Конденсатор — урок. Физика, 9 класс.
Конденсатор — это устройство, предназначенное для накопления заряда и энергии электрического поля (от лат. kondensator — «уплотнять», «сгущать»).
Простейший плоский конденсатор состоит из двух одинаковых металлических пластин — обкладок — и слоя диэлектрика, толщина которого мала по сравнению с размерами пластин.
На схемах электрических цепей конденсатор обозначается: .
Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника тока. При зарядке обе обкладки получают заряды, равные по модулю, но противоположные по знаку. Под зарядом конденсаторов понимают модуль заряда одной из его обкладок. Свойство конденсатора накапливать электрический заряд характеризуется физической величиной — электроёмкостью.
Электроёмкость обозначается буквой \(C\) и определяется по формуле:
C=qU, где \(q\) — заряд конденсатора, \(U\) — напряжение между обкладками конденсатора.
Электроёмкость конденсатора зависит от площади перекрытия пластин и расстояния между ними, а также от свойств используемого диэлектрика:
C∼Sd, где \(S\) — площадь каждой обкладки, \(d\) — расстояние между обкладками.
За единицу электроёмкости в СИ принимается Фарад (Ф).
Она названа в честь Майкла Фарадея — английского физика. \(1\) Фарад равен ёмкости конденсатора, при которой заряд \(1\) Кулон создаёт между его обкладками напряжение \(1\) Вольт: 1 Фарад=1 Кулон1 Вольт.
\(1\) Ф — это очень большая ёмкость для конденсатора. Чаще всего конденсаторы имеют электроёмкость, равную дольным единицам Ф: микрофарад (мкФ) — 10−6Ф, пикофарад (пФ) — 10−12 Ф.
Для получения требуемой ёмкости конденсаторы соединяют в батареи.
Если конденсаторы соединены параллельно, то общая ёмкость равна сумме ёмкостей: Cоб=C1+C2+C3.
Если конденсаторы соединены последовательно, то общая ёмкость будет равна: 1Cоб=1C1+1C2+1C3.
При зарядке конденсатора внешними силами совершается работа по разделению положительных и отрицательных зарядов. По закону сохранения энергии работа внешних сил равна энергии поля конденсатора. При разрядке конденсатора за счёт этой энергии может быть совершена работа. Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.
Энергию электрического поля конденсатора можно рассчитать по формуле: Eэл=q22C.
Из формулы видно, что энергия конденсатора данной электроёмкости тем больше, чем больше его заряд.
Источники:
Учебник А. В. Перышкин, Е. М. Гутник «Физика. 9 класс».
https://electrosam.ru/ Виды конденсаторов.
https://elektronchic.ru/ Электронщик.
https://ru.wikipedia.org Википедия.
Маркировка конденсаторов — таблица расшифровки конденсаторов
Конденсаторы предназначены для накопления электрического заряда. Емкость измеряется в фарадах (Ф, или F). Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10-9 и 10-12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.
БУКВЕННО-ЦИФРОВАЯ И ЦИФРОВАЯ МАРКИРОВКА КОНДЕНСАТОРОВВ таком случае первые цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей.
При обозначении емкостей менее 10 пФ последней цифрой может быть «9», например, 109 = 1 пФ.
При обозначении емкостей 1 пФ и менее первой цифрой будет «0», например, 010 = 1 пФ.
В качестве раздельной запятой используется буква R, например, 0R5 = 0,5 пФ.
При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка, например, 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ.
В маркировке может использоваться буква R, число что стоит после нее значит десятые доли микрофарада (мкФ), например, R1 — 0,1 мкФ, R22 — 0,22 мкФ, 3R3 — 3,3 мкФ.
После обозначения емкости может быть нанесен буквенный символ, который обозначает допустимое отклонение емкости конденсатора.
Как определить единицы измерения? На корпусе конденсаторов может быть проставлена буква, обозначающая единицу измерения, например, p — пикофарад, n — нанофарад, u — микрофарад. Но если после цифр стоит одна буква, скорее всего, это маркировка значения допуска, а не маркировка единицы измерения (как правило, буквы «p» и «n» в маркировке значения допуска не участвуют, но бывают исключения).
Емкость самых маленьких конденсаторов (керамических, пленочных, танталовых) измеряется в пикофарадах (пФ, pF), которые равны 10-12 Ф. Емкость больших конденсаторов (алюминиевых электролитических или двухслойных) измеряется в микрофарадах (мкФ, uF или µF), которые равны 10-6 Ф.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквой В и V, например, 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Больше примеров расшифровки маркировки конденсаторов смотрите ниже:
ЦВЕТОВАЯ МАРКИРОВКА КОНДЕНСАТОРОВТакже популярна цветная маркировка конденсаторов. Выполнена она цветовыми метками — полосами либо точками. Количество меток может быть от трех до шести. Если у конденсатора выводы расположены слева и справа корпуса (как у резистора), то первой меткой считается та, которая ближе к выводу. Если выводы конденсатора расположены с одной стороны, то первой считается метка, которая ближе к верхушке конденсатора (стороне корпуса, противоположной расположению выводов).
Цветом определяется код номинальной емкости, ее множителя и допустимого напряжения. Код номинальной емкости соответствует цвету краски корпуса конденсатора у выводов (вывода), кодом множителя может бута цвет пятна посередине корпуса, а код допустимого напряжения — краска второй части корпуса конденсатора.
Ниже додаем таблицы маркировки конденсаторов, по которым легко определить номинальную емкость и другие параметры конденсаторов в зависимости от цвета полоски или точки.
Таблица цветовой маркировки конденсаторов общего применения:
Таблица цветовой маркировки напряжения конденсаторов:
Для маркировки пленочных конденсаторов используют 5 цветных полос или точек: первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.
Цветовая маркировка танталовых конденсаторов:
КОНДЕНСАТОРЫ НА ЭЛЕКТРИЧЕСКИХ СХЕМАХОбозначение конденсатора на схемах: постоянный, полярный, неполярный, оксидный проходной, опорный, переменный, полупеременный конденсатор и другие. Рядом с этим указывают позиционное обозначение, состоящее из буквы С и номера по порядку на схеме. Здесь также указывается номинал емкости, значение емкости лежит в пределах 1 … 9999 пФ и является целым. Если значение емкости является десятичной дробью, то обозначение емкости имеет размерность, например, С2 38,2 пФ.
Емкость конденсатора обозначение буквой
Основным параметром конденсатора является его номинальная емкость, измеряемая в фарадах ( Ф ) микрофарадах ( мкФ ) или пикофарадах ( пФ ).
Допустимые отклонения емкости конденсатора от номинального значения указаны в стандартах и определяют класс его точности. Для
По виду изменения емкости конденсаторы делятся на изделия с постоянной емкостью, переменной и саморегулирующиеся. Номинальная емкость указывается на корпусе конденсатора. Для сокращения записи применяется специальное кодирование:
- П – пикофарады – пФ
- Н – одна нанофарада
- М – микрофарад – мкФ
Ниже в качестве примера приводятся кодированные обозначения конденсаторов:
- 51П – 51 пФ
- 5П1 – 5,1 пФ
- 1Н – 1000 пФ
- 1Н2 – 1200 пФ
- 68Н – 68000 пФ = 0,068 мкФ
- 100Н – 100 000 пФ = 0,1 мкФ
- МЗ – 300 000 пФ = 0,3 мкФ
- 3М3 – 3,3 мкФ
- 10М – 10 мкФ
Числовые значения ёмкостей 130 пФ и 7500 пФ
целые числа ( от 0 до 9999 пФ )
Конструкции конденсаторов постоянной емкости и материал, из которого они изготовляются, определяются их назначением и диапазоном рабочих частот.
Высокочастотные конденсаторы имеют большую стабильность, заключающуюся в незначительном изменении емкости при изменении температуры, малые допустимые отклонения емкости от номинального значения, небольшие размеры и вес. Они бывают керамическими (типов КЛГ , КЛС , КМ , КД , КДУ , КТ , КГК , КТП и др.), слюдяными ( КСО , КГС , СГМ ), стеклокерамическими ( СКМ ), стеклоэмалевыми ( КС ) и стеклянными ( К21У ).
Конденсатор с дробной ёмкостью
от 0 до 9999 Пф
Для цепей постоянного, переменного и пульсирующего токов низкой частоты требуются конденсаторы с большими емкостями, измеряемыми тысячами микрофарад. В связи с этим выпускаются бумажные (типов БМ , КБГ ), металлобумажные ( МБГ , МБМ ), электролитические ( КЭ , ЭГЦ , ЭТО , К50 , К52 , К53 и др.) и пленочные ( ПМ , ПО , К73 , К74 , К76 ) конденсаторы.
Конструкции конденсаторов постоянной емкости разнообразны. Так, слюдяные, стеклоэмалевые, стеклокерамические и отдельные типы керамических конденсаторов имеют пакетную конструкцию. В них обкладки, выполненные из металлической фольги или в виде металлических пленок, чередуются с пластинами из диэлектрика (например, слюды).
Емкость конденсатора 0,015 мкФ
Конденсатор с ёмкостью 1 мкФ
Для получения значительной емкости формируют пакет из большого числа таких элементарных конденсаторов. Электрически соединяют между собой все верхние обкладки и отдельно – нижние. К местам соединений припаивают проводники, служащие выводами конденсатора. Затем пакет спрессовывают и помещают в корпус.
Применяется и дисковая конструкция керамических конденсаторов. Роль обкладок в них выполняют металлические пленки, нанесенные на обе стороны керамического диска. Бумажные конденсаторы часто имеют рулонную конструкцию. Полосы алюминиевой фольги, разделенные бумажными лентами с высокими диэлектрическими свойствами, свертываются в рулон. Для получения большой емкости рулоны соединяют друг с другом и помещают в герметичный корпус.
В электролитических конденсаторах диэлектрик представляет собой оксидную пленку, наносимую на алюминиевую или танталовую пластинку, являющуюся одной из обкладок конденсатора, вторая обкладка – электролит.
Электролитический конденсатор 20,0 × 25В
Металлический стержень ( анод ) должен подключаться к точке с более высоким потенциалом, чем соединенный с электролитом корпус конденсатора ( катод ). При невыполнении этого условия сопротивление оксидной пленки резко уменьшается, что приводит к увеличению тока, проходящего через конденсатор, и может вызвать его разрушение.
Такую конструкцию имеют электролитические конденсаторы типа КЭ . Выпускаются также электролитические конденсаторы с твердым электролитом ( типа К50 ).
Конденсатор переменной ёмкости от 9 пФ до 270 пФ
Площадь перекрытия пластин или расстояние между ними у конденсаторов переменной емкости можно изменять различными способами. При этом меняется и емкость конденсатора. Одна из возможных конструкций конденсатора переменной емкости ( КПЕ ) изображена на рисунке справа.
Конденсатор переменной ёмкости от 9 пФ до 270 пФ
Здесь емкость изменяется путем различного расположения роторных (подвижных) пластин относительно статорных (неподвижных). Зависимость изменения емкости от угла поворота определяется конфигурацией пластин. Величина минимальной и максимальной емкости зависит от площади пластин и расстояния между ними. Обычно минимальная емкость Смин , измеряемая при полностью выведенных роторных пластинах, составляет единицы (до 10 – 20 ) пикофарад, а максимальная емкость Смакс , измеряемая при полностью выведенных роторных пластинах, – сотни пикофарад.
В радиоаппаратуре часто используются блоки КПЕ , скомпонованные из двух, трех и более конденсаторов переменной емкости, механически связанных друг с другом.
Конденсатор переменной ёмкости от 12 пФ до 497 пФ
Благодаря блокам КПЕ можно изменять одновременно и на одинаковую величину емкость различных цепей устройства.
Разновидностью КПЕ являются подстроечные конденсаторы. Их емкость так же, как и сопротивление подстроечных резисторов, изменяют лишь с помощью отвертки. В качестве диэлектрика в таких конденсаторах могут использоваться воздух или керамика.
Конденсатор подстроечный от 5 пФ до 30 пФ
На электрических схемах конденсаторы постоянной емкости обозначаются двумя параллельными отрезками, символизирующими обкладки конденсатора, с выводами от их середин. Рядом указывают условное буквенное обозначение конденсатора – букву С (от лат. Capacitor – конденсатор).
После буквы С ставится порядковый номер конденсатора в данной схеме, а рядом через небольшой интервал пишется другое число, указывающее на номинальное значение емкости.
Емкость конденсаторов от 0 до 9999 пФ указывают без единицы измерения, если емкость выражена целым числом , и с единицей измерения – пФ , если емкость выражена дробным числом.
Емкость конденсаторов от 10 000 пФ (0,01 мкФ) до 999 000 000 пФ (999 мкФ) указывают в микрофарадах в виде десятичной дроби либо как целое число, после которого ставят запятую и нуль. В обозначениях электролитических конденсаторов знаком « + » помечается отрезок, соответствующий положительному выводу – аноду, и после знака « х » – номинальное рабочее напряжение.
Конденсаторы переменной емкости ( КПЕ ) обозначаются двумя параллельными отрезками, перечеркнутыми стрелкой.
Если необходимо, чтобы к данной точке устройства подключались именно роторные пластины, то на схеме они обозначаются короткой дугой. Рядом указываются минимальный и максимальный пределы изменения емкости.
В обозначении подстроечных конденсаторов параллельные линии пересекаются отрезком с короткой черточкой, перпендикулярной одному из его концов.
Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.
Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Маркировка конденсаторов при выборе какого-либо элемента в схеме имеет большое значение. Она разнообразная и сложная по сравнению с резисторами. Специалист, который работает непосредственно с конденсаторами должен обязательно знать, как расшифровывается та или иная маркировка.
Таблица маркировки конденсаторов
Код | Пикофарады, (пф, pf) | Нанофарады, (нф, nf) | Микрофарады, (мкф, µf) |
109 | 1.0 | 0.001 | 0.000001 |
159 | 1.5 | 0.0015 | 0.000001 |
229 | 2.2 | 0.0022 | 0.000001 |
339 | 3.3 | 0.0033 | 0.000001 |
479 | 4.7 | 0.0047 | 0.000001 |
689 | 6.8 | 0.0068 | 0.000001 |
100* | 10 | 0.01 | 0.00001 |
150 | 15 | 0.015 | 0.000015 |
220 | 22 | 0.022 | 0.000022 |
330 | 33 | 0.033 | 0.000033 |
470 | 47 | 0.047 | 0.000047 |
680 | 68 | 0.068 | 0.000068 |
101 | 100 | 0. 1 | 0.0001 |
151 | 150 | 0.15 | 0.00015 |
221 | 220 | 0.22 | 0.00022 |
331 | 330 | 0.33 | 0.00033 |
471 | 470 | 0.47 | 0.00047 |
681 | 680 | 0.68 | 0.00068 |
102 | 1000 | 1.0 | 0.001 |
152 | 1500 | 1.5 | 0.0015 |
222 | 2200 | 2.2 | 0.0022 |
332 | 3300 | 3.3 | 0.0033 |
472 | 4700 | 4.7 | 0.0047 |
682 | 6800 | 6.8 | 0.0068 |
103 | 10000 | 10 | 0.01 |
153 | 15000 | 15 | 0.015 |
223 | 22000 | 22 | 0.022 |
333 | 33000 | 33 | 0.033 |
473 | 47000 | 47 | 0. 047 |
683 | 68000 | 68 | 0.008 |
104 | 100000 | 100 | 0.1 |
154 | 150000 | 150 | 0.15 |
224 | 220000 | 220 | 0.22 |
334 | 330000 | 330 | 0.33 |
474 | 470000 | 470 | 0.47 |
684 | 680000 | 680 | 0.68 |
105 | 1000000 | 1000 | 1.0 |
Маркировка твердотельных конденсаторов
По международному стандарту — начинают читать с единиц измерения. Фарады применяются для измерения ёмкости. Маркировку наносят на корпус самого устройства.
Иногда наносят маркеры, которые указывают на допустимые отклонения от нормы емкости самого конденсатора (указывается в процентах).
Порой, вместо них используется буква, которая обозначает то или иное значение самого допуска. Затем опреедляем номинальное напряжение. В том случае, если же корпус устройства имеет большие размеры, данный параметр обозначается цифрой, за которой далее следуют буквы. Максимально допустимое значение параметра указывается с помощью цифр. Если на корпусе нет никакой информации о допустимом значении напряжения, то использовать его можно только в цепях с низким напряжением. Если же устройство, согласно его параметрам, должно использоваться в цепях, где есть переменный ток, то применяться оно, соответсвенно, должно именно так и не иначе.
Устройство, которое работает с постоянным током, нельзя использовать в цепях с переменным.
Далее, определием полярность устройства: положительную и же отрицательную. Этот шаг очень важен. Если полюса будут определены неверно, велик риск возникновения короткого замыкания или даже взрыва самого устройства. Независимо от полярности, конденсатор можно будет подключить в том случае, если не указана какая-либо информация о плюсе и же минусе клемм.
Значение полярности могут наносить в виде специальных углублений, которые имеют форму кольца, или же в виде одноцветной полосы. В конденсаторах из алюминия, которые по своему внешнему виду похожи на банку из-под консервов, подобные обозначения говорят об отрицательной полярности. А, например, в танталовых конденсаторах, которые имеют небольшие габариты, все наоборот — полярность при данных обозначениях будет являться положительной. Цветовую маркировку не стоит учитывать лишь в том случае, если на самом конденсаторе будут указаны плюс и минус.
Маркировка конденсаторов: расшифровка
Значения первых двух цифр на корпусе, которые указывают на ёмкость устройства. Если конденсатор небольшого размера — маркировка осуществляется согласно стандарту EIA.
Цифры: обозначение
Когда в обозначении указаны только одна буква и две цифры, то цифры соответствуют параметру ёмкости конденсатора. По-своему нужно расшифровывать остальные маркировки, опираясь на ту или иную инструкцию. Множитель нуля — это третья по счету цифра. Расшифровку проводят в зависимости от того, какая цифра находится в конце. К первым двум цифрам необходимо добавить определённое количество нолей, если цифра входит в диапазон от ноля до шести. Если последней цифрой является число восемь, то в таком случае необходимо на 0,01 умножить две первые цифры. Когда значение ёмкости конденсатора станет известным, нужен будет определить то, в таких единицах измерения указана данная величина. Устройства из керамики, а также плёночные варианты являются мелкими. В них данный параметр измеряется в пикофарадах. Микрофарады используются для больших конденсаторов.
Буквы: их обозначение
Далее необходимо провести расшифровку букв, которые есть в маркировке. Если в первых двух символах есть буква, то в таком случае расшифровать ее можно несколькими методами. Если есть буква R, то она играет роль запятой, которая используется в дроби. Если есть буквы u, n, p — то оно тоже выполняют роль запятой в той же самой дроби.
Керамические конденсаторы: маркировка
Данные виды устройств имеют два контакта, а также круглую форму. На корпусе будут указаны как основные показатели, так и допуск отклонений от номы параметра ёмкости. Для этого используют специальную букву, которая находится после обозначения ёмкости в цифрах.
Если есть буква В, то отклонение в таком случае будет равняться +0,1 пФ, если буква С — то + 0,25 пФ и так далее. Только при значении параметра ёмкости менее 10пФ используются данные значения. Если параметр ёмкости больше указанного выше, то буквы — это процент допустимых отклонений.
Смешанная маркировка из цифр и букв
Маркировка может быть указана в виде буквы, затем цифры, а после снова буквы. Первый символ — это самая маленькая допустимая температура. Второй символ обозначает, наоборот, самую большую допустимую температуру. Третий символ — это ёмкость устройства, которая может изменяться в переделах ранее указанных значений температур.
Остальные маркировки
Значение напряжения можно узнать с помощью маркировки, которая находится на корпусе устройства. Символы говорят о допустимом максимальном значении параметра для того или иного конденсатора. Иногда маркировку упрощают. Например, используется только первая цифра. Напряжение меньше десяти вольт будет обозначаться, например, нулём, а этот же параметр, который будет иметь напряжение в пределах от десяти до девяноста девяти вольт — единицей и так далее. Другую маркировку имеют устройства, которые были выпущены намного раньше. Тогда нужно обратиться к справочнику во избежание совершения ошибок. У нас вы можете также узнать, как проверить конденсатор мультиметром на плате.
1. Основные понятия
Конденсатор представляет собой радиоэлемент, состоящий из двух металлических пластин (обкладок), разделенных диэлектриком, способный накапливать электрические заряды на обкладках, если к ним приложена разность потенциалов. В качестве диэлектрика применяют бумагу, слюду, стеклоэмаль, керамику, воздух и др. Конденсаторы применяют в схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсаций напряжений выпрямителей. В сочетании с катушками индуктивности они образуют резонансные контуры, широко используемые в БРЭА. В зависимости от назначения конденсаторы подразделяются на контурные, разделительные, блокировочные, фильтровые и подстроечные. По характеру изменения емкости и в зависимости от конструкции они делятся на три группы: постоянной емкости, полупеременные (подстроечные) и переменной емкости. Конденсаторы постоянной емкости в зависимости от конструкции, параметров и назначения в свою очередь, подразделяются на две группы: низкочастотные (бумажные, металлобумажные и электролитические) и высокочастотные (слюдяные, стеклоэмалевые, керамические, пленочные и металлопленочные).
Рисунок 1 Обозначение конденсаторов на схемах электрических принципиальных: а) постоянной емкости; б) подстроечный; в) переменный; г) электролитический. 2. Основные характеристики конденсаторов Конденсаторы независимо от группы и вида характеризуются параметрами: номинальным значением и допустимым отклонением емкости, рабочим напряжением и электрической прочностью, температурным коэффициентом емкости, допустимой реактивной мощностью и тангенсом угла потерь. Номинальное значение емкости конденсатора зависит от геометрических размеров пластин и вида диэлектрика. При изменениях температуры и влажности окружающей среды в процессе эксплуатации изменяются диэлектрические свойства материала и, следовательно, емкость. 3 Маркировка конденсаторов Сокращенные обозначения емкости конденсаторов читаются таким же образом, как и обозначения сопротивлений резисторов. При этом, буквенное обозначение процента отклонения номинального сопротивления или емкости, приведенное ниже, для этих элементов одинаковое.
Что бы не возникла путаница при расшифровке маркировок, следует учитывать, что в большинстве БРЭА процент отклонения резисторов и конденсаторов составляет ±5, ±10, реже ±20. Редко встречается ±2 и очень редко все что ниже этого значения.
Конденсаторы с номинальным значением от 100 пикофарад до 0,1микроофарад маркируются в нанофарадах буквой Н или латинской n, например:
Конденсаторы с номинальным значением от 0,1микрофарад и выше маркируются буквой М, например
К группе низкочастотных конденсаторов постоянной емкости относятся бумажные, металлобумажные, электролитические, а также некоторые пленочные конденсаторы. Перечисленные виды конденсаторов обладают большой емкостью и используются в качестве блокировочных, разделительных и фильтрующих элементов в цепях постоянного, переменного и пульсирующего токов. 5. Высокочастотные конденсаторы постоянной емкости К высокочастотным конденсаторам постоянной емкости относятся слюдяные, керамические, стеклокерамические и стеклянные. Их применяют в генераторах, усилителях радио- и промежуточной частот. Они обладают высокой стабильностью, малыми допустимыми отклонениями номинальной емкости (±2%), достаточной температуростойкостью, малыми габаритами и массой. Номинальная емкость высокочастотных конденсаторов бывает от единиц до сотен пикофарад, а предельная емкость некоторых из них может быть до 1 мкФ. Наиболее точные и стабильные конденсаторы используют как контурные, а остальные — как разделительные, фильтровые и термокомпенсирующие. 6. Подстроечные и переменные конденсаторы
Подстроенные конденсаторы (рисунок 2) применяются для точной подстройки емкостей колебательных контуров. Обычно эти конденсаторы включаются параллельно основным контурным конденсаторам большой емкости. Конструктивно они состоят из двух керамических элементов: неподвижного основания (статора) и подвижного диска (ротора). Рисунок 2. Подстроечные конденсаторы На ротор и статор методом вжигания нанесены тончайшие серебряные обкладки в виде секторов. Диэлектриком между обкладками служит керамический материал ротора. Ротор жестко закреплен на оси. При вращении ротора изменяется взаимное положение обкладок статора и ротора, что приводит к изменению емкости конденсатора. Когда сектор или капля припоя на роторе расположены против вывода на статоре, то емкость будет максимальной, а при повороте на 180° относительно указанного положения — минимальной. Конденсаторы переменной емкости (КПЕ) применяются в радиоприемных устройствах для плавной настройки колебательных контуров в диапазонах длинных, средних, коротких и ультракоротких волн.В зависимости от характера изменения емкости с поворотом оси ротора на угол 1° различают следующие виды конденсаторов: прямоемкостный — с линейной зависимостью между углом поворота и емкостью; прямоволновый — с линейной зависимостью между углом поворота и резонансной длиной волны; прямочастотный — с линейной зависимостью между углом поворота ротора и резонансной частотой; логарифмический (средневолновый) — с постоянным по всей шкале изменением емкости, приходящейся на 1° угла поворота ротора.
Для конденсаторов постоянной емкости характерны такие неисправности, как пробой диэлектрика, увеличение тока утечки из-за ухудшения изоляции, изменение номинального значения емкости и обрыв выводов. Определить неисправность конденсатора по внешнему виду очень трудно. Сопротивление исправных конденсаторов (за исключением электролитических) составляет десятки и сотни мегом. Измерить его у конденсаторов емкостью до 0,05 мкФ с помощью омметра практически невозможно. Неисправность конденсаторов переменной емкости с воздушным диэлектриком заключается в замыкании между роторными и статорными пластинами. При работе радиоприемника такой дефект выражается в виде шорохов, треска или пропадания приема радиостанций в некоторых точках шкалы. При параллельном соединении емкости конденсаторов складываются: В обоих случаях рабочие напряжения конденсаторов должны быть не ниже максимального действующего напряжения в данной цепи. Литература: С.С. Боровик, М.А. Бродский. «Ремонт и регулировка бытовой радиоэлектронной аппаратуры». Минск; «Вышэйшая школа», 1989г.
|
Емкость конденсатора какая буква — Строительство домов и бань
Маркировка конденсаторов
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Маркировка конденсаторов
Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.
Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Как расшифровать маркировку конденсатора и узнать его ёмкость?
Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.
С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.
Зачем нужна маркировка?
Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Номинальное напряжение
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Дата выпуска
Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.
“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).
4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет. ”
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
Год | Код |
---|---|
1990 | A |
1991 | B |
1992 | C |
1993 | D |
1994 | E |
1995 | F |
1996 | H |
1997 | I |
1998 | K |
1999 | L |
2000 | M |
2001 | N |
2002 | P |
2003 | R |
2004 | S |
2005 | T |
2006 | U |
2007 | V |
2008 | W |
2009 | X |
2010 | A |
2011 | B |
2012 | C |
2013 | D |
2014 | E |
2015 | F |
2016 | H |
2017 | I |
2018 | K |
2019 | L |
Расположение маркировки на корпусе
Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.
По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.
Цветовая маркировка отечественных радиоэлементов
При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.
На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.
Приводим для вас пример как обозначается тот или иной элемент — емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Цветовая маркировка импортных конденсаторов
Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.
Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.
Маркировка smd компонентов
Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.
Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.
Как обозначаются конденсаторы на схеме?
Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.
Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.
Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.
Единицы измерения
e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.
- S – площадь одной из обкладок(в метрах).
- d – расстояние между обкладками(в метрах).
- C – величина емкости вфарадах.
Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.
1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:
- 1 Микрофарада – одна миллионная часть фарады. 10 -6
- 1 нанофарада – одна миллиардная часть фарады. 10 -9
- 1 пикофарада -10 -12 фарады.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0. 15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Маркировка четырьмя цифрами
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.
Буквенно-цифровая маркировка
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.
Планарные керамические конденсаторы
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Планарные электролитические конденсаторы
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.
Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)
Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.
Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.
Цифро-буквенное обозначение
Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».
Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:
- p – пикофарады,
- n – нанофарады
- m – микрофарады.
При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».
Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:
Небольшие замечания и советы по работе с конденсаторами
Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.
Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).
Заключение
В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.
Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Как определить емкость конденсатора?
Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.
Существуют разные способы определения ёмкости:
- по кодовой или цветной маркировке деталей;
- с помощью измерительных приборов;
- с использованием формулы.
Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.
Рис. 1. Измерение ёмкости с помощью измерителя C и ESRС использованием мультиметра и формул
Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.
Режим «Сх» в мультиметреМенее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).
Рис. 2. Схема подключения конденсатораАлгоритм измерения следующий:
- Измерьте напряжение источника питания щупами контактов измерительного прибора.
- Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
- Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
- Замерьте напряжение образованной цепи с помощью мультиметра.
- Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
- Вычислите 95% от полученного значения. Запишите показатели измерений.
- Возьмите секундомер и включите его одновременно с убиранием закоротки.
- Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
- По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.
Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.
Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f – частота тока, а Xc – ёмкостное сопротивление.
Осциллографом
С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = UR / UC* ( 1 / 2*π*f*R ).
Рис. 4. Простая схемаАлгоритм вычисления простой:
- Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
- Измерьте амплитуды напряжений на конденсаторе и на резисторе.
- Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
- Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.
При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r4 / Cx = r2 / C.
Рисунок 5. Мостовая схемаГальванометром
При наличии баллистического гальванометра также можно определить ёмкость конденсатора. Для этого используют формулу:
C = α * Cq / U , где α – угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.
Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.
Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.
Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.
По маркировке
Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:
- миллифарады (mF, мФ ) = 10 -3 Ф;
- микрофарады (µF, uF, mF, мкФ) = 10 -3 мФ = 10 -6 Ф;
- нанофарады (nF, нФ) = 10 -3 мкФ =10 -9 Ф;
- пикофарады (pF, mmF, uuF) = 1 пФ = 10 -3 нФ = 10 -12 Ф.
Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).
Рис. 6. Маркировка крупных конденсаторовОбратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.
Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».
На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.
По стандарту EIA:
- Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
- Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
- Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 10 0 =1; 10 1 = 10; 10 2 = 100 и т. д. до 10 6 .
Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10 -3 ; 8 = 10 -2 ; 9 = 10 -1 .
- 256 обозначает: 25× 10 5 = 2500 000 пФ = 2,5 мкФ;
- 507 обозначает: 50 × 10 -3 = 50 000 пФ = 0, 05 мкФ.
Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 10 3 = 25 000 пФ = 0,025 мкФ.
В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.
Приводим полный список символов:
- B = ± 0,1 пФ;
- C = ± 0,25 пФ;
- D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
- F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
- G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
- J = ± 5%.
- K = ± 10%.
- M = ± 20%.
- Z = от –20% до + 80%.
Изделия с кодовой маркировкой изображены на рис. 7.
Рис. 7. Пример кодовой маркировкиЕсли в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.
Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.
Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.
Цветовая маркировка
Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):
Рис. 8. Цветовая маркировкаЗапомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.
Box77 › Блог › Основы автоэлектрики. Часть5. Электрическая ёмкость и конденсаторы
Сегодня мы коснёмся темы накопителей заряда, именуемых конденсаторами.
Конденсатор — пассивный электронный компонент, состоящий из двух полюсов, накапливающий заряд.
Электрическая ёмкость — это отношение электрического заряда к разности потенциалов между полюсами конденсатора (или иного другого электронного компонента). Единица измерения — Фарад и его производные (пикоФарад, наноФарад, микроФарад). Обозначается ёмкость латинской буквой С.
Мы уже обсуждали, что ток — это есть скорость перемещения заряда, а напряжение — это разность потенциалов. Мы всегда удобно проводить некие параллели, поэтому напряжение ассоциируется с разницей давления в жидкости или газе, а ток — с объёмной скоростью жидкости или газа. Поэтому конденсатор можно представить себе как некий сосуд, который наполняют жидкостью или газом давлением, которое выше чем в сосуде. Наполнение сосуда будет происходить до тех пор, пока давление подачи не уровняется с давлением в сосуде. Так и работает конденсатор: по мере наполнения зарядом растет напряжение. Чем ближе будет напряжение в конденсаторе к напряжению заряжающего источника, тем меньше будет скорость заряда. Это аналогично тому, как наполняется сосуд. Если мы заполнили сосуд, затем открыли кран у него — ток начинает утекать, тем самым снижая количество заряда и понижая напряжение.
Если рассматривать провод или резистор как трубу, а конденсатор — как сосуд, многое становится понятно на интуитивном уровне. Ну, и проще понять реактивные сопротивления, о которых мы говорили ранее. Но надо понимать, что сосуд — это сосуд, а конденсатор — это конденсатор=)
Итак, в простейшем виде конденсатор представляет собой две параллельные пластины, между которыми находится некий диэлектрик. Самый простой диэлектрик — это воздух. Конечно, сегодня воздушные конденсаторы уже и не встретить, но я ещё несколько лет назад использовал переменный воздушный конденсатор для сборки радиоприёмника=) Правда, в этом конденсаторе пластин было гораздо больше двух, и выглядел примерно вот так:
Вращая ручку, можно было изменять значение электрической ёмкости.
На, а вот так обычно представляют простейший конденсатор:
В случае такого конденсатора ёмкость вычисляется следующим образом:
Сегодня конденсаторов огромное множество. Наиболее популярные — керамические, электролитические и танталовые. Отличие последних двух в том, что они полярны, и крайне не рекомендую включать их в схему обратной полярностью=)
Основными параметрами конденсатора являются:
— Электрическая ёмкость,
— Максимально допустимое напряжение на его обкладках (немаловажный параметр, при подачи бОльшего напряжения можно увидеть много весёлых, но крайне не безопасных эффектов:-), особенно на конденсаторах большой ёмкости),
— Полярность (т.е. полярный или неполярный),
— Допустимые отклонения от номинального значения ёмкости (обычно в процентах),
— Диапазон рабочих температур,
— Тип корпуса.
Полярность, допустимые отклонения и диапазон температур напрямую зависят от применяемого диэлектрика. Как правило, конденсаторы большой ёмкости — электролитические, т.е. в качестве диэлектрика — электролит. А электролитические конденсаторы по физике процессов сильно напоминают всем знакомые свинцово-кислотные аккумуляторы и аналогично им имеют полярность, что приводит к некоторым ограничениям. Кроме того, они имеют свойство высыхать. И именно они являются частой причиной выхода из строя бытовой и промышленной электроники, в результате чего страдают и иные компоненты. Выглядят электролитические конденсаторы так:
Танталовые конденсаторы были некогда призваны заменить электролитические, но и те имеют ряд ограничений и так и не достигли приличных ёмкостей. Кроме того, взрываются они не менее весело=) Выглядят они вот так:
Спешу обрадовать, что развитие электроники не стоит на месте и сегодня вполне можно приобрести обычные керамические конденсаторы с ёмкостью, сравнимой с танталовыми, а некоторые достигают ёмкости 330 мкФ при допустимом напряжении в 4 В. И это всё в малом чип-корпусе 1206!
Кстати, размеры основных корпусов чип-конденсаторов:
Ну, и не все конденсаторы в чипах, поэтому существуют и выводные конденсаторы:
Причина такому прорыву — отличный диэлектрик под кодовым названием X5R. 330 мкФ при 4В — не густо конечно. Но на большие напряжения ёмкости также достигли впечатляющих значений — на те же 16В найти 100 мкФ не проблема, на 25 В — на 22 мкФ, на 35-50 В пока не больше 10 мкФ. Тем не менее, во многих и многих приложениях электроники появляется возможность отказаться от электролитов и танталов.
Вернемся к основным свойствам. Если рассматривать глубже, то параметров конденсаторов гораздо больше:
— Температурная зависимость параметров,
— Входное сопротивление (ESR),
— Внутреннее сопротивление,
— Время наработки на отказ (очень интересный параметр, которому реально посвятить целую статью),
— многие другие.
Расписывать здесь все детали не вижу смысла, так эти параметры важны тем, кто глубоко занимается электроникой. Тем не менее счел важным упомянуть о них. Кому захочется капнуть — можно порыться в сети.
Помимо указанных выше конденсаторов следует немного сказать о плёночных конденсаторах. Выглядят они вот так:
Их основное отличие от предыдущих — это поражающая надежность и способность работать в силовых цепях, особенно в цепях с высоким напряжением.
Наверное, сегодня краткого обзора будет достаточно. О применении конденсаторов поговорим в следующих статьях.
В прошлой статье писал, но и здесь напомню, что конденсаторы на схемах обозначаются так:
На сим всё;)
Продолжение следует=)
___________________________________________________________________________
Емкость конденсаторов: определение, формулы, примеры.
Определение 1Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.
Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:
C=qφ1-φ2=qU.
Значением φ1-φ2=U обозначают разность потенциалов, называемую напряжением, то есть U. По определению емкость положительна. Она зависит только от размерностей обкладок конденсатора их взаиморасположения и диэлектрика. Ее форма и место должны минимизировать воздействие внешнего поля на внутреннее. Силовые линии конденсатора начинаются на проводнике с положительным зарядом, а заканчиваются с отрицательным. Конденсатор может являться проводником, помещенным в полость, окруженным замкнутой оболочкой.
Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.
Плоский конденсатор
Определение 2Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1.
Формула для расчета электроемкости записывается как
C=εε0Sd, где S является площадью обкладки, d – расстоянием между ними, ε — диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.
Рисунок 1
При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется di, вычисление диэлектрической проницаемости этого слоя εi выполняется, исходя из формулы:
C=ε0Sd1ε1+d2ε2+…+dNεN.
Сферический конденсатор
Определение 3Когда проводник имеет форму шара или сферы, тогда внешняя замкнутая оболочка является концентрической сферой, это означает, что конденсатор сферический.
Он состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком, как показано на рисунке 2. Емкость рассчитывается по формуле:
C=4πεε0R1R2R2-R1, где R1 и R2 являются радиусами обкладок.
Рисунок 2
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать заданиеЦилиндрический конденсатор
Емкость цилиндрического конденсатора равняется:
C=2πεε0llnR2R1, где l — высота цилиндров, R1 и R2 — радиусы обкладок. Данный вид конденсатора имеет две соосные поверхности проводящих цилиндрических поверхности, как показано на рисунке 3.
Рисунок 3
Определение 4Важной характеристикой конденсаторов считается пробивное напряжение — напряжение, при котором происходит электрический разряд через слой диэлектрика.
Umax находится от зависимости от толщины слоя и свойств диэлектрика, конфигурации конденсатора.
Электроемкость плоского конденсатора. Формулы
Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы Ci, где Ci- это емкость конденсатора с номером i:
C=∑i=1NCi.
При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:
Пример 1Произвести вычисление емкости плоского конденсатора при известной площади обкладок
1 см2 с расстоянием между ними 1 мм. Пространство между обкладками находится в вакууме.
Решение
Чтобы рассчитать электроемкость конденсатора, применяется формула:
C=εε0Sd.
Значения:
ε=1, ε0=8,85·10-12 Фм;S=1 см2=10-4 м2;d=1 мм=10-3 м.
Подставим числовые выражения и вычислим:
C=8,85·10-12·10-410-3=8,85·10-13 (Ф).
Ответ: C≈0,9 пФ.
Пример 2Найти напряженность электростатического поля у сферического конденсатора на расстоянии x=1 см=10-2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R1=1 см=10-2 м, внешнем – R2=3 см=3·10-2 м. Значение напряжения — 103 В.
Решение
Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:
E=14πεε0qr2, где q обозначают заряд внутренней сферы, r=R1+x — расстояние от центра сферы.
Нахождение заряда предполагает применение определения емкости конденсатора С:
q=CU.
Для сферического конденсатора предусмотрена формула вида
C=4πεε0R1R2R2-R1 с радиусами обкладок R1 и R2.
Производим подстановку выражений для получения искомой напряженности:
E=14πεε0U(x+R1)24πεε0R1R2R2-R1=U(x+R1)2R1R2R2-R1.
Данные представлены в системе СИ, поэтому достаточно заменить буквы числовыми выражениями:
E=103(1+1)2·10-4·10-2·3·10-23·10-2-10-2=3·10-18·10-6=3,45·104 Вм.
Ответ: E=3,45·104 Вм.
Конденсатор 145j400v какая емкость
Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.
Как маркируются большие конденсаторы
Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.
Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.
В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.
При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.
Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Расшифровка маркировки конденсаторов
Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.
Обозначение цифр
Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.
Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.
Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.
После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.
Обозначение букв
После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.
При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.
Маркировка керамических конденсаторов
Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.
Смешанная буквенно-цифровая маркировка
Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.
Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.
Прочие маркировки
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.
Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
1. Маркировка тремя цифрами.
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.
3. Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы.
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
буква | e | G | J | A | C | D | E | V | H (T для танталовых) |
напряжение | 2,5 В | 4 В | 6,3 В | 10 В | 16 В | 20 В | 25 В | 35 В | 50 В |
Кодовая маркировка, дополнение
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Код | Емкость[пФ] | Емкость[нФ] | Емкость[мкФ] |
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
С. Маркировка емкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Код | Емкость [мкФ] |
R1 | 0,1 |
R47 | 0,47 |
1 | 1,0 |
4R7 | 4,7 |
10 | 10 |
100 | 100 |
D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Код | Емкость |
p10 | 0,1 пФ |
Ip5 | 1,5 пФ |
332p | 332 пФ |
1НО или 1nО | 1,0 нФ |
15Н или 15n | 15 нФ |
33h3 или 33n2 | 33,2 нФ |
590H или 590n | 590 нФ |
m15 | 0,15мкФ |
1m5 | 1,5 мкФ |
33m2 | 33,2 мкФ |
330m | 330 мкФ |
1mO | 1 мФ или 1000 мкФ |
10m | 10 мФ |
Кодовая маркировка электролетических конденсаторов для поверхностного монтажа
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования
А. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Код | Емкость [мкФ] | Напряжение [В] |
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Правила маркировки конденсаторов постоянной ёмкости
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.
Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.
Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора. Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке, это допустимое рабочее напряжение. Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n.
Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) – 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте здесь.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C – 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0. +100 | P | |
-10. +30 | Q | |
± 22 | S | |
-0. +50 | T | |
-0. +75 | U | Э |
-10. +100 | W | Ю |
-20. +5 | Y | Б |
-20. +80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Как читать код конденсатора
Просмотры сообщений: 12 325
Загрузить: Руководство по электронике (которое мы даем нашим клиентам)
Полезные ссылки:
Как читать конденсатор:
Конденсаторы — это элементы схемы, которые реагируют на быстро меняющиеся сигналы, а не на медленно меняющиеся или статические сигналы. Конденсаторы могут накапливать энергию сильных быстро меняющихся сигналов и возвращать эту энергию в схему по желанию.Чаще всего конденсаторы используются для поглощения шума, который по определению является быстро меняющимся сигналом, и отводят его от интересующего сигнала. Для улавливания разных типов шума необходимы конденсаторы разной емкости. Воспользуйтесь этими советами, чтобы научиться читать обозначения конденсаторов и определять номинал конденсатора.
ШАГ 1Разберитесь в единицах измерения, используемых для конденсаторов. Базовая единица измерения емкости — Фарад (Ф).Это значение слишком велико для использования в цепи. Меньшие номиналы емкости используются в электронных схемах.
- Считать мкФ как мкФ. 1 мкФ составляет 1 умножить на 10 до -6 Фарада в степени.
- Считать пФ как пикоФарад. 1 пикофарад равен 1 умножению на 10 до -12 Фарада степени.
Считайте значение непосредственно на конденсаторах большего размера. Если поверхность корпуса достаточно большая, значение будет напечатано прямо на конденсаторе.Например, 47 мкФ означает 47 мкФ.
ШАГ 3:Считайте емкость меньших по размеру конденсаторов как два или три числа. Обозначения мкФ или пФ не отображаются из-за малых размеров корпуса конденсатора.
- Считайте двузначные числа в пикофарадах (пФ). Например, 47 будет читаться как 47 пФ.
- Считайте трехзначные числа как значение базовой емкости в пикофарадах и множитель. Первые две цифры указывают значение базового конденсатора в пикофарадах.Третья цифра будет указывать на множитель, который будет использоваться на базовом числе, чтобы найти фактическое значение конденсатора.
- Используйте третью цифру от 0 до 5, чтобы поместить соответствующее количество нулей после базового значения. Третья цифра 8 означает умножение базового значения на 0,01. Третья цифра 9 означает умножение базового значения на 0,1. Например, 472 будет обозначать конденсатор 4700 пФ, а 479 — конденсатор 4,7 пФ.
- Цифра-Символ-Цифра. Некоторые малые конденсаторы имеют коды типа 1n0.Цифры — это значения до и после десятичной точки, а символ указывает размер; поэтому в приведенном примере значение 1,0 нФ (нано-Фарад).
Ищите буквенный код. Некоторые конденсаторы обозначаются трехзначным кодом, за которым следует буква. Эта буква обозначает допуск конденсатора, означающий, насколько близким фактическое значение конденсатора можно ожидать к указанному значению конденсатора.Допуски указаны ниже.
- Считайте B как 0,10 процента.
- Считайте C как 0,25 процента.
- Считать D как 0,5 процента.
- Считайте E как 0,5 процента. Это дублирование кода D.
- Считайте F как 1 процент.
- Считайте G как 2 процента.
- Считайте H как 3 процента.
- Считайте J как 5 процентов.
- Считайте K как 10 процентов.
- Считайте M как 20 процентов.
- Считайте N как 0,05 процента.
- Считайте P как от плюс 100 процентов до минус 0 процентов.
- Считайте Z как от плюс 80 процентов до минус 20 процентов.
КОНДЕНСАТОР ЭЛЕКТРОЛИТИЧЕСКИЙ
Электролитический конденсатор — это поляризованный конденсатор, в котором используется электролит для достижения большей емкости, чем у конденсаторов других типов.
Для сквозных конденсаторов значение емкости, а также максимальное номинальное напряжение указаны на корпусе. Конденсатор, на котором напечатано «4,7 мкФ 25 В», имеет номинальное значение емкости 4.7 мкФ и максимальное номинальное напряжение 25 В, которое никогда не должно превышаться.
В случае электролитических конденсаторов SMD (поверхностного монтажа) существует два основных типа маркировки. В первой четко указано значение в микрофарадах и рабочее напряжение. Например, при таком подходе конденсатор 4,7 мкФ с рабочим напряжением 25 В будет иметь маркировку «4,7 25 В». В другой системе маркировки за буквой следуют три цифры. Буква представляет номинальное напряжение в соответствии с таблицей ниже.Первые два числа представляют собой значение в пикофарадах, а третье число — это количество нулей, добавляемых к первым двум. Например, конденсатор 4,7 мкФ с номинальным напряжением 25 В будет иметь маркировку E476. Это соответствует 47000000 пФ = 47000 нФ = 47 мкФ.
О конденсаторах:
»Электроника
Конденсаторыимеют большое количество маркировок и кодов, указывающих их номинал, допуски и другие важные параметры.
Capacitor Tutorial:
Использование конденсатора
Типы конденсаторов
Электролитический конденсатор
Керамический конденсатор
Танталовый конденсатор
Пленочные конденсаторы
Серебряный слюдяной конденсатор
Супер конденсатор
Конденсатор SMD
Технические характеристики и параметры
Как купить конденсаторы — подсказки и подсказки
Коды и маркировка конденсаторов
Таблица преобразования
Конденсаторы имеют различные коды маркировки. Эти обозначения и коды указывают на различные свойства конденсаторов, и важно понимать их, чтобы выбрать требуемый тип.
Сегодня большинство конденсаторов маркируются буквенно-цифровыми кодами, но можно встретить более старые конденсаторы с цветовыми кодами. Эти цветовые коды конденсаторов встречаются реже, чем в предыдущие годы, но некоторые из них все еще можно увидеть.
Коды маркировки конденсаторов различаются по своему формату в зависимости от того, является ли компонент устройством для поверхностного монтажа или это устройство с выводами, а также от диэлектрика конденсатора. Размер также играет важную роль в определении того, как маркируется конденсатор — небольшие компоненты должны использовать сокращенную систему кодирования, тогда как более крупные конденсаторы, такие как алюминиевые электролитические разновидности, могут полностью указывать соответствующие параметры на корпусе.
Некоторые системы маркировки были стандартизированы EIA — Альянсом электронной промышленности, и они обеспечивают единообразие для всей отрасли.
Разные типы конденсаторов имеют разные коды и схемы маркировкиКоды маркировки конденсаторов: основы
Конденсаторы маркируются разными способами. Существует ряд основных систем маркировки, которые используются, и разные типы конденсаторов и разные производители используют их по мере необходимости и лучше всего подходят для конкретного продукта.
Примечание: , что в некоторых случаях аббревиатура MFD используется для обозначения мкФ, а не мегафарада.
Некоторые из основных схем кодирования для различных параметров приведены ниже:
Коды температурного коэффициента
Часто бывает необходимо маркировать конденсатор маркировкой или кодом, который указывает температурный коэффициент конденсатора. Эти коды конденсаторов стандартизированы EIA, но также могут использоваться некоторые другие общепринятые промышленные коды.Эти коды обычно используются для керамических и других пленочных конденсаторов.
Температурный коэффициент указан в миллионных долях на градус Цельсия; PPM / ° C.
Общие обозначения температурного коэффициента | ||
---|---|---|
EIA | Промышленность | Температурный коэффициент (ppm / ° C) |
C0G | NP0 | 0 |
S1G | N033 | -33 |
U1G | N075 | -75 |
P2G | N150 | -150 |
S2H | N330 | -330 |
U2J | N750 | -750 |
P3K | N1500 | -1500 |
Маркировка полярности конденсатора
Важной маркировкой поляризованных конденсаторов является полярность.При установке этих конденсаторов в цепи необходимо соблюдать особую осторожность, чтобы обеспечить соблюдение полярности, в противном случае это может привести к повреждению компонента и, что более важно, остальной части печатной платы. Поляризованные конденсаторы фактически означают алюминиевые электролитические и танталовые типы.
Многие современные конденсаторы помечены значками + и -, что позволяет легко определить полярность конденсатора.
Другой формат маркировки полярности электролитических конденсаторов — использование полосы на компоненте.На электролитическом конденсаторе полоса указывает на отрицательный вывод .
Маркировка на электролитическом конденсаторе — полоса указывает на отрицательное соединение.В этом случае на маркировочной полосе также имеется отрицательный знак для усиления сообщения.
Если конденсатор представляет собой осевую версию с выводами на обоих концах корпуса, полоса маркировки полярности может сопровождаться стрелкой, указывающей на отрицательный вывод.
Для танталовых конденсаторов с выводами маркировка полярности указывает на положительный вывод.Знак «+» находится рядом с положительным выводом. Если новый, можно использовать дополнительную полярность, потому что можно увидеть, что положительный вывод длиннее отрицательного.
Маркировка танталовых конденсаторов с выводамиМаркировка различных типов конденсаторов
Многие конденсаторы большего размера, такие как электролитические конденсаторы, дисковая керамика и многие пленочные конденсаторы, имеют достаточно большие размеры, чтобы их маркировка была нанесена на корпус.
На конденсаторах большего размера достаточно места для маркировки значения, допуска, рабочего напряжения и часто других данных, таких как пульсирующее напряжение.
Существует ряд тонких различий в кодах конденсаторов и маркировке, используемых для разных типов свинцовых конденсаторов:
- Маркировка электролитических конденсаторов: Многие свинцовые конденсаторы довольно большие, хотя некоторые меньше. Таким образом, часто можно предоставить полную стоимость и подробности в не сокращенном формате. Однако на многих электролитических конденсаторах меньшего размера необходимо иметь кодовую маркировку, поскольку для них недостаточно места.
Типичная маркировка может соответствовать формату 22 мкФ 50 В. Значение и рабочее напряжение налицо. Полярность отмечена полосой для обозначения отрицательного вывода.
- Маркировка танталовых конденсаторов с выводами: Танталовые конденсаторы с выводами обычно имеют значения, указанные в микрофарадах, мкФ.
Обычно маркировка на конденсаторе может давать цифры вроде 22 и 6В. Это указывает на конденсатор 22 мкФ с максимальным напряжением 6 В.
- Маркировка керамических конденсаторов: Керамические конденсаторы обычно меньше по размеру, чем электролитические конденсаторы, и поэтому маркировка должна быть более лаконичной.Могут использоваться самые разные схемы. Часто значение может быть выражено в пикофарадах. Иногда можно увидеть такие цифры, как 10 нФ, и это указывает на конденсатор 10 нФ. Аналогично n51 указывает на конденсатор 0,51 нФ или 510 пФ и т. Д. .
- Коды керамических конденсаторов SMD: Конденсаторы для поверхностного монтажа часто бывают очень маленькими и не имеют места для маркировки. Во время производства конденсаторы загружаются в машину для захвата и установки, и нет необходимости в какой-либо маркировке.
- Маркировка танталовых конденсаторов SMD: Самая простая система маркировки танталовых конденсаторов SMD — это то, где значение указывается напрямую.Маркировка танталовых конденсаторов SMD
Также обратите внимание на полоску, указывающую на соединение + ve. В случаях, когда есть место для маркировки или кода, часто используется простой трехзначный формат, подобный показанному ниже, особенно для конденсаторов, таких как керамические форматы. Для примера кода конденсатора, показанного на диаграмме, две цифры 47 обозначают значащие цифры, а 5 указывает множитель 5, то есть 100000, то есть 4,7 мкФ. Маркировка танталовых конденсаторов SMDВ некоторых случаях единственная маркировка на конденсаторе может быть полосой на одном конце, указывающей полярность.Это особенно важно, потому что необходимо иметь возможность проверять полярность и иметь маркировку для определения полярности конденсатора. Особенно важно иметь маркировку полярности конденсатора, поскольку обратное смещение танталовых конденсаторов приводит к их разрушению.
В общем, очень легко определить, что означают различные коды конденсаторов и схемы маркировки. Хотя кажется, что существует много различных схем кодирования, они обычно очень очевидны, и если не их значение, вскоре раскрывается при обращении к руководству по кодированию.
Другие электронные компоненты: Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
FET
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты». . .
Различная маркировка малых конденсаторов? — Обмен электротехнического стека
Обычно на большинстве крышек есть две этикетки.
Первое — это значение, которое записывается:
<Цифра> <Цифра> <Экспоненциальное представление>
Обычно оно выражается в пикофарадах.
Второй — TempCo, или температурный коэффициент. Есть две общие системы спецификаций, а именно EIA Class 1 и Class 2. В большинстве случаев это загадочная вторая метка. Обычно пишется:
<Буква> <Число> <Буква>
(хотя есть несколько вариантов)
Есть несколько распространенных tempcos — NP0 / C0G, X7R, X5R, Y5V, Z5U
Тантал и керамика большего размера часто также имеют напряжения:
<номер напряжения> <+ или v>
Следовательно:
104 K5K (малый)
Значение 10e4, или 100000 пф / 0.1 мкФ. Tempco не является стандартным, может быть определенным производителем / расширенным диапазоном.10 (прямоугольная коробка, перпендикулярный правый верхний угол) 35+ (танталовый колпачок, более крупный вариант последнего)
Чтобы быть более конкретным, нужна картинка, скорее всего, это конденсатор на 35 В от 35+.154 C1K (что такое C1K, некоторые другие обозначения в Википедии?)
Емкость составляет 15e4, или 150 000 пФ / 0,15 мкФ. Похоже, это диэлектрик класса 1 от C1K. Это большая кепка? темпко очень хорошо .Orange Ceramic 333 K5X (что такое римская цифра 5X? X?)
33e3, или 33 000 пФ / 33 нФ. Tempco либо указано производителем, либо неправильно прочитано.Коричневая круглая щель 10n (без другой маркировки, какова рабочая температура?) (Диаметр: 7,5 мм)
10n, скорее всего, означает 10 нФ или 10 000 пФ. Если керамический, то наверное 50в. Скорее всего дешевая деталь, если не указано напряжение.27J 100V (что такое 27J?) (Диаметр: 4.9мм, черная точка на голове)
Напряжение само собой разумеющееся. J — множитель, и я думаю, что есть стандарт для буквенных множителей, но я не помню, где его найти.Синий квадрат с щелью (треугольник) 104K X7R50 (Что такое треугольник? X7R50? Рабочее напряжение?) (Сторона = 4,9 мм)
10e4 — это значение — 100000 пФ / 0,1 мкФ Tempco — это X7R. 50 — это, вероятно, номинальное напряжение.104 (сторона = 2,6 мм, рабочее напряжение? Допуск?)
10e4 — 100000 пФ / 0.1 мкФ. Напряжение неизвестно
Это своего рода предположение. В любом случае, он должен показать, как это работает. Старые детали могут сильно отличаться, и это всегда только ориентир. Лучше всего найти настоящую таблицу данных крышки.
Многие детали имеют необычные температуры. Это автомобильная / сверхмощная деталь, которая содержит эти компоненты?
Типы конденсаторов: работа и их применение
В любой электронной или электрической цепи конденсатор играет ключевую роль.Таким образом, каждый день может производиться от тысяч до миллионов конденсаторов различных типов. У каждого типа конденсатора есть свои преимущества, недостатки, функции и области применения. Таким образом, очень важно знать о каждом типе конденсатора при выборе для любого приложения. Эти конденсаторы варьируются от малых до больших, включая различные характеристики в зависимости от типа, что делает их уникальными. Маленькие и слабые конденсаторы можно найти в радиосхемах, тогда как большие конденсаторы используются в сглаживающих цепях.Конструирование небольших конденсаторов может быть выполнено с использованием керамических материалов, запечатанных эпоксидной смолой, тогда как конденсаторы промышленного назначения спроектированы с металлической фольгой с использованием тонких листов майлара, иначе пропитанных парафином бумаги.
Типы конденсаторов и их использование
Конденсатор является одним из наиболее часто используемых компонентов в проектировании электронных схем. Он играет важную роль во многих встроенных приложениях. Доступен с разными рейтингами. Он состоит из двух металлических пластин , разделенных непроводящим веществом, или диэлектриком .Часто это хранилища аналоговых сигналов и цифровых данных.
Сравнение конденсаторов различных типов обычно проводится в отношении диэлектрика, используемого между пластинами. Некоторые конденсаторы выглядят как трубки, небольшие конденсаторы часто изготавливаются из керамических материалов, а затем погружаются в эпоксидную смолу для их герметизации. Итак, вот несколько наиболее распространенных типов доступных конденсаторов. Посмотрим на них.
Диэлектрический конденсатор
Как правило, эти типы конденсаторов относятся к переменному типу, для настройки которых требуется постоянное изменение емкости передатчиков, приемников и транзисторных радиоприемников.Различные типы диэлектриков могут быть изготовлены из нескольких пластин и с воздушным зазором. Эти конденсаторы имеют набор фиксированных и подвижных пластин, которые перемещаются между фиксированными пластинами.
Положение подвижной пластины по сравнению с неподвижными пластинами определяет приблизительное значение емкости. В общем, емкость максимальна, когда два набора пластин полностью соединены. Настроечный конденсатор с высокой емкостью включает в себя довольно большие промежутки, в противном случае воздушные зазоры между двумя пластинами с пробивным напряжением, достигающим тысячи вольт.
Слюдяной конденсатор
Конденсатор, в котором в качестве диэлектрического материала используется слюда, известен как слюдяной конденсатор. Эти конденсаторы доступны в двух типах: зажимные и серебряные. Зажимной тип сейчас считается устаревшим из-за его более низких характеристик, но вместо него используется серебряный тип.
Эти конденсаторы изготавливаются путем размещения листов слюды с металлическим покрытием на обеих сторонах. После этого эта конструкция покрывается эпоксидной смолой для защиты от окружающей среды.Как правило, эти конденсаторы используются, когда требуются стабильные конденсаторы с относительно небольшими номиналами.
Минералы слюды чрезвычайно постоянны химически, механически и электрически из-за ее точной кристаллической структуры, которая включает типичные слои. Таким образом, возможно изготовление тонких листов толщиной от 0,025 до 0,125 мм.
Наиболее часто используемые слюда — флогопит и мусковит. В этом мусковит обладает хорошими электрическими свойствами, а второй — жаростойкостью.Слюда исследуется в Индии, Южной Америке и Центральной Африке. Большая разница в составе сырья приводит к высокой стоимости, необходимой для экспертизы и категоризации. Слюда не реагирует на кислоты, воду и масляные растворители.
Перейдите по этой ссылке, чтобы узнать больше о слюдяном конденсаторе
Поляризованный конденсатор
Конденсатор с определенной полярностью, такой как положительная и отрицательная, называется поляризованным конденсатором. Всякий раз, когда эти конденсаторы используются в цепях, мы должны проверять, что они соединены с идеальной полярностью.Эти конденсаторы делятся на два типа: электролитические и суперконденсаторы.
Пленочные конденсаторы
Пленочные конденсаторыявляются наиболее часто готовыми из множества типов конденсаторов, состоящих из, как правило, обширной группы конденсаторов, отличающихся своими диэлектрическими свойствами. Они доступны практически любого номинала и напряжения до 1500 вольт. Они бывают с любым допуском от 10% до 0,01%. Пленочные конденсаторы также бывают разных форм и стилей корпуса.
Существует два типа пленочных конденсаторов: с радиальными выводами и с осевыми выводами. Электроды пленочных конденсаторов могут быть из металлизированного алюминия или цинка, нанесенного на одну или обе стороны пластиковой пленки, в результате чего получаются металлизированные пленочные конденсаторы, называемые пленочными конденсаторами. Пленочный конденсатор показан на рисунке ниже: Пленочные конденсаторы
Пленочные конденсаторыиногда называют пластиковыми конденсаторами, потому что в качестве диэлектриков они используют полистирол, поликарбонат или тефлон. Эти сорта пленки нуждаются в гораздо более толстой диэлектрической пленке, чтобы уменьшить опасность разрывов или проколов пленки, и поэтому они больше подходят для более низких значений емкости и больших размеров корпуса.
Пленочные конденсаторы физически больше и дороже, они не поляризованы, поэтому их можно использовать в приложениях с переменным напряжением, и они имеют гораздо более стабильные электрические параметры. В зависимости от емкости и коэффициента рассеяния, они могут применяться в приложениях класса 1 со стабильной частотой, заменяя керамические конденсаторы класса 1.
Керамические конденсаторы
Керамические конденсаторы используются в высокочастотных цепях, таких как аудио для RF. Они также являются лучшим выбором для компенсации высоких частот в аудиосхемах.Эти конденсаторы также называют дисковыми конденсаторами. Керамические конденсаторы изготавливаются путем покрытия двух сторон небольшого фарфорового или керамического диска серебром, а затем складываются вместе, образуя конденсатор. В керамических конденсаторах можно добиться как низкой, так и высокой емкости, изменяя толщину используемого керамического диска. Керамический конденсатор показан на рисунке ниже:
Керамические конденсаторыИмеются номиналы от нескольких пикофарад до 1 микрофарада. Диапазон напряжения составляет от нескольких вольт до многих тысяч вольт.Керамика недорогая в производстве и бывает нескольких типов диэлектрика. Переносимость керамики невысока, но для той роли, которую она играет в жизни, они прекрасно работают.
Электролитические конденсаторы
Это наиболее часто используемые конденсаторы с большой допустимой емкостью. Электролитические конденсаторы доступны с рабочим напряжением примерно до 500 В, хотя самые высокие значения емкости недоступны при высоком напряжении, а устройства с более высокой температурой доступны, но редко.Обычно существует два типа электролитических конденсаторов: танталовые и алюминиевые.
Танталовые конденсаторы обычно лучше выставляются, имеют более высокую стоимость и готовы только к более ограниченным параметрам. Диэлектрические свойства оксида тантала намного превосходят свойства оксида алюминия, что обеспечивает более легкий ток утечки и лучшую емкость емкости, что делает их пригодными для создания препятствий, развязки и фильтрации.
Толщина пленки оксида алюминия и повышенное напряжение пробоя дают конденсаторам исключительно высокие значения емкости для их размера.В конденсаторе фольговые пластины анодированы постоянным током, таким образом устанавливая край материала пластины и подтверждая полярность его стороны.
Танталовые и алюминиевые конденсаторы показаны на рисунке ниже:
Электролитические конденсаторыЭлектролитические конденсаторы делятся на два типа
- Алюминиевые электролитические конденсаторы
- Танталовые электролитические конденсаторы
- Ниобиевые электролитические конденсаторы
См. Ссылку на эту ссылку узнать больше об электролитических конденсаторах
Суперконденсаторы
Конденсаторы, которые обладают электрохимической емкостью с высокими значениями емкости по сравнению с другими конденсаторами, известны как суперконденсаторы.Их можно классифицировать как группу, состоящую из электролитических конденсаторов, а также аккумуляторных батарей, известных как ультраконденсаторы.
Использование этих конденсаторов дает несколько преимуществ, например, следующие:
- Значение емкости этого конденсатора высокое
- Заряд может сохраняться, а также очень быстро доставляться
- Эти конденсаторы могут выдерживать дополнительный заряд с циклами разрядки.
- Применения суперконденсаторов включают следующее.
- Эти конденсаторы используются в автобусах, автомобилях, поездах, кранах и лифтах.
- Они используются для рекуперативного торможения и для резервного копирования памяти.
- Эти конденсаторы доступны в различных типах, таких как двухслойные, псевдо и гибридные.
Неполяризованный конденсатор
Конденсаторы не имеют полярности, как положительную, иначе отрицательную. Электроды неполяризованных конденсаторов можно произвольно вставлять в цепь для обратной связи, связи, развязки, колебаний и компенсации.Эти конденсаторы имеют небольшую емкость, поэтому используются в чистых цепях переменного тока, а также используются для фильтрации высоких частот. Выбор этих конденсаторов может быть сделан очень удобно с аналогичными моделями и спецификациями. Типы неполяризованных конденсаторов:
Керамические конденсаторы
Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о керамических конденсаторах
Серебряные слюдяные конденсаторы
Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о слюдяных конденсаторах
Полиэфирные конденсаторы
Полиэфирные или майларовые конденсаторы дешев, точен и имеет небольшую утечку.Эти конденсаторы работают в диапазоне от 0,001 до 50 мкФ. Эти конденсаторы применимы там, где стабильность и точность не так важны.
Конденсаторы из полистирола
Эти конденсаторы чрезвычайно точны, имеют меньшую утечку. Они используются в фильтрах, а также там, где важны точность и стабильность. Они довольно дороги и работают в диапазоне от 10 пФ до 1 мФ.
Конденсаторы из поликарбоната
Эти конденсаторы дорогие и доступны в очень хорошем качестве, с высокой точностью и очень низкой утечкой.К сожалению, они были сняты с производства, и сейчас их трудно найти. Они хорошо работают в суровых и высокотемпературных условиях в диапазоне от 100 пФ до 20 мФ.
Полипропиленовые конденсаторы
Эти конденсаторы являются дорогостоящими, и диапазон их рабочих характеристик может находиться в диапазоне от 100 пФ до 50 мФ. Они очень постоянны, точны во времени и имеют очень небольшую утечку.
Тефлоновые конденсаторы
Эти конденсаторы являются наиболее стабильными, точными и почти не имеют утечки.Они считаются лучшими конденсаторами. В широком диапазоне частотных вариаций образ поведения совершенно одинаков. Они работают в диапазоне от 100 пФ до 1 мФ.
Стеклянные конденсаторы
Эти конденсаторы очень прочные, стабильные и работают в диапазоне от 10 пФ до 1000 пФ. Но это тоже очень дорогие компоненты.
Полимерный конденсатор
Полимерный конденсатор — это электролитический конденсатор (e-cap), в котором вместо геля или жидких электролитов используется твердый электролит из проводящего полимера, такого как электролит.
Высыхания электролита легко избежать с помощью твердого электролита. Такая сушка является одним из факторов, ограничивающих срок службы обычных электролитических конденсаторов. Эти конденсаторы подразделяются на различные типы, такие как полимерный танталовый e-cap, полимерный алюминиевый e-cap, гибридный полимерный Al-e-cap и полимерный ниобий.
В большинстве случаев в этих конденсаторах используется альтернатива электролитическим конденсаторам, только если не повышается максимальное номинальное напряжение.Максимальное номинальное напряжение твердотельных полимерных конденсаторов меньше по сравнению с самым высоким напряжением конденсаторов классического электролитического типа, например, до 35 вольт, хотя некоторые конденсаторы полимерного типа рассчитаны на самые высокие рабочие напряжения, такие как 100 вольт постоянного тока.
Эти конденсаторы обладают другими и лучшими качествами по сравнению с более длительным сроком службы, высокой рабочей температурой, хорошей стабильностью, более низким ESR (эквивалентное последовательное сопротивление) и гораздо более безопасным режимом отказа.
Конденсаторы с выводами и для поверхностного монтажа
Конденсаторыдоступны, как и конденсаторы с выводами и конденсаторы для поверхностного монтажа.Доступны почти все типы конденсаторов, такие как свинцовые версии, такие как керамические, электролитические, суперконденсаторы, серебряная слюда, пластиковая пленка, стекло и т. Д. Возможности поверхностного монтажа или поверхностного монтажа ограничены, но они должны выдерживать температуры, которые используются в процессе пайки. .
Когда у конденсатора нет выводов, а также в результате использования метода пайки, то конденсаторы SMD подвергаются полному повышению температуры самого припоя. В результате не все варианты доступны в качестве конденсаторов SMD.
К основным типам конденсаторов для поверхностного монтажа относятся керамические, танталовые и электролитические. Все они были разработаны, чтобы выдерживать очень высокие температуры пайки.
Конденсаторы специального назначения
Конденсаторы специального назначения используются в системах переменного тока, таких как ИБП и CVT до 660 В переменного тока. Выбор подходящих конденсаторов в основном играет важную роль в ожидаемом сроке службы конденсаторов. Следовательно, совершенно необходимо использовать конденсатор надлежащей емкости через номинальное напряжение-ток, чтобы соответствовать точному применению.Эти конденсаторы отличаются прочностью, долговечностью, ударопрочностью, точностью размеров и чрезвычайно прочностью.
Типы конденсаторов в цепях переменного тока
Когда конденсаторы используются в цепях переменного тока, тогда конденсаторы действуют иначе, чем резисторы, поскольку резисторы позволяют электронам проходить через них, что прямо пропорционально падению напряжения, тогда как конденсаторы сопротивляются изменениям в пределах напряжение через подачу или потребление тока, потому что они заряжаются, иначе разряжаются до нового уровня напряжения.
Конденсаторы превращаются в заряженные до значения приложенного напряжения, которое действует как запоминающее устройство для поддержания заряда до тех пор, пока напряжение питания не будет присутствовать во всем соединении постоянного тока. В конденсатор будет подаваться зарядный ток, препятствующий любым изменениям напряжения.
Например, рассмотрим схему, в которой используется конденсатор, а также источник переменного тока. Таким образом, между напряжением и током существует разность фаз в 90 градусов, при этом ток достигает своего пика в 90 градусов до того, как напряжение достигает своего пика.
Источник питания переменного тока генерирует колебательное напряжение. Когда емкость высока, то должен течь огромный источник питания, чтобы создать определенное напряжение на пластинах, и ток будет выше.
Частота напряжения выше, и тогда время, доступное для регулировки напряжения, короче, поэтому ток будет большим при увеличении частоты и емкости.
Переменные конденсаторы
Переменные конденсаторы — это конденсаторы, емкость которых можно намеренно и многократно изменять механически.Этот тип конденсатора используется для установки резонансной частоты в LC-цепях, например, для настройки радиоустройства для согласования импеданса в антенных тюнерах.
Конденсаторы переменной емкостиПрименения конденсаторов
Конденсаторынаходят применение как в электротехнике, так и в электронике. Они используются в фильтрах, системах накопления энергии, пускателях двигателей и устройствах обработки сигналов.
Как узнать стоимость конденсаторов?
Конденсаторы — важные компоненты электронной схемы, без которых схема не может быть завершена.Использование конденсаторов включает в себя сглаживание пульсаций переменного тока в источнике питания, соединение и развязку сигналов в качестве буферов и т. Д. В схемах используются различные типы конденсаторов, такие как электролитический конденсатор, дисковый конденсатор, танталовый конденсатор и т. Д. Электролитические конденсаторы имеют номинал, напечатанный на корпусе, так что его контакты можно легко идентифицировать.
Обычно большой штифт положительный. Черная полоса возле отрицательного вывода указывает на полярность. Но в дисковых конденсаторах на корпусе печатается только число, поэтому очень сложно определить его значение в PF, KPF, uF, n и т. Д.Для некоторых конденсаторов значение печатается в мкФ, а для других используется код EIA. 104. Давайте посмотрим, как идентифицировать конденсатор и рассчитать его значение.
Число на конденсаторе представляет значение емкости в пикофарадах. Например, 8 = 8PF
Если третье число равно нулю, то значение находится в P, например. 100 = 100PF
Для трехзначного числа третье число представляет количество нулей после второй цифры, например, 104 = 10 — 0000 PF
Если значение получено в PF, его легко преобразовать в KPF или мкФ
PF / 1000 = KPF или n, PF / 10, 00000 = мкФ.Для значения емкости 104 или 100000 в пФ это будет 100 кпФ или н или 0,1 мкФ.
Формула преобразования
nx 1000 = PF PF / 1000 = n PF / 1000000 = мкФ мкФ x 1000000 = PF мкФ x 1000000/1000 = nn = 1 / 1000000000F мкФ = 1/1000000 F
Буква ниже значение емкости определяет значение допуска.
473 = 473 К
Для 4-значного числа, если 4 -я цифра является нулем, то значение емкости выражается в пФ.
Например, 1500 = 1500PF
Если это просто десятичное число с плавающей точкой, значение емкости выражается в мкФ.
Например, 0,1 = 0,1 мкФ
Если под цифрами указан алфавит, он представляет собой десятичную дробь, а значение выражается в KPF или n
Например. 2K2 = 2,2 KPF
Если значения указаны с косой чертой, первая цифра представляет значение в UF, вторая — допуск, а третья — максимальное номинальное напряжение
Например. 0,1 / 5/800 = 0,01 мкФ / 5% / 800 Вольт.
Некоторые общие дисковые конденсаторы
Без конденсатора проектирование схемы будет неполным, поскольку он играет активную роль в функционировании схемы.Конденсатор имеет две электродные пластины внутри, разделенные диэлектрическим материалом, таким как бумага, слюда и т. Д. Что происходит, когда электроды конденсатора подключаются к источнику питания? Конденсатор заряжается до полного напряжения и сохраняет заряд. Конденсатор может накапливать ток, который измеряется в фарадах.
DISC-CAPSЕмкость конденсатора зависит от площади его электродных пластин и расстояния между ними. Дисковые конденсаторы не имеют полярности, поэтому их можно подключать любым способом.Дисковые конденсаторы в основном используются для развязки / развязки сигналов. Электролитические конденсаторы, с другой стороны, имеют полярность, поэтому, если полярность конденсатора изменится, он взорвется. Электролитические конденсаторы в основном используются в качестве фильтров, буферов и т. Д.
Каждый конденсатор имеет свою собственную емкость, которая выражается как заряд в конденсаторе, деленный на напряжение. Таким образом, Q / V. При использовании конденсатора в цепи следует учитывать некоторые важные параметры. Во-первых, его ценность.Выберите подходящее значение, низкое или высокое значение, в зависимости от схемы.
Значение напечатано на корпусе большинства конденсаторов в мкФ или в виде кода EIA. В конденсаторах с цветовой кодировкой значения представлены в виде цветных полос и с использованием диаграммы цветового кода конденсатора; конденсатор легко идентифицировать. Ниже приведена цветовая диаграмма для обозначения конденсатора с цветной кодировкой.
Видите, как и у резисторов, каждая полоса на конденсаторе имеет значение. Значение первой полосы — это первое число на цветовой диаграмме.Точно так же значение Второй полосы — это Второе число на цветовой диаграмме. Третья полоса — это множитель, как в случае резистора. Четвертая полоса — это допуск конденсатора. Пятая полоса — это корпус конденсатора, который представляет рабочее напряжение конденсатора. Красный цвет представляет 250 вольт, а желтый — 400 вольт.
Допуск и рабочее напряжение — два важных фактора, которые необходимо учитывать. Ни один из конденсаторов не имеет номинальной емкости и может варьироваться.
Поэтому используйте конденсатор хорошего качества, например танталовый, в чувствительных схемах, таких как схемы генератора. Если конденсатор используется в цепях переменного тока, он должен иметь рабочее напряжение 400 вольт. Рабочее напряжение электролитического конденсатора указано на его корпусе. Подбирайте конденсатор с рабочим напряжением в три раза превышающим напряжение блока питания.
Например, если источник питания 12 вольт, используйте конденсатор на 25 или 40 вольт. Для сглаживания лучше взять конденсатор емкостью 1000 мкФ, чтобы почти полностью убрать пульсации переменного тока.В источнике питания аудиосхем лучше использовать конденсатор емкостью 2200 мкФ или 4700 мкФ, поскольку пульсации могут создавать шум в цепи.
Ток утечки — еще одна проблема конденсаторов. Некоторые заряды будут протекать, даже если конденсатор заряжается. Это стих из схем таймера, так как временной цикл зависит от времени заряда / разряда конденсатора. Доступны танталовые конденсаторы с низкой утечкой, которые используются в схемах таймера.
Описание функции конденсатора сброса в микроконтроллере
Сброс используется для запуска или перезапуска функций микроконтроллера AT80C51.Вывод сброса следует двум условиям для запуска микроконтроллера. Это
- Электропитание должно быть в указанном диапазоне.
- Длительность импульса сброса должна быть не менее двух машинных циклов.
Сброс должен оставаться активным, пока не будут соблюдены все два условия.
В схеме этого типа конденсатор и резистор от источника питания подключены к контакту сброса №. 9. Пока переключатель питания находится в положении ON, конденсатор начинает заряжаться.В это время конденсатор вначале действует как короткое замыкание. Когда вывод сброса установлен на ВЫСОКИЙ, микроконтроллер переходит в состояние включения, и через некоторое время зарядка прекращается.
Когда зарядка прекращается, контакт сброса идет на землю из-за резистора. Пин сброса должен быть слишком высоким, затем слишком низким, тогда программа начнется с попрошайничества. Если в этом устройстве нет конденсатора сброса или он оставался бы неподключенным, программа запускается из любого места микроконтроллера.
Итак, это обзор различных типов конденсаторов и их применения. Теперь у вас есть представление о концепции типов конденсаторов и их применении. Если у вас есть вопросы по этой теме или по электрическим и электронