  • Измерение сопротивления изоляции с поправкой на температуру
Связанное чтение: Важные моменты, которые следует учитывать при проведении технического обслуживания генератора переменного тока на судне

Всегда не забывайте отключать машины и оборудование, проверяемые на сопротивление изоляции, так как существует вероятность возникновения напряжения в испытуемом оборудовании или линиях, к которым оно подключено (из-за близости к находящемуся под напряжением высоковольтному оборудованию).

Используйте необходимые средства индивидуальной защиты, такие как резиновые перчатки и т. Д., При подключении выводов проводов для проверки оборудования для проведения испытания сопротивления изоляции.

Некоторые омметры могут быть снабжены шкалой напряжения, чтобы гарантировать отсутствие напряжения на проверяемой линии для проверки изоляции.

Возможно, вы также прочитаете:

Отказ от ответственности: Взгляды авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не утверждают, что они точны, и не принимают на себя никакой ответственности за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Данная статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и компании Marine Insight.

Теги: мегомметр

Основы тестирования сопротивления изоляции

Главная »Новости» Тестирование изоляции: мегомметр или тестер Hipot

Отправленный автор p1ws

Существует два распространенных метода проверки изоляции кабелей, проводки и электрического оборудования. Для измерения сопротивления изоляции используется мегомметр.Другой использует тестер для проверки изоляции. Оба подают высокое напряжение переменного или постоянного тока на тестируемое устройство (ИУ) и измеряют результирующий ток.

Мегаомметры
Современный мегомметр (или мегомметр) подает постоянное напряжение на тестируемое устройство и измеряет постоянный ток (наноампер или микроампер). Применяя закон Ома, соответствующее значение сопротивления затем отображается на аналоговом или цифровом дисплее измерителя. Этот инструмент часто называют мегомметром, что является товарным знаком Megger Group в 1907 году.

В типичном мегомметре пользователь может выбрать один из нескольких уровней напряжения. Для кабелей или оборудования с номинальным напряжением до 500 В максимальный испытательный уровень постоянного тока обычно вдвое превышает номинальное напряжение. Выше 500 В максимальный уровень ближе к номинальному напряжению (например, 5000 В для системы 4100 В). У производителя оборудования могут быть более конкретные рекомендации по тестированию.

Из-за емкостных и диэлектрических эффектов в ИУ требуется время, чтобы показания стабилизировались после подачи напряжения.Первоначально в показаниях преобладает емкостная зарядка. Токи поглощения могут быть значительными в течение 20 секунд и более. Обычно показания ИК-излучения снимаются через 60 секунд, чтобы эти эффекты исчезли.

Методы
Два метода могут помочь в оценке состояния изоляции. Во-первых, пошагово подавать напряжение. Ухудшенная изоляция будет показывать уменьшение значения IR по мере увеличения испытательного напряжения. Для получения точных результатов следует контролировать время выдержки на каждом этапе.Чтобы упростить эту проверку, некоторые мегомметры включают функцию автоматического повышения напряжения через запрограммированные интервалы.

Другой метод оценки — сравнение показаний ИК-излучения с результатами предыдущих испытаний. Поскольку в мегомметре используется очень низкий испытательный ток, он не повреждает изоляцию. Периодические ИК-испытания позволят выявить ухудшение состояния изоляции со временем и необходимость профилактического обслуживания. Для точного сравнения требуются измерения при одинаковом напряжении и времени выдержки. Влага влияет на показания ИК-излучения, поэтому следует проявлять осторожность, чтобы проводить испытания в аналогичных условиях температуры и влажности.

Параметры
Два параметра, полученные из измерений сопротивления изоляции, — это коэффициент диэлектрического поглощения (DAR) и индекс поляризации (PI). Усовершенствованные цифровые мегомметры имеют специальные функции для измерения и отображения этих параметров. DAR — это ИК через 60 секунд, разделенный на ИК через 30 секунд. Значение меньше 1 показывает, что сопротивление со временем уменьшается, что указывает на отказ DUT. Индекс поляризации используется на двигателях и генераторах для оценки количества примесей в обмотках и их чистоты.PI — это IR за 10 минут, деленное на IR за 1 минуту. Некоторые стандарты оборудования определяют минимальные значения PI. Соотношение больше 1,5 обычно является адекватным.

Переносные мегаомметры с напряжением до 1000 В доступны от нескольких производителей. Переносные блоки могут питать до 15 кВ. Многоцелевые приборы сочетают ИК-измерения с другими функциями тестирования, такими как мультиметр. На этой фотографии показан типичный портативный мегомметр, портативный мегомметр, мегомметр / цифровой мультиметр и тестер hipot.


Hipot Tester
Тест Hipot (сокращенно от «высокого потенциала») определяет способность электрической изоляции выдерживать обычно возникающие переходные процессы перенапряжения.Тестер высокого напряжения подает высокое напряжение на изоляционный барьер ИУ и проверяет отсутствие пробоя. Это простой тест типа «прошел / не прошел», выполняемый как типовое испытание на репрезентативной выборке или как стандартное производственное испытание. Максимально допустимая утечка обычно находится в диапазоне от 0,1 до 5 мА или в соответствии с требованиями стандарта на испытания. Фактическое значение утечки для каждого DUT может быть записано для обеспечения качества.

Многие стандарты (например, IEC 60950) определяют испытательное напряжение переменного тока, которое в два раза превышает рабочее напряжение плюс 1000 В.Большинство из них допускают использование переменного или постоянного напряжения. Испытательная установка и процедуры идентичны для переменного и постоянного тока, хотя уровень постоянного тока должен быть равен пику переменного напряжения. Время проверки обычно составляет 1 минуту, но в некоторых ситуациях, например, при крупносерийных производственных испытаниях, может быть разрешено более короткое время проверки при более высоком напряжении.

Как правило, проверка высокого напряжения выполняется на сетевой проводке электрического оборудования. Один вывод тестера подключен к защитному заземлению (заземлению). Другой вывод подключается к проводу питания и нейтрали.Часто тестер hipot имеет встроенную розетку переменного тока для этих подключений (как показано на фото).

Если в тестируемой цепи есть фильтр линии питания, тестер переменного тока может указать неисправность из-за протекания тока на землю через Y-конденсаторы. Стандарт безопасности обычно позволяет пользователю отключать эти конденсаторы перед испытанием или увеличивать верхний предел тока, чтобы компенсировать дополнительную утечку. В качестве альтернативы можно использовать испытательное напряжение постоянного тока. Большинство тестеров hipot также включают нижний предел, чтобы гарантировать сбой теста, если тестируемое устройство не подключено или тест прерывается.В отличие от мегомметров, которые обычно питаются от батарей, почти всем тестерам требуется питание переменного тока.

Таким образом, сопротивление изоляции обычно является полевым измерением для оценки качества изоляции. Hipot-тестирование — это обычно проверка безопасности, выполняемая на заводе для проверки конструкции продукта и производственного процесса. Эта разница определяет, является ли мегомметр или высоковольтный тестер подходящим инструментом для проверки изоляции.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *