Из чего состоит электродвигатель: типы, устройство, принцип работы, параметры, производители

Содержание

Из чего состоит электродвигатель

Электродвигатель это механизм, преобразующий электрическую энергию во вращательное движение своего вала. Что бы иметь наименьшее представление об этом агрегате необходимо понимать принцип его работы и знать, что вращается в электродвигателе.

Части электродвигателя

Основные два элемента, которые в наибольшей степени характеризуют электрический двигатель это статор и ротор. Именно ротор электрической машины вращается в агрегате под воздействием магнитного поля,  возникающего в статоре. Это магнитное поле создается непосредственно под влиянием третьего по важности компонента электромотора, его обмотке. Для создания магнитного поля необходимо соблюдение трех основных условий:

  1. Наличие не менее двух обмоток
  2. Обязательное отличие по фазам тока в обмотках
  3. Смещение оси обмоток в пространстве

Наличие в статоре двух обмоток говорит о том, что электродвигатель однофазный, а три обмотки характеризуют трехфазный электродвигатель.

Четвертый основной элемент любого электродвигателя это его

корпус. Он изготавливается  из сплава алюминия или из чугуна в зависимости от особенностей использования агрегата и высоты оси его вращения.

Ротор эл двигателя запрессовывается на вал под действием специального технологического процесса, его сердечник состоит из прессованных стальных листов,  в пазы которого заливается металл, образуя стержни. С помощью торцевых колец эти стержни замыкаются накоротко. Название такой конструкции «беличья клетка». По краям корпуса находятся подшипниковые щиты, в которых, в свою очередь устанавливаются различные подшипники в зависимости от конструкции электродвигателя и особенностей его применения.

На заднем подшипниковом щите устанавливается вентилятор для охлаждения мотора, который закрывается защитным кожухом предотвращающим попадание инородных частиц. При работе от частотно регулируемого привода

дополнительно устанавливается узел принудительной вентиляции.

В зависимости от способа установки электродвигателя он может иметь фланец с приводной стороны, а может и не иметь, при условии установки его только на лапы. На электродвигатели, которые требуют торможения,электромагнитный тормоз дополнительно устанавливается на общепромышленный электродвигатель. О дополнительных модификациях электродвигателей читайте в этой статье.

Для подключения двигателя используется коробка выводов или БОРНО, которая по умолчанию устанавливается в верхней части агрегата. Если того требует особенность установки , БОРНО можно разместить на боковой поверхности электромотора. Либо переставить лапы двигателя на боковую поверхность, что обеспечит расположение коробки выводов на боковой плоскости. Такая манипуляция возможна только на двигателях в алюминиевом корпусе.


 Электродвигатель АИР характеристики
Тип двигателя  Р, кВт Номинальная частота вращения, об/мин кпд,* COS ф 1п/1н Мп/Мн Мmах/Мн 1н, А Масса, кг
Купить АИР56А2 0,18 2840 68,0 0,78 5,0 2,2 2,2
0,52
3,4
Купить АИР56В2 0,25 2840 68,0 0,698 5,0 2,2 2,2 0,52 3,9
Купить АИР56А4 0,12 1390 63,0 0,66 5,0 2,1 2,2 0,44 3,4
Купить АИР56В4 0,18 1390 64,0
0,68
5,0 2,1 2,2 0,65 3,9
Купить АИР63А2 0,37 2840 72,0 0,86 5,0 2,2 2,2 0,91 4,7
Купить АИР63В2 0,55 2840 75,0 0,85 5,0 2,2 2,3 1,31 5,5
Купить АИР63А4 0,25 1390 68,0 0,67 5,0 2,1 2,2 0,83 4,7
Купить АИР63В4 0,37 1390 68,0 0,7 5,0 2,1 2,2 1,18 5,6
Купить АИР63А6 0,18 880 56,0 0,62 4,0 1,9 2 0,79 4,6
Купить АИР63В6 0,25 880 59,0 0,62 4,0 1,9 2 1,04 5,4
Купить АИР71А2 0,75 2840 75,0 0,83 6,1 2,2 2,3 1,77 8,7
Купить АИР71В2 1,1 2840 76,2 0,84 6,9 2,2
2,3
2,6 10,5
Купить АИР71А4 0,55 1390 71,0 0,75 5,2 2,4 2,3 1,57 8,4
Купить АИР71В4 0,75 1390 73,0 0,76 6,0 2,3 2,3 2,05 10
Купить АИР71А6 0,37 880
62,0
0,70 4,7 1,9 2,0 1,3 8,4
Купить АИР71В6 0,55 880 65,0 0,72 4,7 1,9 2,1 1,8 10
Купить АИР71А8 0,25 645 54,0 0,61 4,7  1,8 1,9 1,1 9
Купить АИР71В8 0,25 645 54,0 0,61 4,7  1,8 1,9 1,1 9
Купить АИР80А2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
Купить АИР80А2ЖУ2 1,5 2850 78,5 0,84 7,0 2,2
2,3
3,46 13
Купить АИР80В2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
Купить АИР80В2ЖУ2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
Купить АИР80А4 1,1 1390 76,2 0,77
6,0
2,3 2,3 2,85 14
Купить АИР80В4 1,5 1400 78,5 0,78 6,0 2,3 2,3 3,72 16
Купить АИР80А6 0,75 905 69,0 0,72 5,3 2,0 2,1 2,3 14
Купить АИР80В6 1,1 905
72,0
0,73 5,5 2,0 2,1 3,2 16
Купить АИР80А8 0,37 675 62,0 0,61 4,0 1,8 1,9 1,49 15
Купить АИР80В8 0,55 680 63,0 0,61 4,0 1,8 2,0 2,17 18
Купить АИР90L2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
Купить АИР90L2ЖУ2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
Купить АИР90L4 2,2 1410 80,0 0,81 7,0 2,3 2,3 5,1 17
Купить АИР90L6 1,5 920 76,0 0,75 5,5 2,0 2,1 4,0 18
Купить АИР90LA8 0,75 680 70,0 0,67 4,0 1,8 2,0 2,43 23
Купить АИР90LB8 1,1 680 72,0 0,69 5,0 1,8 2,0 3,36 28
Купить АИР100S2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
Купить АИР100S2ЖУ2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
Купить АИР100L2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
Купить АИР100L2ЖУ2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
Купить АИР100S4 3,0 1410 82,6 0,82 7,0 2,3 2,3 6,8 21
Купить АИР100L4 4,0 1435 84,2 0,82 7,0 2,3 2,3 8,8 37
Купить АИР100L6 2,2 935 79,0 0,76 6,5 2,0 2,1 5,6 33,5
Купить АИР100L8 1,5 690 74,0 0,70 5,0 1,8 2,0 4,4 33,5
Купить АИР112M2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
Купить АИР112М2ЖУ2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
Купить АИР112М4 5,5 1440 85,7 0,83 7,0 2,3 2,3 11,7 45
Купить АИР112MA6 3,0 960 81,0 0,73 6,5 2,1 2,1 7,4 41
Купить АИР112MB6 4,0 860 82,0 0,76 6,5 2,1 2,1 9,75 50
Купить АИР112MA8 2,2 710 79,0 0,71 6,0 1,8 2,0 6,0 46
Купить АИР112MB8 3,0 710 80,0 0,73 6,0 1,8 2,0 7,8 53
Купить АИР132M2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
Купить АИР132М2ЖУ2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
Купить АИР132S4 7,5 1460 87,0 0,84 7,0 2,3 2,3 15,6 52
Купить АИР132M4 11 1450 88,4 0,84 7,0 2,2 2,3 22,5 60
Купить АИР132S6 5,5 960 84,0 0,77 6,5 2,1 2,1 12,9 56
Купить АИР132M6 7,5 970 86,0 0,77 6,5 2,0 2,1 17,2 61
Купить АИР132S8 4,0 720 81,0 0,73 6,0 1,9 2,0 10,3 70
Купить АИР132M8 5,5 720 83,0 0,74 6,0 1,9 2,0 13,6 86
Купить АИР160S2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
Купить АИР160S2ЖУ2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
Купить АИР160M2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
Купить АИР160М2ЖУ2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
Купить АИР160S4 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
Купить АИР160S4ЖУ2 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
Купить АИР160M4 18,5 1470 90,0 0,86 7,5 2,2 2,3 36,3 142
Купить АИР160S6 11 970 87,5 0,78 6,5 2,0 2,1 24,5 125
Купить АИР160M6 15 970 89,0 0,81 7,0 2,0 2,1 31,6 155
Купить АИР160S8 7,5 720 85,5 0,75 6,0 1,9 2,0 17,8 125
Купить АИР160M8 11 730 87,5 0,75 6,5 2,0 2,0 25,5 150
Купить АИР180S2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
Купить АИР180S2ЖУ2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
Купить АИР180M2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
Купить АИР180М2ЖУ2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
Купить АИР180S4 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
Купить АИР180S4ЖУ2 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
Купить АИР180M4 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
Купить АИР180М4ЖУ2 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
Купить АИР180M6 18,5 980 90,0 0,81 7,0 2,1 2,1 38,6 160
Купить АИР180M8 15 730 88,0 0,76 6,6 2,0 2,0 34,1 172
Купить АИР200M2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
Купить АИР200М2ЖУ2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
Купить АИР200L2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
Купить АИР200L2ЖУ2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
Купить АИР200M4 37 1475 92,0 0,87 7,2 2,2 2,3 70,2 230
Купить АИР200L4 45 1475 92,5 0,87 7,2 2,2 2,3 84,9 260
Купить АИР200M6 22 980 90,0 0,83 7,0 2,0 2,1 44,7 195
Купить АИР200L6 30 980 91,5 0,84 7,0 2,0 2,1 59,3 225
Купить АИР200M8 18,5 730 90,0 0,76 6,6 1,9 2,0 41,1 210
Купить АИР200L8 22 730 90,5 0,78 6,6 1,9 2,0 48,9 225
Купить АИР225M2 55 2970 93,0 0,90 7,5 2,0 2,3 100 320
Купить АИР225M4 55 1480 93,0 0,87 7,2 2,2 2,3 103 325
Купить АИР225M6 37 980 92,0 0,86 7,0 2,1 2,1 71,0 360
Купить АИР225M8 30 735 91,0 0,79 6,5 1,9 2,0 63 360
Купить АИР250S2 75 2975 93,6 0,90 7,0 2,0 2,3 135 450
Купить АИР250M2 90 2975 93,9 0,91 7,1 2,0 2,3 160 530
Купить АИР250S4 75 1480 93,6 0,88 6,8 2,2 2,3 138,3 450
Купить АИР250M4 90 1480 93,9 0,88 6,8 2,2 2,3 165,5 495
Купить АИР250S6 45 980 92,5 0,86 7,0 2,1 2,0 86,0 465
Купить АИР250M6 55 980 92,8 0,86 7,0 2,1 2,0 104 520
Купить АИР250S8 37 740 91,5 0,79 6,6 1,9 2,0 78 465
Купить АИР250M8 45 740 92,0 0,79 6,6 1,9 2,0 94 520
Купить АИР280S2 110 2975 94,0 0,91 7,1 1,8 2,2 195 650
Купить АИР280M2 132 2975 94,5 0,91 7,1 1,8 2,2 233 700
Купить АИР280S4 110 1480 94,5 0,88 6,9 2,1 2,2 201 650
Купить АИР280M4 132 1480 94,8 0,88 6,9 2,1 2,2 240 700
Купить АИР280S6 75 985 93,5 0,86 6,7 2,0 2,0 142 690
Купить АИР280M6 90 985 93,8 0,86 6,7 2,0 2,0 169 800
Купить АИР280S8 55 740 92,8 0,81 6,6 1,8 2,0 111 690
Купить АИР280M8 75 740 93,5 0,81 6,2 1,8 2,0 150 800
Купить АИР315S2 160 2975 94,6 0,92 7,1 1,8 2,2 279 1170
Купить АИР315M2 200 2975 94,8 0,92 7,1 1,8 2,2 248 1460
Купить АИР315МВ2 250 2975 94,8 0,92 7,1 1,8 2,2 248 1460
Купить АИР315S4 160 1480 94,9 0,89 6,9 2,1 2,2 288 1000
Купить АИР315M4 200 1480 94,9 0,89 6,9 2,1 2,2 360 1200
Купить АИР315S6 110 985 94,0 0,86 6,7 2,0 2,0 207 880
Купить АИР315М(А)6 132 985 94,2 0,87 6,7 2,0 2,0 245 1050
Купить АИР315MВ6 160 985 94,2 0,87 6,7 2,0 2,0 300 1200
Купить АИР315S8 90 740 93,8 0,82 6,4 1,8 2,0 178 880
Купить АИР315М(А)8 110 740 94,0 0,82 6,4 1,8 2,0 217 1050
Купить АИР315MВ8 132 740 94,0 0,82 6,4 1,8 2,0 260 1200
Купить АИР355S2 250 2980 95,5 0,92 6,5 1. 6 2,3 432,3 1700
Купить АИР355M2 315 2980 95,6 0,92 7,1 1,6 2,2 544 1790
Купить АИР355S4 250 1490 95,6 0,90 6,2 1,9 2,9 441 1700
Купить АИР355M4 315 1480 95,6 0,90 6,9 2,1 2,2 556 1860
Купить АИР355MА6 200 990 94,5 0,88 6,7 1,9 2,0 292 1550
Купить АИР355S6 160 990 95,1 0,88 6,3 1,6 2,8 291 1550
Купить АИР355МВ6 250 990 94,9 0,88 6,7 1,9 2,0 454,8 1934
Купить АИР355L6 315 990 94,5 0,88 6,7 1,9 2,0 457 1700
Купить АИР355S8 132 740 94,3 0,82 6,4 1,9 2,7 259,4 1800
Купить АИР355MА8 160 740 93,7 0,82 6,4 1,8 2,0 261 2000
Купить АИР355MВ8 200 740 94,2 0,82 6,4 1,8 2,0 315 2150
Купить АИР355L8 132 740 94,5 0,82 6,4 1,8 2,0 387 2250

Устройство, принцип работы и подключения электродвигателей переменного тока | Полезные статьи

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Асинхронный двигатель с креплением к фланцу

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Устройство асинхронного электродвигателя

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Устройство синхронного электродвигателя

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

Электрические двигатели: классификация, устройство, принцип работы

Электрический двигатель – специальная машина (ее еще называют электромеханическим преобразователем), с помощью которой электроэнергия преобразовывается в механическое движение.

Побочный эффект такой конвертации – выделение тепла.

При-этом современные двигатели обладают очень высоким КПД, который достигает 98%, в результате чего их использование экономически более выгодно по сравнению с двигателями внутренного сгорания. Электрические двигатели используются во всех сферах народного хозяйства, начиная от бытового применения, заканчивая военной техникой.

Электрические двигатели и их разновидности

Как известно с базового школьного курса физики, ток бывает переменным и постоянным. В бытовой электросети – переменный ток. Батарейки, аккумуляторы и другие мобильные источники питания предоставляют постоянный ток.

 

Электродвигатели постоянного тока характеризуются хорошими эксплуатационными и динамическими характеристиками.

 Такие изделия широко используются в подъемных машинах, буровых станках, полимерном оборудовании, в некоторых агрегатах экскаваторов.

По принципу работы электродвигатели переменного тока бывают

  • асинхронными;
  • синхронными.

Подробное сравнение этих видов машин можно почитать тут.

Синхронные двигатели – электрические машины, где скорость вращения ротора полностью идентична частоте магнитного поля. Учитывая эту особенность, такие устройства актуальны там, где необходима стабильная высокая скорость вращения: насосы, крупные вентиляторы, генераторы, компрессоры, стиральные машины, пылесосы, практически все электроинструменты.

Особое внимание среди синхронных устройств, заслуживают шаговые двигатели. Они обладают несколькими обмотками. Такой подход позволяет с высокой точностью изменять скорость вращения таких электродвигателей.

Асинхронными двигателями называют такие машины, в которых скорость ротора отличается от частоты движения магнитного поля.

Нашли свое применение в подавляющем большинстве отраслей народного хозяйства: в приводах дымососов, транспортерах, шаровых мельницах, наждачных, сверлильных станках, в холодильном оборудовании, вентиляторах, кондиционерах, микроприводах.

Максимальная скорость вращения асинхронных установок – 3000 об/мин.

Интересное видео о двигателях смотрите ниже:

Преимущества и недостатки асинхронных двигателей

Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.

Короткозамкнутый ротор более распространен.

Такие двигатели обладают следующими преимуществами:

  • относительно одинаковая скорость вращения при разных уровнях нагрузки;
  • не боятся непродолжительных механических перегрузок;
  • простая конструкция;
  • несложная автоматизация и пуск;
  • высокий КПД (коэффициент полезного действия).

Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.

Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:

  • хороший начальный вращающий момент;
  • нечувствительны к кратковременным перегрузкам механической природы;
  • постоянная скорость работы при наличии нагрузок;
  • малый пусковой ток;
  • с такими двигателями применяют автоматические пусковые устройства;
  • могут в небольших пределах изменять скорость вращения.

К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.

Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.

Интересное видео об асинхронных электродвигателях смотрите ниже:

Особенности работы синхронных двигателей

Все синхронные двигатели обладают такими преимуществами:

  1. Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
  2. В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
  3. Хорошая сопротивляемость перегрузкам.
  4. Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.

В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:

  • сложная конструкция;
  • затрудненный пуск в ход;
  • довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).

Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.

Электродвигатели

Электродвигатели

Подробности
Категория: Электротехника

Электрические двигатели


В бытовой технике в основном применяют электродвигатели переменного тока двух видов: коллекторные (электробритва, швейная машина, пылесос, универсальная кухонная машина, электродрель и др.) и асинхронные (стиральная машина, холодильник).
Коллекторный электродвигатель является универсальным. Он может работать от постоянного и переменного токов. Принцип действия двигателя основан на взаимодействии проводника (якоря) с электрическим током и магнитным полем, создаваемым электромагнитом (индуктором). Механическая сила, возникающая при таком взаимодействии, заставляет вращаться якорь (ротор). Направление движения проводника с током определяется по правилу левой руки. Электрический двигатель с вращающимся валом был впервые сконструирован в 1834 г. русским физиком Б.С. Якоби (1801-1874).

На рисунке ниже показано устройство коллекторного двигателя.

Станина и сердечник электромагнита двигателя переменного тока выполнена из листов электротехнической стали для уменьшения потерь энергии на нагревание сердечника. У двигателя постоянного тока эти детали в основном делают сплошными. Обмотка возбуждения электромагнита в двигателях переменного тока включается последовательно с обмоткой якоря. При таком соединении весь ток якоря проходит по обмотке возбуждения, обеспечивая большой пусковой момент двигателя.

Асинхронный двигатель не имеет коллектора и щеток, следовательно, в нем не возникает искра.
Принцип работы асинхронного двигателя основан на взаимодействии вращающегося магнитного поля с токами, которые наводятся этим полем в проводниках короткозамкнутого ротора. По закону Ленца в проводниках наводится ток такого направления, что своим магнитным полем препятствует причине, его создающей, т.е. тормозит вращающееся магнитное поле. Поскольку ротор укреплен в подшипниках, то он приходит в движение в направлении вращения поля. Скорость вращения ротора не совпадает со скоростью вращения магнитного поля статора, поэтому такие двигатели называются асинхронными. Отставание вращения ротора относительно магнитного поля статора называется скольжением. Оно составляет 3-6%.
При скорости вращения магнитного поля 3000 об/мин ротор вращается со скоростью 2800 об/мин. Если в статор двигателя уложено шесть обмоток (две пары полюсов), то поле статора вращается со скоростью 1500 об/мин, а ротор — со скоростью 1400 об/мин.

На рисунке ниже изображен асинхронный двигатель в разобранном виде.

Конструктивно асинхронный двигатель, как и всякая электрическая машина, состоит из двух основных частей: неподвижной части — статора и вращающейся части — ротора.

Статор имеет три обмотки, расположенные на кольцевом сердечнике и смещенные в пространстве на 120°, а ротор имеет обмотку в виде многих короткозамкнутых витков, уложенных на цилиндрическом сердечнике. Обмотка ротора без сердечника похожа на беличье колесо и называется коротко-замкнутой или обмоткой беличьего колеса. Она представляет собой стержни, замкнутые по торцам кольцами.
Асинхронные двигатели просты по устройству, надежны в работе. Они применяются во всех отраслях народного хозяйства. Из общего количества электродвигателей, изготавливаемых заводами, асинхронные двигатели составляют примерно 95%.
К недостаткам этих двигателей относятся: 1) невозможность получить постоянное и точное число оборотов на валу; 2) при пуске имеют большой ток; 3) чувствительны к колебаниям напряжения в сети.

Квартирная электропроводка является однофазной. Поэтому для использования трехфазного асинхронного двигателя в домашних условиях необходимо подключать дополнительно конденсаторы. На рис. справа показано включение трехфазного двигателя в однофазную сеть.

Недостатком этого способа подключения трехфазных двигателей в однофазную сеть является использование дорогостоящих бумажных конденсаторов большой емкости. Так, на каждые 100 Вт мощности нужен конденсатор емкостью 10 мкФ, рассчитанный на напряжение 250-450 В.
Наряду с трехфазными асинхронными двигателями применяются однофазные асинхронные двигатели. Эти двигатели имеют на статоре две обмотки: рабочую и пусковую. Обмотки расположены под углом 90° относительно друг друга. При включении в сеть обмоток образуется вращающееся магнитное поле и короткозамкнутый ротор приходит во вращение так же, как у трехфазного асинхронного двигателя. При этом появляется скольжение ротора и пусковая обмотка может быть отключена с помощью индукционного выключателя или специального реле.

Электродвигатели обладают большими преимуществами по сравнению с другими видами двигателей (паровыми, внутреннего сгорания): они экологичны—при работе не выделяют вредных газов, дыма или пара; экономичны — для них не нужен запас топлива и воды; их легко установить в любом доступном месте (на стене, под полом трамвая, троллейбуса, в корпусе игрушки и т. д.).
Для нужд народного хозяйства промышленность выпускает большое количество разнообразных электродвигателей: от миниатюрных, например для игрушек и моделей, до двигателей огромных размеров — для кораблей, электровозов. Электродвигатели различаются не только размерами, но и назначением, конструкцией, частотой вращения ротора.

На электротехнических предприятиях изготовлением электродвигателей занимаются рабочие разных профессий. Намотку катушек статора и ротора, соединение отдельных их частей осуществляют электромонтеры-обмотчики. Собирают электродвигатели слесари-сборщики. Они должны владеть навыками выполнения не только электромонтажных, но и слесарных работ.

Электродвигатель — урок. Физика, 8 класс.

Практически важное значение имеет вращение проводника с током в магнитном поле.

 

Поместим квадратную рамку, по которой течёт ток, между полюсами дугообразного магнита перпендикулярно линиям магнитного поля магнита (рис. \(1\)).

 

Рис. \(1\)

 

Тогда со стороны магнитного поля на вертикальные участки рамки будут действовать силы \(F\), направленные перпендикулярно току в рамке. Поскольку в вертикальных участках рамки ток имеет противоположное направление (в левой части рамки — вниз, а в правой — вверх), то и силы, действующие на вертикальные участки рамки, будут одинаковы по модулю, но противоположны по направлению (слева — вперёд, к наблюдателю, а справа — назад, от наблюдателя).

Действие равных по модулю, но противоположных по направлению сил на рамку приведёт к повороту рамки на \(180\)° против часовой стрелки, если смотреть на неё сверху.

Если каким-либо образом в этот момент изменить направление тока в рамке в другую сторону, то рамка сделает ещё пол-оборота против часовой стрелки. Таким образом, изменяя направление тока в рамке на противоположное каждые пол-оборота, можно заставить рамку вращаться в одну и ту же сторону.

 

Рассмотрим насаженную на вертикальную ось прямоугольную рамку \(ABCD\). Рамка представляет собой небольшое количество витков изолированного провода (рис. \(2\)). Концы провода соединяются с полукольцами \(2\).

 

Рис. \(2\)

 

Для соединения рамок с электрической цепью полукольца прижимаются к металлическим пластинам, которые называют щётками. Одна из щёток соединена с положительным полюсом источника, вторая соединена с отрицательным полюсом источника напряжения.

 

Так как за направление тока принимают движение от положительного полюса к отрицательному полюсу, то на участках проводника \(AB\) и \(CD\) токи противоположны по направлению. Поэтому силы, действующие на стороны рамки \(AB\) и \(CD\) направлены в противоположные стороны, что и вызывает поворот рамки (в данном случае по часовой стрелке). Так как к рамке присоединены полукольца, то и они тоже повернутся и образуют контакт уже с другой  щёткой. При этом ток начнет протекать в другую сторону. Силы, возникающие при этом, будут продолжать вращать рамку в прежнем направлении (по часовой стрелке).

 

Вращение катушки с током в магнитном поле используется в устройстве электрического двигателя.

 

В  технике применяют электродвигатели, обмотка которых содержится большое количество витков проволоки, которые размещаются в специальных прорезях железного цилиндра — ротора двигателя (рис. \(3\)). Иногда его называют якорем. Он служит для усиления магнитного поля, возникающего при протекании тока по виткам проволоки.

 

Рис. \(3\)

 

Магнитное поле, в котором вращается ротор двигателя, создаётся статором, который также является сильным электромагнитом. Питание электромагнита осуществляется от того же источника тока, что питает обмотку ротора. Внутри ротора проходит металлический вал — он по сути является осью вращения. Этот вал соединяется с механизмом, который нужно привести во вращение. И во время поворота якоря начинает вращаться весь механизм.

  

Электродвигатели постоянного тока чаще всего можно встретить в транспорте — троллейбусы, трамваи, метро) или в промышленности (подъёмные краны, станки металлопроката).

При работе с легковоспламеняющимися веществами, например, с бензином или нефтью, используются безыскровые электродвигатели. Такие двигатели ставят в насосах нефтяных скважин и бензоколонках.

 

Кроме электродвигателей постоянного тока используют электродвигатели переменного тока. Они есть в каждой квартире, как составная часть стиральной машины, холодильника, пылесоса.  

 

Почему все большее и большее используют электродвигатели? Это связано с их размерами (они меньше, чем тепловые аналоги той же мощности), но самое главное преимущество связано с воздействием на окружающую среду. Электродвигатели не выделяют выхлопные газы и дым. Например, электромобиль (начиная с производства комплектующих частей) за срок службы оказывается в 5-7 раз экологичнее, чем его аналог с тепловым двигателем. Мощности электродвигателя позволяют достичь высоких КПД.

Условное обозначение электродвигателя на электрических схемах представлено на рисунке \(4\).

 

Рис. \(4\)

Борис Семёнович Якоби, русский учёный, считается одним из первых изобретателем электрических двигателей.

Отрицательным свойством любого двигателя является именно потеря энергии в виде рассеивания тепла, что приводит к перегреванию атмосферы при большом количестве двигателей.

\( \) 

Как работает электродвигатель

Электродвигатель работает благодаря тому, что взаимодействуют сила тока и сила магнита вызывают вращение. Электродвигатели состоят из: неподвижной магнитной части (статора) и подвижного (вращающегося) электромагнита – ротора. Чаще всего в роли статора выступает постоянный магнит, а в роли ротора – катушка с обмоткой возбуждения

Особенности работы электродвигателей

Когда полюс ротора притягивается к противоположно заряженному полюсу статора, он меняет автоматически свой заряд на противоположный. Тогда возникает естественное отталкивание между одинаково заряженными полюсами, и ротор не замирает на месте, а, в силу инерции, поворачивается. Автоматически переключают полюса заряда ротора при помощи коллектора. Это такие пластинки, к которым подключается обмотка катушки. Когда ротор поворачивается на 180 градусов, пластинки меняются местами, вследствие чего меняется и направление тока.

Типы  электродвигателей:

  • Двигатель, работающий от постоянного электричества.
  • Двигатель переменчивого тока.

Электричество подается на обмотку катушки через щетки, расположенные на разных концах якоря (ротора). В результате он превращается в электромагнит, создающий вокруг себя магнитное поле. Когда магнитное поле взаимодействует со статором, якорь начинает вертеться, пытаясь вырваться из поля. Мощность двигателя постоянного тока напрямую зависит от обмотки якоря.

Двигатели второго типа получают питание от переменного тока, частотой 60 Гц, бывают они синхронными и асинхронными. Обычно их запускают вручную. Когда якорь двигателя вращается одновременно с магнитным полем напряжения от сети питания, двигатель называют синхронным. Асинхронным является двигатель, у которого скорость вращения якоря не совпадает с частотой магнитного поля, приводящего его в движение.

Типовые режимы работы электрических двигателей

В зависимости от предназначения и типа устройства электродвигатели имеют разные режимы работы. Выделим несколько самых распространенных из них:

  • Продолжительный с постоянной нагрузкой  — S1;
  • Временный с постоянной нагрузкой (отличается от первого четко ограниченной по времени фазой работы) —  S2;
  • Периодический кратковременный (состоит из нескольких кратковременных циклов между фазами покоя) S3;
  • Периодический режим с электрическим пуском S4;
  • Периодический кратковременный режим с электрическим торможением S5;

Всего есть 9 типовых режимов работы электродвигателей. Каждый режим используют для определенного вида нагрузки.

Просмотров: 2576

Дата: Воскресенье, 15 Декабрь 2013

Устройство электродвигателя постоянного тока

Электрический двигатель – это электрическая машина, предназначенная для преобразования электрической энергии, поступающей от источника тока в механическую энергию. Часть потребляемой электроэнергии расходуется на перемагничивание ферромагнетиков, преодоление электрического сопротивления и силы трения, что сопровождается образованием тепла.

Электродвигатель, работающий от источника постоянного тока, называют двигателем постоянного тока. В зависимости от особенностей конструкции электрические двигатели постоянного тока подразделяются на коллекторные и бесколлекторные. Рассмотрим устройство двигателя постоянного тока на примере изделия коллекторной конструкции. Основные элементы электродвигателя постоянного тока: статор, ротор, коллектор и токопроводящие щетки.

Статор, он же индуктор, – неподвижная часть машины, в большинстве вариантов исполнения – внешняя. Статор состоит из станины и магнитных полюсов. В зависимости от конструкции двигателя на статоре могут устанавливаться постоянные магниты, электромагниты с обмотками возбуждения или короткозамкнутые обмотки. Кроме основных магнитных полюсов на статоре могут устанавливаться дополнительные полюса. Статор необходим для создания магнитного потока в системе.

Подвижная вращающаяся часть машины, как правило, внутренняя – ротор или якорь. Ротор электродвигателя постоянного тока состоит из многочисленных катушек с токопроводящими обмотками, по которым проходит электрический ток. Количество катушек в конструкции ротора может достигать нескольких десятков. Таким образом частично устраняется неравномерность крутящего момента, уменьшается коммутируемый ток, обеспечивается оптимальное взаимодействие магнитных полей статора и ротора.

Щеточно-коллекторный узел представляет собой связующее звено между ротором и статором. В коллекторе объединены выводы всех катушек ротора. Этот узел служит переключателем тока со скользящими контактами и дополнительно выполняет функции датчика углового положения ротора.

Щетки – неподвижные контакты, подводящие ток к ротору. Чаще всего в двигателях применяются медно-графитовые и графитовые щетки. При вращении ротора происходит замыкание и размыкание контактов коллектора. При этом в обмотках ротора происходят переходные процессы, приводящие к искрению. Искрение и трение при работе двигателя постоянного тока приводят к тому, что щеточно-коллекторный узел является самым уязвимым элементом конструкции. Для уменьшения искрения чаще всего используется установка дополнительных полюсов. Порядка 25% поломок электродвигателей происходит по причине неисправности щеточно-коллекторного узла. В некоторых областях применения электродвигателей постоянного тока поломки по причине износа щеточно-коллекторного узла составляют свыше 60% от общего количества.

При подаче тока на ротор, помещенный в магнитное поле статора, в системе возникает момент силы, под действием которого ротор начинает вращаться. Направление вращения ротора зависит от направления тока. Чтобы ротор вращался в одном и том же направлении, направление тока в нем должно оставаться постоянным. Это условие выполняется с помощью коллекторного узла. Механическая энергия вращения ротора передается другим механизмам посредством присоединенного к ротору шкива и ременной передачи.

Как работают электродвигатели?

Криса Вудфорда. Последнее изменение: 25 июля 2020 г.

Щелкните выключателем и мгновенно получите власть — как бы любили наши предки электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор.Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной — вытяжки и электробритвы; На кухне моторы есть практически во всех приборах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя среди лучших изобретения всех времен. Давайте разберемся и узнаем, как они Работа!

Фото: Даже маленькие электродвигатели на удивление тяжелые.Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель. вращение в том же направлении (как описано ниже).

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя очень проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то.Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение.Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом. либо притягивать, либо отталкивать. Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку подпрыгивать.

Правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (вспомогательная память), называемая правилом левой руки Флеминга (иногда называется Motor Rule).

Вытяните большой, указательный и второй пальцы левой руки. рука так, чтобы все три были под прямым углом. Если вы укажете вторым пальцем в направлении Течения (который течет от положительного к положительному отрицательная клемма АКБ), а Первая палец в направление поля (которое течет с севера на южный полюс магнит), ваш thuMb будет показать направление, в котором провод Движется.

Это …

  • Первый палец = Поле
  • SeCond палец = текущий
  • ЧтМб = Движение

Несколько слов о текущем

Если вас смущает то, что я говорю, что ток течет от положительного к отрицательному, это просто историческая конвенция.Такие люди, как Бенджамин Франклин, которые помогли разобраться тайна электричества еще в 18 веке, считали, что это поток положительных зарядов, так что она перетекала с положительного на отрицательный. Мы называем эту идею условным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению обычного тока. Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.

Как работает электродвигатель — теоретически

Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

Связь между электричеством, магнетизмом и движением изначально была открыт в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878). Вот как они пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас по проводам, а другой один возвращает ток обратно. Поскольку ток течет в в противоположных направлениях проводов, правило левой руки Флеминга говорит нам о том, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась. непрерывно — и мы будем на пути к созданию электрического мотор. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко хватит, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется.Вместо непрерывного вращения в в том же направлении, он двинется назад в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать перетасовки назад и вперед на месте, даже не идя в любом месте.

Как работает электродвигатель — на практике

Есть два способа решить эту проблему. Один из них — использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение — добавить компонент назвал коммутатором концы катушки.(Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который ездит на работу, означает путешествовать туда и обратно.) В своей простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача — реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя.Они подают электроэнергию в коммутатор через пару незакрепленных разъемы, называемые щетками, сделал либо из кусочков графита (мягкий уголь, похожий на карандаш «свинец») или тонкие отрезки упругого металла, который (как название предполагает) «задела» коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

Художественное произведение: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике.Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

Такой простой экспериментальный двигатель, как этот, не может большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что двигатель может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью — и это называется ротором. Ротор также включает в себя коммутатор.

Универсальные двигатели

Такие двигатели постоянного тока

отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. Мелкие бытовые приборы (например, кофемолки или электрические блендеры) обычно используют так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока.В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

  • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
  • Когда вы подаете переменный ток, однако, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба, , меняют направление, точно синхронно, поэтому сила на катушке всегда в одном и том же направлении, а двигатель всегда вращается по часовой стрелке. или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. При питании от постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда ток питания меняется на противоположное.Это означает, что сила, действующая на катушку, всегда направлена ​​в одну сторону.

Фото: Внутри типичного универсального двигателя: основные части внутри среднего двигателя от кофемолки, которая может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких устройствах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения в домашних условиях. который приводит в действие универсальные двигатели.

Электродвигатели прочие

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре и постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой. Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

Электродвигатель — Технический центр Эдисона

В электродвигатель был впервые разработан в 1830-х годах, через 30 лет после первая батарея. Интересно, что мотор был разработан до появления первых динамо-машина или генератор.

Вверху: Первый мотор Davenport

1.) История и изобретатели:

1834 — Томас Дэвенпорт из Вермонта разработал первый настоящий электродвигатель («настоящее» значение достаточно мощный, чтобы выполнить задачу) хотя Джозеф Генри и Майкл Фарадей создал ранние устройства движения с использованием электромагнитных полей. Ранние «моторы» создавали вращающиеся диски или рычаги, которые качался взад и вперед. Эти устройства не могли сделать никакой работы для человечества. но были важны для того, чтобы проложить путь к лучшим двигателям в будущем.Различные двигатели Давенпорта были возможность запускать модельную тележку по круговой колее и другие задачи. Позже тележка оказалась первым важным приложением. электроэнергии (это была не лампочка). Рудиментарный полноразмерные электрические тележки были наконец построены через 30 лет после смерти Давенпорта в 1850-х годах.

Влияние электродвигателя на мир перед лампочками:
Тележки и подключенные энергосистемы стоили очень дорого. строили, но перевозили миллионы людей на работу в 1880-е годы.До того как рост электросети в 1890-х гг. большинство людей (средний и низкие классы) даже в городах не было электрического света в дом.

Только в 1873 году электродвигатель наконец добился коммерческого успеха. С 1830-х годов тысячи инженеров-новаторов улучшили двигатели и создали много вариаций. См. Другие страницы для получения более подробной информации об огромной истории электродвигателя.

Выводы двигателя к генератору:
После слабые электродвигатели были разработаны Фарадеем и Генри, другой пионер по имени Ипполит Pixii выяснил это, запустив двигаясь задом наперед, он мог создавать импульсы электричества. К 1860-м годам разрабатывались мощные генераторы. Электротехническая промышленность не могла начаться, пока генераторы были разработаны, потому что батареи не были экономичным способом получения энергии потребности общества.Подробнее о генераторах и динамо здесь>

2.) Как работают моторы

Электродвигатели могут работать от переменного (AC) или постоянного (DC) тока. Двигатели постоянного тока были разработаны первыми и имеют определенные преимущества и недостатки. Каждый тип мотора работает по-разному, но все они используют силу электромагнитного поля. Мы поговорим об основных принципах электромагнитных полей. в двигателях, прежде чем вы сможете перейти к различным типам двигателей.

переменного тока электродвигатели используют вторичную и первичную обмотку (магнит), первичную подключен к сети переменного тока (или непосредственно к генератору) и находится под напряжением. Вторичный получает энергию от первичной обмотки, не касаясь ее напрямую. Это делается с помощью сложные явления, известные как индукция.

Справа: инженер работает над кастомными модификациями дрона-октокоптера.Восемь крошечных DC двигатели создают достаточно мощности, чтобы поднять килограммы полезной нагрузки. Более новые конструкции двигателей, подобные этому, используют редкоземельные металлы в статоре для создания более сильных магнитных полей в небольших и легких пакеты.

Вверху: универсальный двигатель, обычно используемый в большинстве электроинструментов.Имеет тяжелый плотный ротор. Вверху: асинхронный двигатель может иметь «беличью клетку» или полый вращающийся катушка или тяжелый якорь.

2.a) Детали электродвигателя:

Есть много видов электродвигателей, но в целом они имеют похожие детали. Каждый мотор имеет статор , который может быть постоянным магнитом (как показано в «универсальном двигателе» выше) или намотанными изолированными проводами (электромагнит, как на фото вверху справа).Ротор находится посередине (большую часть времени) и подлежит к магнитному полю создается статором. Ротор вращается, поскольку его полюса притягиваются и отталкиваются полюсами статора. Смотрите наши видео ниже, показывающее, как это работает. В этом видео рассматривается бесщеточный двигатель постоянного тока, ротор которого находится снаружи, в других двигателях. тот же принцип обратный, с электромагнитами снаружи. Видео (1 минута):

Мощность мотора:
Сила двигателя (крутящий момент) определяется напряжением и длина провода электромагнита в статоре, чем длиннее провод (что означает больше катушек в статоре), тем сильнее магнитное поле.Это означает больше мощности для повернуть ротор. Смотрите наше видео, которое относится как к генераторам, так и к двигателям. Узнать больше.

Арматура — вращающаяся часть двигателя — это раньше называлось ротором, это поддерживает вращающиеся медные катушки. На фото ниже вы не видите катушки, потому что они плотно заправлены в якорь. Гладкий корпус защищает катушки от повреждений.

Статор — Корпус и катушки, составляющие внешнюю часть двигателя. В статор создает стационарное магнитное поле.

Вверху: В этом статоре отчетливо видны четыре отдельные катушки (якорь был удалено)

Обмотка или «Катушка» — медные провода, намотанные на сердечник для создания или получить электромагнитную энергию.

Провода, используемые в обмотки ДОЛЖНЫ быть изолированы. На некоторых фото вы увидите, что выглядит как обмотки из голого медного провода, это не так, это просто эмалированная с прозрачным покрытием.

Медь это самый распространенный материал для обмоток. Алюминий также используется но должен быть толще, чтобы нести такую ​​же электрическую безопасно загружать.Медные обмотки позволяют использовать двигатель меньшего размера. Подробнее о меди>

Перегорание мотора, устранение неисправностей:
Если двигатель работает слишком долго или с чрезмерной нагрузки, он может «сгореть». Это означает, что высокая температура вызвала изоляция обмотки может сломаться или оплавиться, а затем обмотки закорочены когда они касаются друг друга, и двигатель выходит из строя. Вы также можете сжечь двигатель, подав на него большее напряжение, чем обмоточные провода рассчитаны на.В этом случае проволока расплавится в самом слабом месте, разорвав соединение. Ты можешь проверьте двигатель, чтобы увидеть, не перегорел ли он таким образом, проверив сопротивление (сопротивление) с помощью мультиметра. Как правило, при проверке двигателя вы должны искать черные метки на обмотках.


Squirrel Cage — вторая катушка в асинхронном двигателе, см. Ниже чтобы увидеть, как это работает
Индукция — генерация электродвижущей силы в замкнутом цепь изменяющимся магнитным потоком через цепь.В сети переменного тока уровень мощности повышается и понижается, это заряжает обмотку на момент создания магнитного поля. Когда мощность падает в цикле магнитное поле не может поддерживаться, и оно схлопывается. Это действие передает мощность через магнетизм на другую обмотку или катушку. УЧИТЬ БОЛЬШЕ об индукции здесь.

3.) Типы электродвигателей переменного тока

Двигатели переменного тока:

3.а) Индукция Двигатель
3.b) Универсальный двигатель (можно использовать постоянный или переменный ток)
3.c) Синхронные двигатели
3.d) Двигатели с экранированными полюсами


См. Нашу страницу, посвященную асинхронным двигателям, здесь>

Это мощный двигатель, который можно использовать с мощность переменного и постоянного тока.

Преимущества :
-Высокий пусковой крутящий момент и небольшой размер (хорошо для обычного использования в бытовые электроинструменты)
-Может работать на высоких скоростях (отлично подходит для стиральных машин и электродрелей)

Недостатки:
— Щетки со временем изнашиваются

Использует: приборы, ручной электроинструмент

Посмотреть видео ниже:


3.в) синхронный Моторы (Selsyn Motor)

Этот мотор аналогичен асинхронному двигателю, за исключением того, что он движется с частотой сети.

Мотор Селсин был разработан в 1925 году и сейчас известен как Synchro. Узнать больше о их здесь .


Преимущества: Обеспечивает постоянную скорость, которая определяется количество полюсов и частота подаваемого переменного тока.
Недостатки: Не может работать с переменным крутящим моментом, этот двигатель будет остановиться или «вытащить» с заданным крутящим моментом.
Использует: и часы использует синхронные двигатели для обеспечения точной скорости вращения Руки. Это аналог двигателя , и хотя скорость точна, шаговый двигатель лучше подходит для работы с компьютерами, так как он функционирует на жестких «ступенях» разворота.

Этот мотор одинарный фазный двигатель переменного тока.Имеет только одну катушку с поворотным валом. в центре, отставание потока, проходящего вокруг катушки, вызывает сила магнита, чтобы двигаться по катушке. Это получает центральный вал с вращением вторичной обмотки.

Цилиндр изготовлен из стали и имеет медные стержни, встроенные по длине в цилиндр поверхность.


Преимущества: достигает высокого уровня крутящего момента, когда ротор начал быстро вращаться.
Используется в вентиляторах, приборах

Недостатки: медленный запуск, низкий крутящий момент для запуска. Используется в вентиляторах, обратите внимание на медленный старт фанатов.
Этот двигатель также используется в стоках стиральных машин, открывателях консервных банок и прочая бытовая техника.
Другие виды двигателей лучше подходят для более мощных нужд выше 125 Вт.

Посмотреть видео ниже:


4.) Двигатели постоянного тока (DC):

Двигатели постоянного тока были первым видом электродвигателей. Обычно они составляют 75-80% эффективный. Они хорошо работают на регулируемых скоростях и обладают большим крутящим моментом.

4.a) Общая информация
4.b) Щеточные двигатели постоянного тока
4.b.1) Двигатель постоянного тока с параллельной обмоткой
4.b.2) Двигатель постоянного тока с последовательной обмоткой
4.b.3) Двигатели для блинов
4.b.4) Двигатель постоянного тока с постоянным магнитом
4.b.5) С раздельным возбуждением (Sepex)
4.c) Бесщеточные двигатели постоянного тока
4.c.1) Шаговый двигатель
4.c.2) Двигатели постоянного тока без сердечника / без сердечника


Матовый Двигатели постоянного тока:

Первый DC двигатели использовали щетки для передачи тока на другую сторону двигателя. Кисть названа так потому, что сначала имела форму метлы.Маленькие металлические волокна терлись о вращающуюся часть двигателя. поддерживать постоянный контакт. Проблема с кистями в том, что они изнашиваются. со временем из-за механики. Кисти будут создавать искры из-за трения. Парки часто плавили изоляцию и становились причиной коротких замыканий. в арматуре и даже переплавил коммутатор.

Первые моторы использовались на уличных железных дорогах.

Использует сплит кольцевой коммутатор со щетками.
Преимущества:
-Используется во множестве приложений, имеет простой контроль скорости с помощью уровня напряжения для управления.
-Обладает высоким пусковым моментом (мощный пуск)
Ограничения: щетки создают трение и искры, это может привести к перегреву устройство и плавить / сжигать щетки, поэтому максимальная скорость вращения ограничено. Искры также вызывают радиочастоты. вмешательство. (RFI)

Есть пять типов двигателей постоянного тока с щетками:
Двигатель постоянного тока с параллельной обмоткой
Двигатель с обмоткой серии постоянного тока
Составной двигатель постоянного тока — совокупный и дифференциально смешанный
Двигатель постоянного тока с постоянным магнитом
Двигатель с независимым возбуждением
Двигатель-блинчик

Бесщеточный Двигатели постоянного тока:

Щетка заменен внешним электрическим выключателем, который синхронизируется с положение двигателя (он изменит полярность по мере необходимости, чтобы сохранить вал двигателя вращается в одном направлении)
— Более эффективен, чем щеточные двигатели
— Используется, когда контроль скорости должен быть точным (например, в дисководах, ленте машины, электромобили и т. д.)
-Долгий срок службы, так как работает при более низкой температуре и нет щеток изнашиваться.

Типы бесщеточные двигатели постоянного тока:
Шаговый двигатель
Двигатели постоянного тока без сердечника / без сердечника

4.b) ЩЕТОЧНЫЙ ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА:

4.b.1) DC Шунтирующий двигатель

Шунт постоянного тока Электродвигатель подключен так, что катушка возбуждения подключена параллельно с арматура.Обе обмотки получают одинаковое напряжение. Катушка шунтирующего поля намотан множеством витков тонкой проволоки для создания высокого сопротивления. Этот гарантирует, что катушка возбуждения будет потреблять меньше тока, чем якорь (ротор).

Арматура (как видно выше, это длинная толстая вращающаяся цилиндрическая часть) имеет толстую медные провода, чтобы через них проходил большой ток, завести мотор.

Как арматура витков (см. фото ниже) ток ограничен противоэлектродвижущим сила.

Сила катушки шунтирующего поля определяет скорость и крутящий момент двигателя.

Преимущества: Шунтирующий двигатель постоянного тока регулирует свою скорость. Это означает, что если загрузка При добавлении якоря замедляется, КЭДС уменьшается, в результате чего якорь ток увеличивается. Это приводит к увеличению крутящего момента, что помогает переместить тяжелый груз. При снятии нагрузки якорь ускоряется, CEMF увеличивается, что ограничивает ток, а крутящий момент уменьшается.

Конвейер Пример ленты : Представьте, что конвейерная лента движется с заданной скоростью, затем в пояс входит тяжелая коробка. Этот тип двигателя будет поддерживать движение ремня. с постоянной скоростью независимо от того, сколько коробок движется по ленте.

Посмотреть видео ниже о действии параллельного двигателя постоянного тока !:

4.б.2) DC двигатель с последовательным заводом

Двигатель с серийной обмоткой — это двигатель постоянного тока с самовозбуждением. Обмотка возбуждения подключена внутри последовательно с обмоткой ротора. Таким образом обнажается обмотка возбуждения в статоре. до полного тока, создаваемого обмоткой ротора.

Этот тип двигателя похож на двигатель постоянного тока с параллельной обмоткой, за исключением того, что обмотки возбуждения сделаны из более тяжелого провода, поэтому он может выдерживать более высокие токи.

Применение: Этот тип двигателя используется в промышленности в качестве пускового двигателя из-за большого крутящего момента.

Подробнее о двигателе с последовательным заводом:
, статья 1
Артикул 2

4.b.3) Блин Двигатель постоянного тока (также известный как двигатель с печатным якорем)

Блин мотор — мотор без железа.Большинство двигателей имеют медную обмотку. железный сердечник.

Видео с демонстрацией примеры мотора-блинчика:

Преимущества:
Точная регулировка скорости, плоский профиль, не имеет зубцов, которые возникают утюгом в электромагните

Недостатки:
плоская форма не подходит для всех приложений

Имеет обмотку в форме плоского эпоксидного диска между двумя магнитами с сильным магнитным потоком.Это полностью без железа, что делает большую эффективность. Используется в сервоприводах, был первым спроектирован как моторы стеклоочистителя и видеоиндустрии, так как он был очень плоским в профиль и имел хороший контроль скорости. Компьютеры и видео / аудио запись всей использованной магнитной ленты, точный и быстрый контроль скорости был нужен, поэтому для этого был разработан мотор-блин. Сегодня это используется во множестве других приложений, включая робототехнику и сервосистемы.

4.b.4) Составной двигатель постоянного тока (накопительный и дифференциально-составной)

Это еще один самовозбуждающийся двигатель с последовательными и шунтирующими катушками возбуждения. Он имеет эффективное регулирование скорости и приличный пусковой крутящий момент.

Узнайте больше об этом типе двигателя здесь.

4.b.5) Двигатель постоянного тока с постоянным магнитом

Этот тип двигателя хорошо работает на высоких оборотах и ​​может быть очень компактным.
Область применения: компрессоры, другое промышленное применение.

Узнайте больше об этом типе двигателя здесь.

4.б.6) Отдельно возбужденный (сепекс)

SepEx имеет обмотку возбуждения, которая питается отдельно от якоря с прямым текущий сигнал. Полевой магнит также имеет собственный источник постоянного тока. В результате вы увидите это Тип двигателя имеет четыре провода — 2 для возбуждения и 2 для якоря.

Этот электродвигатель представляет собой щеточный электродвигатель постоянного тока. который имеет более широкие кривые крутящего момента, чем двигатель постоянного тока с последовательной обмоткой.

Узнайте больше об этом типе двигателя здесь.

4.c) Бесщеточные двигатели постоянного тока:

4.c.1) Шаговый Мотор

Степпер мотор — это тип бесщеточного мотора, который перемещает центральный вал один часть хода за раз.Это делается с помощью зубчатых электромагнитов. вокруг куска железа в форме централизованной шестерни. Есть много видов шаговых двигателей. Они используются в системах, которые перемещают объекты с высокой точностью. положение, такое как сканер , дисковод и промышленная лазерная резьба устройства .

Посмотреть видео шагового двигателя в действии ниже:

4.в.2) Без сердечника / Двигатели постоянного тока без железа

Медь намотанная или алюминиевый сердечник вращается вокруг магнита без использования железа. Этот делается путем придания цилиндрической формы.
Преимущество: легкий и быстрый запуск отжима (используется в компьютере жестких дисков)
Недостаток: легко перегревается, так как железо обычно действует как радиатор, для охлаждения необходим вентилятор.

Узнайте больше об этом типе двигателя здесь.

Источники:
Документы Джозефа Генри — Смитсоновский институт
Denver Electric Motor Company
Стив Нормандин
Википедия
Томас Дэвенпорт — доктор Фрэнк Уикс мл.
DIY Электромобиль


Связанные темы:

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Принцип работы асинхронного двигателя может быть разработан, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки.В момент t 1 на рисунке, ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину этого значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный.Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора закорочены друг с другом на каждом конце, в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.На этом рисунке показана диаграмма токов ротора для моментов времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже полевой скорости (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты путем создания машины с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с использованием катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

деталей двигателя | Sciencing

Конструкции электродвигателей могут сильно различаться, хотя в целом они состоят из трех основных частей: ротора, статора и коммутатора. Эти три части используют силы притяжения и отталкивания электромагнетизма, заставляя двигатель непрерывно вращаться, пока он получает постоянный поток электрического тока.

Основные принципы

Двигатели работают на принципах электромагнетизма. Если пропустить электричество по проводу, он создаст магнитное поле.Если вы намотаете проволоку на стержень и пропустите по ней электричество, вокруг стержня будет создано магнитное поле. Один конец стержня будет иметь северный магнитный полюс, а другой — южный. Противоположные полюса притягиваются друг к другу, как отталкиваются. Когда вы окружите этот стержень другими магнитами, стержень будет вращаться под действием сил притяжения и отталкивания.

Статор

Каждый электродвигатель состоит из двух основных частей: неподвижной и вращающейся. Стационарная часть — это статор.Хотя конфигурации различаются, статор чаще всего представляет собой постоянный магнит или ряд магнитов, выстилающих край корпуса двигателя, который обычно представляет собой круглый пластиковый барабан.

Ротор

В статор вставлен ротор, обычно состоящий из медной проволоки, намотанной на катушку вокруг оси. Когда через катушку протекает электрический ток, возникающее магнитное поле противодействует полю, создаваемому статором, и заставляет ось вращаться.

Коммутатор: основы

Электродвигатель имеет еще один важный компонент, коммутатор, который находится на одном конце катушки.Это металлическое кольцо, разделенное на две половины. Он меняет местами электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Коммутатор периодически меняет направление тока между ротором и внешней цепью или батареей. Это гарантирует, что концы катушек не перемещаются в противоположных направлениях, и гарантирует, что ось вращается в одном направлении.

Подробнее Коммутатор: магнитные полюса

Коммутатор необходим, потому что вращающийся ротор получает свое движение от магнитного притяжения и отталкивания между ротором и статором.Чтобы понять это, представьте, что двигатель медленно вращается. Когда ротор вращается до точки, где южный полюс магнита ротора встречается с северным полюсом статора, притяжение между двумя полюсами останавливает вращение. Чтобы ротор продолжал вращаться, коммутатор меняет полярность магнита, так что южный полюс ротора становится северным. Затем северный полюс ротора и северный полюс статора отталкиваются друг от друга, заставляя ротор продолжать вращаться.

Щетки и клеммы

На одном конце двигателя находятся щетки и клеммы.Они находятся на противоположном конце от того места, где ротор выходит из корпуса двигателя. Щетки подают электрический ток на коммутатор и обычно сделаны из графита. Клеммы — это места, где аккумулятор прикрепляется к двигателю и посылает ток для вращения ротора.

Как работает электродвигатель?

Все признают, что если вы можете создать очень эффективные электродвигатели, вы можете сделать качественный скачок вперед. — Джеймс Дайсон

Введение

«Электродвигатель стал немного более известным и ценимым за последние несколько лет благодаря тому, что он все больше интегрируется в наши автомобили.Поскольку большинство людей понимают и осознают влияние, которое их загрязнение оказывает на климат, производители автомобилей испытывают больший спрос на создание автомобилей, которые могут помочь улучшить нашу окружающую среду или, по крайней мере, причинить меньше вреда ».

«Именно благодаря этой потребности в росте и развитии некоторые из величайших изобретателей мира усовершенствовали электродвигатель, чтобы теперь он работал лучше и эффективнее, чем когда-либо прежде».

Детали электродвигателя

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей — статора и ротора.Используйте интерактивное изображение ниже в этом разделе, чтобы узнать больше о статоре и роторе и узнать о роли, которую каждый играет в электродвигателе.



Статора Ротор

Статор

Статор состоит из трех частей — сердечника статора, токопроводящей жилы и каркаса. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга и соединены друг с другом.У этих колец есть прорези на внутренней стороне колец, вокруг которых будет наматываться проводящий провод, образуя катушки статора.

Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов. Вы можете назвать эти типы проводов Фазой 1, Фазой 2 и Фазой 3. Каждый тип проводов наматывается вокруг пазов на противоположных сторонах внутренней части сердечника статора.

Когда токопроводящий провод находится внутри сердечника статора, сердечник помещается в раму.

Ротор

Ротор также состоит из трех частей — сердечника ротора, токопроводящих стержней и двух концевых колец.Пластины из высококачественной легированной стали составляют цилиндрический сердечник ротора, в центре которого проходит стержень. На внешней стороне сердечника ротора есть прорези, которые либо проходят параллельно стержнеобразной планке в центре сердечника ротора, либо слегка закручены, образуя диагональные прорези. Если сердечник статора имеет диагональные пазы на внешней стороне сердечника, он называется ротором с короткозамкнутым ротором.

Трехфазный четырехполюсный асинхронный двигатель использует ротор с короткозамкнутым ротором. По диагональным линиям в сердечнике размещены токопроводящие стержни, образующие обмотку ротора.Затем с обеих сторон сердечника помещают концевые кольца, чтобы закоротить все токопроводящие стержни, которые были размещены на диагональных линиях сердечника ротора.

После сборки ротора и статора ротор вставляется в статор, и с обеих сторон размещаются два концевых выступа. Эти концевые раструбы изготовлены из того же материала, что и рама статора, и используются для защиты двигателя с обеих сторон.


Как работает электродвигатель?

(непрофессионалам)

Если вы инженер-электрик, вы знаете, как работает электродвигатель.Если вы этого не сделаете, это может сильно сбить с толку, поэтому вот упрощенное объяснение (или версия «как работает электродвигатель для чайников») того, как четырехполюсный трехфазный асинхронный двигатель работает в автомобиле.

Начинается с аккумуляторной батареи в автомобиле, которая подключена к двигателю. Электроэнергия подается на статор через аккумулятор автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты.Следовательно, когда электрическая энергия от автомобильного аккумулятора подается на двигатель, катушки создают вращающиеся магнитные поля, которые тянут за собой проводящие стержни на внешней стороне ротора. Вращающийся ротор — это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.

Так вот, в типичном автомобиле, который не является электрическим, есть и двигатель, и генератор переменного тока. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса.Вращение колес — это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка — аккумулятор необходимо подзарядить, чтобы он функционировал должным образом.

В электромобиле нет генератора. Итак, как же тогда перезаряжается аккумулятор? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока. Это одна из причин, почему электромобили так уникальны.Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе — ротор притягивается вращающимся магнитным полем, требуя большего крутящего момента. Но что происходит, когда вы отпускаете акселератор?

Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от того, что его тянет за собой магнитное поле).Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает аккумулятор, действуя как генератор переменного тока.

Чтобы еще больше упростить этот процесс, представьте, что крутите педали на велосипеде в гору. Чтобы добраться до вершины холма, вам нужно крутить педали сильнее и, возможно, даже придется встать и затратить больше энергии, чтобы повернуть шины и достичь вершины холма. Это похоже на нажатие на газ. Вращающееся магнитное поле, тянущее за собой ротор, создает сопротивление (или крутящий момент), необходимое для перемещения шин и автомобиля.Оказавшись на вершине холма, вы можете расслабиться и перезарядиться, в то время как колеса будут двигаться еще быстрее, чтобы спуститься с холма. В машине это происходит, когда вы отпускаете ногу с газа, а ротор движется быстрее и подает электроэнергию обратно в линию электропередачи для подзарядки аккумулятора.


Что такое переменный ток (AC)


по сравнению с постоянным током (DC)?

Концептуальные различия этих двух типов токов кажутся довольно очевидными.В то время как один ток постоянный, другой более прерывистый. Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.

Постоянный ток (DC)

Термин «постоянный ток» относится к электричеству, которое постоянно движется в единственном и последовательном направлении. Кроме того, напряжение постоянного тока сохраняет правильную полярность, то есть неизменную.

Подумайте о том, как батареи имеют четко определенные положительные и отрицательные стороны.Они используют постоянный ток для постоянной подачи одинакового напряжения. Помимо батарей, топливные элементы и солнечные элементы также производят постоянный ток, в то время как простые действия, такие как трение определенных материалов друг о друга, также могут создавать постоянный ток.

В соответствии с нашей концепцией батареи, рассматривая положительную и отрицательную стороны батареи, важно отметить, что постоянный ток всегда течет в одном направлении между положительной и отрицательной стороной. Это гарантирует, что обе стороны батареи всегда будут положительными и отрицательными.



Переменный ток (AC)

Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте давление воды в шланге) и током (представьте скорость потока воды через шланг), которые меняются во времени. При изменении напряжения и тока сигнала переменного тока они чаще всего следуют шаблону синусоидальной волны (на изображении выше синусоида показана на правом графике напряжения). Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью во времени.Форма синусоидальной волны сигналов переменного тока обусловлена ​​способом генерации электричества.

Другой термин, который вы можете услышать при обсуждении электроэнергии переменного тока, — это частота. Частота сигнала — это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц. Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.

Так почему это важно?

Электроэнергия переменного тока — лучший способ передачи полезной энергии от источника генерации (т.э., плотина или ветряк) на большие расстояния. Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, которое подает питание на окрестности (те цилиндрические серые коробки, которые вы видите на полюсах линии электропередачи), может иметь напряжение до 66 кВА (66000 вольт переменного тока).

Мощность переменного тока

позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным током для источников питания.


Как работает трехфазный четырехполюсный асинхронный двигатель?

Самые большие промышленные двигатели — это асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Но что именно означает «асинхронный» двигатель? С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора. С точки зрения непрофессионала это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.

Что означает многофазность?

Всякий раз, когда у вас есть статор, который содержит несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью. Обычно многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы.

Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого, чтобы намеренно выйти из строя.

Что означает три фазы?

Основываясь на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, выдвинутом в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля.Эта энергия заставляет катушки проводящих проводов вести себя как электромагниты.

Простой способ понять три фазы — рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии. По мере создания энергии ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.


Лучшие электромобили

По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги.Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

На данный момент мы все знаем об успехе, который Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут. Однако есть десятки других компаний, которые добиваются значительного прогресса в этой области, например Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy’s Spark и Mercedes B-Class Electric.


Электромобили и окружающая среда

Реальность такова, что цены на газ должны быть намного выше, чем они есть, потому что мы не учитываем истинный ущерб окружающей среде и скрытые затраты на добычу нефти и ее транспортировку в США — Илон Маск

Электродвигатели прямо и косвенно воздействуют на окружающую среду на микро- и макроуровне. Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно.С индивидуальной точки зрения, электромобили не требуют бензина для работы, что приводит к тому, что автомобили без выбросов заполняют наши шоссе и города. Хотя это представляет собой новую проблему с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густо населенных в городах и пригородах, выбрасывающих токсины в воздух.


Примечание: MPG (значения миль на галлон, указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива в городе / шоссе для бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля.Рейтинги выбросов глобального потепления в регионах основаны на данных электростанций за 2012 год в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение 58 миль на галлон в США — это средневзвешенное значение продаж на основе того, где были проданы электромобили в 2014 году.

С большой точки зрения рост электромобилей дает несколько преимуществ. Во-первых, снижается шумовое загрязнение, поскольку шум, излучаемый электродвигателем, гораздо более приглушен, чем шум двигателя, работающего на газе.Кроме того, в связи с тем, что электродвигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за меньшего количества автомобилей, нуждающихся в техосмотрах.


Заключение

Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса. Хотя электрический двигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной отрасли, ориентированный не только на стиль и производительность, но и на внешнее воздействие.Таким образом, хотя электрический двигатель, возможно, не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс.

Если больше ничего не получится от достижений в области электродвигателей, то, по крайней мере, мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду. Это новое определение прогресса, определяемое электрическим двигателем.


Источники:

http: // www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Строительство трехфазного асинхронного двигателя https://www.youtube.com/watch?v=Mle-ZvYi8HA
Как работает асинхронный двигатель работает? https://www.youtube.com/watch?v=LtJoJBUSe28
http://www.mpoweruk.com/motorsbrushless.htm
http://www.kerryr.net/pioneers/tesla.htm
https: // www.basilnetworks.com/article/motors/brushlessmotors.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
https: // www.youtube.com/watch?v=HWrNzUCjbkk
Принцип работы трехфазного индукционного двигателя https://www.youtube.com/watch?v=DsVbaKZZOFQ
https://www.youtube.com/watch?v=NaV7V07tEMQ
https : //www.teslamotors.com/models
http://evobsession.com/electric-car-range-comparison/
http://www.edmunds.com/mitsubishi/i-miev/2016/review/
http : //www.ford.com/cars/focus/trim/electric/
https://en.wikipedia.org/wiki/BMW_i3
http://www.edmunds.com/ford/fusion-energi/2016/ обзор /
http: // www.chevrolet.com/spark-ev-electric-vehicle.html
http://www.topspeed.com/cars/volkswagen/2016-volkswagen-e-golf-limited-edition-ar168067.html
http: // www. topspeed.com/cars/bmw/2016-bmw-i3-m-ar160295.html
http://www.popularmechanics.com/cars/hybrid-electric/reviews/a9756/2015-mercedes-benz-b-class- electric-drive-test-ride-16198208/
http://www.topspeed.com/cars/nissan/2016-nissan-leaf-ar171170.html
http://www.caranddriver.com/fiat/500e
http : //www.topspeed.com/cars/kia/2015-kia-soul-electricdriven-ar170088.html
http://www.topspeed.com/cars/ford/2016-ford-focus-electric-ar171335.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s- 70d-ar168705.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s-p85d-ar165627.html
http://www.topspeed.com/cars/tesla/2015- tesla-model-s-ar165742.html # main
http://www.caranddriver.com/reviews/2015-tesla-model-s-p90d-test-review
http://www.caranddriver.com/tesla/ model-s
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-1/what-is-alternating-current-ac/
http: // science.howstuffworks.com/electricity8.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Изображение с: http://faq.zoltenergy.co/ технический /
http://www.kerryr.net/pioneers/tesla.htm
https://en.wikipedia.org/wiki/Westinghouse_Electric_(1886)
http://www.allaboutcircuits.com/textbook/alternating- current / chpt-13 / Introduction-ac-motors /
https://www.youtube.com/watch?v=Q2mShGuG4RY
http://www.explainthatstuff.com/electricmotors.html
http://electronics.howstuffworks.com/motor.htm
https://en.wikipedia.org/wiki/Induction_motor


Ошибка 404

DE английский Открытый выбор страны и языка

Закрыть Закрыть выбор страны и языка

Выбор страны и языка

Вы уже вошли в систему.Вы можете изменить языковые настройки в разделе «Личные данные».

Страна / регион

Если вы выберете другую страну / регион, вы можете потерять несохраненные данные, например в корзине.

[# / languages.languages.length #] [# country #] [# /languages.length #]. [# # languages.length #] Хотите перейти на сайт [# country #]

? [# /languages.length #] [# # languages.length #] Язык [# #languages ​​#] [# название #] [# / languages ​​#] [# / languages.длина #] [# #адрес #]
[# # address.lines #]

[#. #]

[# /address.lines #]
[# # address.tel #]

тел. [# address.tel #]

[# /address.tel #] [# # address.fax #]

Факс: [# address.fax #]

[# /address.fax #] [# #адрес.электронное письмо #]

Электронная почта: [# address.email #]

[# /address.email #] [# # address.url #]

На сайт

[# /address.url #]
[# /адрес #] [# # languages.length #] [# /languages.length #] [# /поддерживается #] [# #продажи #]

[# имя #] обслуживается дилером по адресу [# адрес.страна #] ..

[# #адрес #]
[# # address.lines #]

[#. #]

[# /address.lines #]
[# # address.tel #]

тел. [# address.tel #]

[# /address.tel #] [# # address.fax #]

Факс: [# address.fax #]

[# /адрес.факс №] [# # address.email #]

Электронная почта: [# address.email #]

[# /address.email #] [# # address.url #]

На сайт

[# /address.url #]
[# /адрес #] [# /продажи #] [# #sales_partner #]

[# name #] обслуживается партнером по продажам в [# sales_partner.country #] ..

[# #адрес #]
[# # address.lines #]

[#. #]

[# /address.lines #]
[# # address.tel #]

тел. [# address.tel #]

[# /address.tel #] [# # address.fax #]

Факс: [# address.fax #]

[# /address.fax #] [# #адрес.электронное письмо #]

Электронная почта: [# address.email #]

[# /address.email #] [# # address.url #]

На сайт

[# /address.url #]
[# /адрес #] [# / sales_partner #] [# #service_partner #]

[# name #] обслуживается партнером по обслуживанию в [# service_partner.country #] ..

[# #адрес #]
[# #адрес.строки #]

[#. #]

[# /address.lines #]
[# # address.tel #]

тел. [# address.tel #]

[# /address.tel #] [# # address.fax #]

Факс: [# address.fax #]

[# /address.fax #] [# # address.email #]

Электронная почта: [# address.email #]

[# /адрес.электронное письмо #] [# # address.url #]

На сайт

[# /address.url #]
[# /адрес #] [# / service_partner #] [# #sales_service_partner #]

[# name #] обслуживается партнером по продажам и обслуживанию в [# sales_service_partner.country #] ..

[# #адрес #]
[# #адрес.строки #]

[#. #]

[# /address.lines #]
[# # address.tel #]

тел. [# address.tel #]

[# /address.tel #] [# # address.fax #]

Факс: [# address.fax #]

[# /address.fax #] [# # address.email #]

Электронная почта: [# address.email #]

[# /адрес.электронное письмо #] [# # address.url #]

На сайт

[# /address.url #]
[# /адрес #] [# / sales_service_partner #] [# #recommended_dealer #]

[# name #] обслуживается Рекомендованным дилером в [# Recommended_dealer.country #] ..

[# #адрес #]
[# # address.lines #]

[#.#]

[# /address.lines #]
[# # address.tel #]

тел. [# address.tel #]

[# /address.tel #] [# # address.fax #]

Факс: [# address.fax #]

[# /address.fax #] [# # address.email #]

Электронная почта: [# address.email #]

[# /address.email #] [# #адрес.url #]

На сайт

[# /address.url #]
[# /адрес #] [# / Recommended_dealer #] [# #место расположения #]

Контактные данные от [# name #]:

[# #адрес #]
[# # address.lines #]

[#. #]

[# /address.lines #]
[# #адрес.тел #]

тел. [# address.tel #]

[# /address.tel #] [# # address.fax #]

Факс: [# address.fax #]

[# /address.fax #] [# # address.email #]

Электронная почта: [# address.email #]

[# /address.email #] [# # address.url #]

На сайт

[# /address.url #]
[# /адрес #] [# /место расположения #]

Что такое электродвигатель? Определение и типы

Определение : Электродвигатель — это электромеханическая машина, преобразующая электрическую энергию в механическую.Другими словами, устройство, создающее вращающую силу, называется двигателем. Принцип работы электродвигателя в основном зависит от взаимодействия магнитного и электрического поля. Электродвигатели в основном подразделяются на два типа. Это двигатель переменного тока и двигатель постоянного тока. Двигатель переменного тока принимает переменный ток в качестве входа, тогда как двигатель постоянного тока принимает постоянный ток.

Типы электродвигателей

Классификация электродвигателя показана на рисунке ниже.

Двигатель переменного тока

Двигатель переменного тока преобразует переменный ток в механическую энергию. Он подразделяется на три типа; это асинхронный двигатель, синхронный двигатель, линейный двигатель. Подробное описание двигателя приведено ниже.

1. Асинхронный двигатель

Машина, которая никогда не работает с синхронной скоростью, называется асинхронным или асинхронным двигателем. Этот двигатель использует явление электромагнитной индукции для преобразования электроэнергии в механическую.По конструкции ротора различают два типа асинхронных двигателей. А именно асинхронный двигатель с короткозамкнутым ротором и асинхронный двигатель с фазной обмоткой.

  • Ротор с короткозамкнутым ротором — Двигатель, который состоит из ротора с короткозамкнутым ротором, известен как асинхронный двигатель с короткозамкнутым ротором. Ротор с короткозамкнутым ротором снижает гудение и магнитную блокировку ротора.
  • Ротор с фазовой обмоткой — Этот ротор также известен как ротор с контактным кольцом, а двигатель, использующий этот тип ротора, известен как ротор с фазовой обмоткой.

По фазам асинхронный двигатель подразделяется на два типа. Это однофазный асинхронный двигатель и трехфазный асинхронный двигатель.

  • Однофазный асинхронный двигатель — Машина, которая преобразует электрическую мощность однофазного переменного тока в механическую с помощью явления электромагнитной индукции, известна как однофазный асинхронный двигатель.
  • Трехфазный асинхронный двигатель
  • T Двигатель, который преобразует трехфазную электрическую мощность переменного тока в механическую энергию, такой тип двигателя известен как трехфазный асинхронный двигатель.

2. Линейный двигатель

Двигатель, который создает линейную силу вместо силы вращения, известен как линейный двигатель. Этот двигатель имеет развернутые ротор и статор. Такой тип двигателя используется в раздвижных дверях и в приводах.

3. Синхронный двигатель

Машина, которая преобразует переменный ток в механическую энергию с желаемой частотой, известна как синхронный двигатель. В синхронном двигателе скорость двигателя синхронизирована с частотой питающего тока.

Синхронная скорость измеряется относительно вращения магнитного поля и зависит от частоты и полюсов двигателя. Синхронный двигатель подразделяется на два типа: реактивный и гистерезисный.

  • Реактивный двигатель — Двигатель, процесс пуска которого аналогичен асинхронному двигателю и который работает как синхронный двигатель, известен как реактивный двигатель.
  • Двигатель с гистерезисом — Двигатель с гистерезисом представляет собой тип синхронного двигателя, который имеет равномерный воздушный зазор и не имеет системы возбуждения постоянным током.Крутящий момент в двигателе создается гистерезисом и вихревым током двигателя.

Двигатель постоянного тока

Машина, преобразующая электрическую мощность постоянного тока в механическую, известна как двигатель постоянного тока. Его работа зависит от основного принципа: когда проводник с током помещается в магнитное поле, на него действует сила и возникает крутящий момент. Электродвигатели постоянного тока подразделяются на два типа: электродвигатели с самовозбуждением и электродвигатели с независимым возбуждением.

1. Двигатель с автономным возбуждением

Двигатель, в котором обмотка постоянного тока возбуждается отдельным источником постоянного тока, называется двигателем постоянного тока с отдельным возбуждением.С помощью отдельного источника обмотка якоря двигателя возбуждается и создает магнитный поток.

2. Электродвигатель с самовозбуждением

По подключению обмотки возбуждения двигатели постоянного тока с самовозбуждением подразделяются на три типа. Это двигатель постоянного тока с последовательной обмоткой, шунтирующий двигатель и двигатель с составной обмоткой.

  • Шунтирующий двигатель — Двигатель, в котором обмотка возбуждения расположена параллельно якорю, такой тип двигателя известен как параллельный двигатель.
  • Двигатель серии — В этом двигателе обмотка возбуждения соединена последовательно с якорем двигателя.
  • Двигатель с комбинированной обмоткой — Двигатель постоянного тока, который имеет как параллельное, так и последовательное соединение обмотки возбуждения, известен как комбинированный ротор. Двигатель с комбинированной обмоткой подразделяется на двигатели с коротким и длинным шунтом.
    • Короткий шунтирующий двигатель — Если шунтирующая обмотка возбуждения параллельна только якорю двигателя, а не последовательному полю, то это известно как короткое шунтирующее соединение двигателя.
    • Длинный шунтирующий двигатель — Если шунтирующая обмотка возбуждения параллельна как якорю, так и последовательной обмотке возбуждения, двигатель называется длинным шунтирующим двигателем.

Помимо вышеупомянутых двигателей, существуют различные другие типы специальных машин, которые имеют дополнительные функции, такие как шаговый двигатель, серводвигатель переменного и постоянного тока и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *