Емкость обозначение – В чем измеряются единицы емкости конденсаторов

Содержание

Электрическая емкость

Дата публикации: .
Категория: Электротехника.

Сообщение электрического разряда проводнику называется электризацией. Чем больший заряд принял проводник, тем больше его электризация, или, иначе говоря, тем выше его электрический потенциал.

Между количеством электричества и потенциалом данного уединенного проводника существует линейная зависимость: отношение заряда проводника к его потенциалу есть величина постоянная:

Для какого-либо другого проводника отношение заряда к потенциалу есть также величина постоянная, но отличная от этого отношения для первого проводника.

Одной из причин, влияющих на эту разницу, являются размеры самого проводника. Один и тот же заряд, сообщенный различным проводникам, может создать различные потенциалы. Чтобы повысить потенциал какого-либо проводника на одну единицу потенциала, необходим определенный заряд.

Электрическая емкость и ее единица измерения

Свойство проводящих тел накапливать и удерживать электрический заряд, измеряемое отношением заряда уединенного проводника к его потенциалу, называется электрической емкостью, или просто емкостью, и обозначается буквой С.

Приведенная формула электрической емкости позволяет установить единицу электрической емкости.

Практически заряд измеряется в кулонах, потенциал в вольтах, а емкость в фарадах:

Емкостью в 1 фараду обладает проводник, которому сообщают заряд в 1 кулон и при этом потенциал проводника увеличивается на 1 вольт.

Единица измерения электрической емкости – фарада (обозначается ф или F) очень велика. Поэтому чаще пользуются более мелкими единицами – микрофарадой (мкф или μF), составляющей миллионную часть фарады:

1 мкф = 10-6ф ,

и пикофарадой (пф), составляющей миллионную часть микрофарады:

1 пф = 10-6мкф = 10-12ф .

Найдем выражение практической единицы – фарады в абсолютных единицах:

Электрический конденсатор

Устройство, предназначенное для накопления электрических зарядов, называется электрическим конденсатором.

Рисунок 1. Модель простейшего конденсатора

Конденсатор состоит из двух металлических пластин (обкладок), разделенных между собой слоем диэлектрика. Чтобы зарядить конденсатор, нужно его обкладки соединить с полюсами электрической машины. Разноименные заряды, скопившиеся на обкладках конденсатора, связаны между собой электрическим полем. Близко расположенные пластины конденсатора, влияя одна на другую, позволяют получить на обкладках большой электрический заряд при относительно невысокой разности потенциалов между обкладками. Электрическая емкость конденсатора есть отношение заряда конденсатора к разности потенциалов между его обкладками:

Как показывают измерения, емкость конденсатора увеличится, если увеличить поверхность обкладок или приблизить их одну к другой. На емкость конденсатора оказывает влияние также материал диэлектрика. Чем больше электрическая проницаемость диэлектрика, тем больше емкость конденсатора по сравнению с емкостью того же конденсатора, диэлектриком в котором служит пустота (воздух). Выбирая диэлектрик для конденсатора, нужно стремиться к тому, чтобы диэлектрик обладал большой электрической прочностью (хорошими изолирующими качествами). Плохой диэлектрик приводит к пробою его и разряду конденсатора. Несовершенный диэлектрик повлечет за собой утечку тока через него и постепенный разряд конденсатора.

Длинные линии передачи высокого напряжения можно рассматривать как своеобразные обкладки конденсатора. Емкость провода нужно рассматривать не только относительно другого провода, но также относительно земли, стен помещений и окружающих предметов. Значительной емкостью обладают подводные и подземные кабели ввиду близкого расположения токоведущих жил между собой.

Конденсатор постоянной емкости

Конденсаторы, емкость которых изменять нельзя, называются конденсаторами постоянной емкости.

Рисунок 2. Схема устройства конденсатора
постоянной емкости

Наиболее распространенные в настоящее время конденсаторы постоянной емкости состоят из очень тонких металлических (станиолевых) листов с парафинированной бумажной или слюдяной прослойкой между ними.

Для увеличения емкости (увеличения площади пластин конденсатора) чаще всего берут по нескольку станиолевых листов и соединяют их в две группы, входящие одна в другую и разделенные диэлектриком, как схематически показано на рисунке 2. Иногда также берут две длинные станиолевые пластины, прокладывают между ними и снаружи парафинированную бумагу и затем свертывают все в компактный пакет или трубку. Конденсаторы большой емкости во многих случаях помещают в металлическую коробку и заливают парафином.

Рисунок 3. Внешний вид современных конденсаторов постоянной емкости

Определим емкость плоского конденсатора. Возьмем произвольную замкнутую поверхность вокруг одной из пластин конденсатора. Тогда по теореме Гаусса поток вектора напряженности, проходящий через любую замкнутую поверхность, внутри которой находится электрический заряд, равен:

(1)

Предполагая, что поле конденсатора однородно (пренебрегая искажением поля у краев пластин), получаем напряженность электрического поля в конденсаторе:

(2)

где d – расстояние между пластинами или толщина диэлектрика. Подставив значение E из формулы (2) в формулу (1), получим:

откуда

Так как

то выражение емкости плоского конденсатора примет вид:

где S – площадь пластин в м²; d – толщина диэлектрика в м; ε – относительная электрическая проницаемость диэлектрика (диэлектрическая проницаемость).

Таким образом, для увеличения емкости плоского конденсатора нужно увеличить площадь его пластин (обкладок) S, уменьшить расстояние между ними d и в качестве диэлектрика поставить материал с большой относительной электрической проницаемостью (ε).

Видео об устройстве конденсатора постоянной емкости:

Конденсатор переменной емкости

Конденсаторы, емкость которых можно менять, называются конденсаторами переменной емкости.

Наиболее простой конденсатор переменной емкости имеет несколько (реже один) медных или алюминиевых полудисков, соединенных между собой электрически и укрепленных неподвижно. Другой ряд таких же полудисков собран на общей оси. При повороте этой оси каждый из укрепленных на ней полудисков входит меду двумя неподвижными полудисками. Поворачивая ось и меняя таким образом взаимное расположение подвижных и неподвижных полудисков, мы можем менять емкость конденсатора. На рисунке 3 показана схема устройства и на рисунке 4 – общий вид воздушного конденсатора переменной емкости.

Рисунок 3. Схема устройства конденсатора переменной емкости

Рисунок 4. Общий вид конденсатора переменной емкости

Видео об устройстве серийного конденсатора переменной емкости:

Видео о том, как можно сделать самодельный конденсатор переменной емкости своими руками:

Электролитические конденсаторы

В радиотехнике применяются также электролитические конденсаторы. Эти конденсаторы изготовляются двух типов: жидкостные и сухие. В обоих типах конденсаторов употребляется оксидированный алюминий. Путем специальной электрохимической обработки на поверхности алюминия получают тонкий (порядка нескольких десятков микрон) слой оксида алюминия Al2O3, представляющий так называемую оксидную изоляцию алюминия. Оксидная изоляция обладает электроизолирующими свойствами, а также является механически прочной, нагревостойкой, но гигроскопичной.

В жидкостных электролитических конденсаторах алюминиевую оксидированную пластину помещают внутрь металлического корпуса, который служит второй пластиной. В корпус заливают электролит, состоящий из раствора борной кислоты с некоторыми примесями.

Сухие электролитические конденсаторы изготовляют путем сворачивания трех лент. Одна лента представляет собой алюминиевую оксидированную фольгу (тонко раскатанный лист металла). Другой пластиной является лента из алюминиевой фольги. Между двумя металлическими лентами помещается бумажная или марлевая лента, пропитанная вязким электролитом. Плотно свернутые ленты помещаются в алюминиевый корпус и заливаются битумом. Тонкий оксидный изолирующий слой с высокой электрической проницаемостью (ε = 9) позволяет получить дешевые конденсаторы с большой удельной емкостью.

Видео об устройстве электролитического конденсатора:

Параллельное соединение конденсаторов

Рисунок 5. Параллельное
соединение конденсаторов

Когда емкость конденсатора мала, то соединяют несколько конденсаторов параллельно (рисунок 5).

При параллельном соединении конденсаторов напряжение на обкладках каждого конденсатора одно и то же. Поэтому можно написать:

U1 = U2 = U3 = U .

Количество электричества (заряд) каждого конденсатора:

q1 = C1 × U; q2 = C2 × U; q3 = C3 × U .

Общий заряд батареи конденсаторов:

q = q1 + q2 + q3 ;

q = C1 × U + C2 × U + C3 × U = U (C1 + C2 + C3) .

Обозначая емкость батареи конденсаторов через C, получаем:

q = C × U ,

тогда

C × U = U × (C1 + C2 + C3)

или окончательно формула емкости при параллельном соединении конденсаторов примет вид:

C = C1 + C2 + C3 .

Следовательно, при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов. При параллельном соединении каждый конденсатор окажется включенным на полное напряжение сети.

Последовательное соединение конденсаторов

Рисунок 6. Последовательное
соединение конденсаторов

Рассмотрим последовательное соединение конденсаторов (рисунок 6).

Если левая обкладка первого конденсатора заряжена положительно (+), то вследствие электростатической индукции правая обкладка этого конденсатора получит отрицательный заряд (–), перешедший с левой обкладки второго конденсатора, которая сама зарядится положительно, и так далее. Значит, при последовательном соединении каждый конденсатор независимо от величины его емкости получит один и тот же заряд, то есть

q1 = q2 = q3 = q .

Напряжение, приложенное ко всей батареи конденсаторов, равно сумме напряжений на обкладках каждого конденсатора:

U = U1 + U2 + U3 .

Так как

для всей батареи

теперь можно написать

или, сокращая на q, получим окончательно, что емкость конденсаторов при последовательном соединении равна:

Таким образом, при последовательном соединении конденсаторов обратная величина общей емкости равна сумме обратных величин емкостей отдельных конденсаторов. Каждый из конденсаторов включен на меньшее напряжение, чем напряжение сети.

Конденсаторы широко применяются в радиотехнике, рентгенотехнике, высокочастотной промышленной электротехнике, для увеличения коэффициента мощности электроустановок и так далее.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

www.electromechanics.ru

Объём — Википедия

Материал из Википедии — свободной энциклопедии

Примеры вычисления объёмов:
Куба с помощью перемножения трех сторон[1] Пирамиды с помощью умножения площади основания пирамиды на её высоту и делению на три[1] Конуса с помощью умножения площади основания на треть высоты[1] Цилиндра с помощью перемножения площади на высоту[1] Шара с помощью перемножения четырёх третьих числа Пи на радиус шара в кубе[1] Тетраэдра с помощью произведения длины его ребра в кубе на корень из двух и деления полученного на двенадцать[1] Видеоурок: объём

Объём — количественная характеристика пространства, занимаемого телом или веществом.

Объём тела или вместимость сосуда определяется его формой и линейными размерами. С понятием объёма тесно связано понятие вместимость, то есть объём внутреннего пространства сосуда, упаковочного ящика и т. п..

Единица измерения объёма в СИ — кубический метр; от неё образуются производные единицы, такие как кубический сантиметр, кубический дециметр (литр) и т. д. В разных странах для жидких и сыпучих веществ используются также различные внесистемные единицы объёма — галлон, баррель.

В формулах для обозначения объёма используется заглавная латинская буква V, являющаяся сокращением от лат. volume — «объём», «наполнение».

Слово «объём» также используют в переносном значении для обозначения общего количества или текущей величины. Например, «объём спроса», «объём памяти», «объём работ». В изобразительном искусстве объёмом называется иллюзорная передача пространственных характеристик изображаемого предмета художественными методами.

На практике приблизительный объём тела, в том числе сложной формы, можно вычислить погрузив это тело в жидкость. Объём вытесненной жидкости будет равен объёму измеряемого тела.

Математически[править | править код]

Для объёмов тел простой формы имеются специальные формулы. Например, объём куба с ребром a{\displaystyle a} равен V=a3{\displaystyle V=a^{3}}, а объём прямоугольного параллелепипеда равен произведению его длины на ширину на высоту.

Объём тела сложной формы вычисляется разбиением этого тела на отдельные части простой формы и суммированием объёмов этих частей. В интегральном исчислении объёмы частей, из которых складывается объём всего тела, рассматриваются как бесконечно малые величины.

Через плотность[править | править код]

Зная массу (m) и плотность (ρ) тела объём рассчитывается по формуле: V=mρ{\displaystyle V={\frac {m}{\rho }}}

  • 1 л = 1,76 пинты = 0,23 галлона

Английские[править | править код]

Античные[править | править код]

Древнееврейские[2][править | править код]

  • Эйфа = 24,883 литра
  • Гин = 1/6 эйфы = 4,147 литра
  • Омер = 1/10 эйфы = 2,4883 литра
  • Кав = 1/3 гина = 1,382 литра

Русские[3][править | править код]

Английские[править | править код]

Русские[править | править код]

  • Четверик = 26,24 литра (1 пуд зерна)
  • Гарнец = 3,28 литра
  • Четверть = 1/4 ведра = 3,075 литра
  • Штоф = 1/8 ведра = 1,54 литра
  • Кружка = 1/10 ведра = 1,23 литра
  • Бутылка (винная) = 1/16 ведра = 0,77 литра
  • Бутылка (пивная) = 1/20 ведра = 0,61 литра
  • Чарка = 1/10 кружки = 0,123 литра
  • Шкалик (косушка) = 1/2 чарки = 0,0615 литра
  • 1 унция (англ.) = 2,841⋅10−5 м³
  • 1 унция (амер.) = 2,957⋅10−5 м³
  • 1 кубический дюйм = 1,63871⋅10−5 м³
  • 1 кубический фут = 2,83168⋅10−2 м³
  • 1 кубический ярд = 0,76455 м³
  • 1 кубическая астрономическая единица =3,348⋅1024 км³
  • 1 кубический световой год = 8,466⋅1038 км³
  • 1 кубический парсек = 2,938⋅1040 км³
  • 1 кубический килопарсек = 1 000 000 000 пк³ = 2,938⋅1049 км³

ru.wikipedia.org

ГОСТ 2.780-96 ЕСКД. Обозначения условные графические. Кондиционеры рабочей среды, емкости гидравлические и пневматические

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ. КОНДИЦИОНЕРЫ РАБОЧЕЙ СРЕДЫ,
ЕМКОСТИ ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ

ГОСТ 2.780-96

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

Минск

Предисловие

1 РАЗРАБОТАН Научно-исследовательским и проектно-конструкторским институтом промышленных гидроприводов и гидроавтоматики (НИИГидропривод), Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 4 октября 1996 г.)

За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика

Азгосстандарт

Республика Армения

Армгосстандарт

Республика Белоруссия

Белстандарт

Республика Казахстан

Госстандарт Республики Казахстан

Киргизская Республика

Киргизстандарт

Республика Молдова

Молдовастандарт

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикский государственный центр по стандартизации, метрологии и сертификации

Туркменистан

Туркменглавгосинспекция

Украина

Госстандарт Украины

3 Настоящий стандарт соответствует ИСО 1219-91 «Гидропривод, пневмопривод и устройства. Условные графические обозначения и схемы. Часть 1. Условные графические обозначения» в части кондиционеров рабочей среды и гидравлических и пневматических емкостей

4 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 7 апреля 1997 г. № 121 межгосударственный стандарт ГОСТ 2.780-96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

5 ВЗАМЕН ГОСТ 2.780-68 в части пп. 1, 2, 18-25

6 ПЕРЕИЗДАНИЕ. Октябрь 1997 г.

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

1 Область применения

2 Нормативные ссылки

3 Определения

4 Основные положения

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ. КОНДИЦИОНЕРЫ РАБОЧЕЙ СРЕДЫ,
ЕМКОСТИ ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ

Unified system for design documentation. Graphic designations.
Fluid conditioners and capacitors

Дата введения 1998-01-01

Настоящий стандарт устанавливает условные графические обозначения кондиционеров рабочей жидкости и рабочего газа, гидравлических и пневматических емкостей в схемах и чертежах всех отраслей промышленности.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 17752-81 Гидропривод объемный и пневмопривод. Термины и определения

ГОСТ 20765-87 Системы смазочные. Термины и определения

ГОСТ 26070-83 Фильтры и сепараторы для жидкостей. Термины и определения

В настоящем стандарте применяют термины по ГОСТ 17752, ГОСТ 20765, ГОСТ 26070.

4.1 Обозначения отражают назначение (действие), способ работы устройств и наружные соединения.

4.2 Обозначения не показывают фактическую конструкцию устройства.

4.3 Размеры условных обозначений стандарт не устанавливает.

4.4 Условные графические обозначения кондиционеров рабочей среды, гидравлических и пневматических емкостей приведены в таблице 1.

Таблица 1

Наименование

Обозначение

1 Конденсатор рабочей среды:

— общее обозначение

— фильтр

с магнитным сепаратором

с индикатором загрязненности

— влагоотделитель

с ручным отводом конденсата

с автоматическим отводом конденсата

— фильтр-влагоотделитель с ручным отводом конденсата

— воздухоосушитель

— маслораспылитель

— блок подготовки рабочего газа

— увлажнитель

— подогреватель

— охладитель без указания линий подвода и отвода окружающей среды

— охладитель с указанием линий подвода и отвода охлаждающей среды

— охладитель и подогреватель

— конденсатоотводчик

2 Гидробак и смазочный бак под атмосферным давлением

— общее обозначение

— со сливным трубопроводом выше уровня рабочей жидкости

— со сливным трубопроводом ниже уровня рабочей жидкости

— со сливным трубопроводом ниже уровня рабочей жидкости с воздушным фильтром

— с мешалкой

— с механическим поджимом смазочного материала

с давлением выше атмосферного:

— общее обозначение

— со сливным трубопроводом выше уровня рабочей жидкости

— со сливным трубопроводом ниже уровня рабочей жидкости

с давлением ниже атмосферного:

— общее обозначение

— со сливным трубопроводом выше уровня рабочей жидкости

— со сливным трубопроводом ниже уровня рабочей жидкости

Примечание — При необходимости указания объема заправки бака, дм3 (л), следует применять приведенное обозначение (например, бак с объемом заправки 5 дм3)

3 Аккумулятор гидравлический или пневматический (изображается только вертикально)

— гидравлический (без указания принципа действия)

— грузовой гидравлический

- пружинный гидравлический

- пневмогидравлический

4 Вспомогательный газовый баллон (изображается только вертикально)

5 Ресивер

6 Пневмоглушитель

7 Заливная горловина, воронка, заправочный штуцер и т. п.

8 Безнапорная емкостная масленка (например, регулируемая трехотводная масленка)

9 Напорная емкостная масленка:

— пневматическая

— колпачковая

Ключевые слова: обозначения условные графические, кондиционеры, емкости гидравлические и пневматические

www.gosthelp.ru

Список обозначений в физике — Википедия

СимволЗначение и происхождение
A{\displaystyle A}Площадь (лат. area), векторный потенциал[1], работа (нем. Arbeit), амплитуда (лат. amplitudo), параметр вырождения, Работа выхода (нем. Austrittsarbeit), коэффициент Эйнштейна для спонтанного излучения, массовое число
a{\displaystyle a}Ускорение (лат. acceleratio), амплитуда (лат. amplitudo), активность (лат. activitas), коэффициент температуропроводности, вращательная способность, радиус Бора, натуральный показатель поглощения света
B{\displaystyle B}Вектор магнитной индукции[1], барионный заряд (англ. baryon number), удельная газовая постоянная, вириальний коэффициент, функция Бриллюэна (англ. Brillion function), ширина интерференционной полосы (нем. Breite), яркость, постоянная Керра, коэффициент Эйнштейна для вынужденного излучения, коэффициент Эйнштейна для поглощения, вращательная постоянная молекулы
b{\displaystyle b}Вектор магнитной индукции[1], красивый кварк (англ. beauty/bottom quark), постоянная Вина, ширина распада (нем. Breite)
C{\displaystyle C}Электрическая ёмкость (англ. capacitance), теплоёмкость (англ. heatcapacity), постоянная интегрирования (лат. constans), очарование (чарм, шарм; англ. charm), коэффициенты Клебша — Гордана (англ. Clebsch-Gordan coefficients), постоянная Коттона — Мутона (англ. Cotton-Mouton constant), кривизна (лат. curvatura)
c{\displaystyle c}Скорость света (лат. celeritas), скорость звука (лат. celeritas), Теплоёмкость (англ. heat capacity), очарованный кварк (англ. charm quark), концентрация (англ. concentration), первая радиационная постоянная, вторая радиационная постоянная
D{\displaystyle D}Вектор электрической индукции[1] (англ. electric displacement field), Коэффициент диффузии (англ. diffusion coefficient), Оптическая сила (англ. dioptric power), коэффициент прохождения, тензор квадрупольного электрического момента, угловая дисперсия спектрального прибора, линейная дисперсия спектрального прибора, коэффициент прозрачности потенциального барьера, D-мезон (англ. D meson), Диаметр (лат. diametros, др.-греч. διάμετρος)
d{\displaystyle d}Расстояние (лат. distantia), Диаметр (лат. diametros, др.-греч. διάμετρος), дифференциал (лат. differentia), нижний кварк (англ. down quark), дипольный момент (англ. dipole moment), период дифракционной решётки, толщина (нем. Dicke)
E{\displaystyle E}Энергия (лат. energīa), напряжённость электрического поля[1] (англ. electric field), Электродвижущая сила (англ. electromotive force), магнитодвижущая сила, освещенность (фр. éclairement lumineux), излучательная способность тела, модуль Юнга
e{\displaystyle e}Основание натуральных логарифмов (2,71828…), электрон (англ. electron), элементарный электрический заряд (англ. elementaty electric charge), константа электромагнитного взаимодействия
F{\displaystyle F}Сила (лат. fortis), постоянная Фарадея (англ. Faraday constant), свободная энергия Гельмгольца (нем. freie Energie), атомный фактор рассеяния, тензор электромагнитного поля, магнитодвижущая сила, модуль сдвига, фокусное расстояние (англ. focal length)
f{\displaystyle f}Частота (лат. frequentia), функция (лат. functia), летучесть (нем. Flüchtigkeit), сила (лат. fortis), фокусное расстояние (англ. focal length), сила осциллятора, коэффициент трения
G{\displaystyle G}Гравитационная постоянная (англ. gravitational constant), тензор Эйнштейна, свободная энергия Гиббса (англ. Gibbs free energy), метрика пространства-времени, вириал, парциальная мольная величина, поверхностная активность адсорбата, модуль сдвига, полный импульс поля, Глюон (англ. gluon), константа Ферми, квант проводимости, электрическая проводимость, Вес (нем. Gewichtskraft)
g{\displaystyle g}Ускорение свободного падения (англ. gravitational acceleration), Глюон (англ. gluon), фактор Ланде, фактор вырождения, весовая концентрация, Гравитон (англ. graviton), метрический тензор
H{\displaystyle H}Напряжённость магнитного поля[1], эквивалентная доза, энтальпия (англ. heat contents или от греческой буквы «эта», H — ενθαλπος[2]), гамильтониан (англ. Hamiltonian), функция Ганкеля (англ. Hankel function), функция Хевисайда (англ. Heaviside step function), бозон Хиггса (англ. Higgs boson), экспозиция, полиномы Эрмита (англ. Hermite polynomials)
h{\displaystyle h}Высота (нем. Höhe), постоянная Планка (нем. Hilfsgröße[3]), спиральность (англ. helicity)
I{\displaystyle I}сила тока (фр. intensité de courant), интенсивность звука (лат. intēnsiō), интенсивность света (лат. intēnsiō), сила излучения, сила света, момент инерции, вектор намагниченности
i{\displaystyle i}Мнимая единица (лат. imaginarius), единичный вектор (координатный орт)
J{\displaystyle J}Плотность тока (также 4-вектор плотности тока), момент импульса, функция Бесселя, момент инерции, полярный момент инерции сечения, вращательное квантовое число, сила света, J/ψ-мезон
j{\displaystyle j}Мнимая единица (в электротехнике и радиоэлектронике), плотность тока (также 4-вектор плотности тока), единичный вектор (координатный орт)
K{\displaystyle K}Каона (англ. kaons), термодинамическая константа равновесия, коэффициент электронной теплопроводности металлов, модуль всестороннего сжатия, механический импульс, постоянная Джозефсона, кинетическая энергия
k{\displaystyle k}Коэффициент (нем. Koeffizient), постоянная Больцмана, теплопроводность, волновое число, единичный вектор (координатный орт)
L{\displaystyle L}Момент импульса, дальность полёта, удельная теплота парообразования и конденсации, индуктивность, функция Лагранжа (англ. Lagrangian), классическая функция Ланжевена (англ. Langevin function), число Лоренца (англ. Lorenz number), уровень звукового давления, полиномы Лагерра (англ. Laguerre polynomials), орбитальное квантовое число, энергетическая яркость, яркость (англ. luminance)
l{\displaystyle l}Длина (англ. length), длина свободного пробега (англ. length), орбитальное квантовое число, радиационная длина
M{\displaystyle M}Момент силы, масса (лат. massa, от др.-греч. μᾶζα, кусок теста), вектор намагниченности (англ. magnetization), крутящий момент, число Маха, взаимная индуктивность, магнитное квантовое число, молярная масса
m{\displaystyle m}Масса, магнитное квантовое число (англ. magnetic quantum number), магнитный момент (англ. magnetic moment), эффективная масса, дефект массы, масса Планка
N{\displaystyle N}Количество (лат. numerus), постоянная Авогадро, число Дебая, полная мощность излучения, увеличение оптического прибора, концентрация, мощность, сила нормальной реакции
n{\displaystyle n}Показатель преломления, количество вещества, нормальный вектор, единичный вектор, нейтрон (англ. neutron), количество (англ. number), основное квантовое число, частота вращения, концентрация, показатель политропы, постоянная Лошмидта
O{\displaystyle O}Начало координат (лат. origo)
P{\displaystyle P}Мощность (лат. potestas), давление (лат. pressūra), полиномы Лежандра, вес (фр. poids), сила тяжести, вероятность (лат. probabilitas), поляризуемость, вероятность перехода, импульс (также 4-импульс, обобщённый импульс; лат. petere)
p{\displaystyle p}Импульс (также 4-импульс, обобщённый импульс; лат. petere), протон (англ. proton), дипольный момент, волновой параметр, давление, число полюсов, плотность.
Q{\displaystyle Q}Электрический заряд (англ. quantity of electricity), количество теплоты (англ. quantity of heat), объёмный расход, обобщённая сила, хладопроизводительность, энергия излучения, световая энергия, добротность (англ. quality factor), нулевой инвариант Аббе, квадрупольный электрический момент (англ. quadrupole moment), энергия ядерной реакции
q{\displaystyle q}Электрический заряд, обобщённая координата, количество теплоты (англ. quantity of heat), эффективный заряд, добротность
R{\displaystyle R}Электрическое сопротивление (англ. resistance), универсальная газовая постоянная, постоянная Ридберга (англ. R ydberg constant), постоянная фон Клитцинга, коэффициент отражения, сопротивление излучения (англ. resistance),

ru.wikipedia.org

Фарад единица измерения единица измерения конденсатор сколько

Фарад.

 

 

Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ). Имеет русское обозначение – Ф и международное обозначение – F.

 

Фарад, как единица измерения

Применение фарада

Представление фарада в других единицах измерения – формулы

Кратные и дольные единицы фарада

Другие единицы измерения

 

Фарад, как единица измерения:

Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея. Прежнее название – фарада.

Фарад как единица измерения имеет русское обозначение – Ф и международное обозначение – F.

1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон (Кл) создаёт между обкладками конденсатора напряжение 1 вольт (В).

Ф = Кл/В.

1 Ф = 1 Кл/1 В.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

Ф = А · с / В.

1 Ф = 1 А · 1 с / 1 В.

Фарад — очень большая ёмкость. Ёмкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с Землю, как уединенного проводника) составляет всего около 700 микрофарад.

В Международную систему единиц фарад введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада.

 

Применение фарада:

В фарадах измеряют электрическую ёмкость проводников, кабелей, межэлектродные ёмкости различных приборов и конденсаторов, то есть их способность накапливать электрический заряд.

Различается электрическую ёмкость и электрохимическую ёмкость. Электрохимическую ёмкость применяется к обычным батарейкам и аккумуляторам. Она имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

 

Представление фарада в других единицах измерения – формулы:

Через основные и производные единицы системы СИ фарад выражается следующим образом:

Ф = Кл / В.

Ф = А · с / В.

Ф = Дж / В2.

Ф = Вт · с / В2. 

Ф = Н · м / В2.

Ф = Кл · м / Дж.

Ф = Кл2 / Н · м.

Ф = с2 · Кл2 / кг · м2.

Ф = А2 · с4 / кг · м2.

Ф = с / Ом.

Ф = 1 / Ом · Гц.

Ф = с2 / Ом · Гн.

где Ф – фарад, А – ампер, В – вольт, Кл – кулон, Дж – джоуль, м – метр, Н – ньютон, с – секунда, Вт – ватт, кг – килограмм, Ом – ом, Гц – герц, Гн – генри.

 

Кратные и дольные единицы фарада:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 ФдекафараддаФdaF10−1 ФдецифараддФdF
102 ФгектофарадгФhF10−2 ФсантифарадсФcF
103 ФкилофарадкФkF10−3 ФмиллифарадмФmF
106 ФмегафарадМФMF10−6 ФмикрофарадмкФµF
109 ФгигафарадГФGF10−9 ФнанофараднФnF
1012 ФтерафарадТФTF10−12 ФпикофарадпФpF
1015 ФпетафарадПФPF10−15 ФфемтофарадфФfF
1018 ФэксафарадЭФEF10−18 ФаттофарадаФaF
1021 ФзеттафарадЗФZF10−21 ФзептофарадзФzF
1024 ФиоттафарадИФYF10−24 ФиоктофарадиФyF

 

Источник: https://ru.wikipedia.org/wiki/Фарад

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

карта сайта

перевод 1 2 4 5 10 100 фарад единица измерения в джоули формула
перевести микрофарады пикофарады в фарады
конденсатор емкостью 1 2 4 10 фарада википедия емкость конденсатора фарад это сколько
вольт на фарад
мкф в фарады
нанофарады в фарады
что измеряется в фарадах
фарады в ампер

 

Коэффициент востребованности 1 156

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Ёмкость — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 ноября 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 ноября 2018; проверки требует 1 правка.

Ёмкость — многозначное слово, может означать:

  • Ёмкость — внутренний объём сосуда, вместимость, то есть максимальный объём помещающегося внутрь него вещества.
  • Ёмкость — предмет (сосуд, вместилище), используемый для хранения какого-либо вещества.

Электротехника, радиотехника, электроника, физика[править | править код]

  • Электрическая ёмкость — характеристика проводника, показывающая способность проводника накапливать электрический заряд.
  • Ёмкость — то же, что идеальный конденсатор или емкостной элемент — идеализированный элемент электрической цепи, обладающий свойством запасать энергию электрического поля, причем запасания энергии магнитного поля или преобразования электрической энергии в другие виды энергии в нем не происходит. Ёмкость — единственный параметр ёмкостного элемента и основной параметр конденсатора.

Аккумуляторы[править | править код]

  • Ёмкость зарядная — количество электричества (заряд), сообщаемое аккумулятору во время заряда.
  • Ёмкость номинальная — количество электричества (заряд), который должен отдать новый полностью заряженный аккумулятор при разряде до наименьшего допустимого напряжения в нормальных условиях эксплуатации.
  • Ёмкость энергетическая — энергия, отдаваемая полностью заряженным аккумулятором при разряде до наименьшего допустимого напряжения.

В математике ёмкостью называются характеристики множества схожие с мерой. Например:

ru.wikipedia.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *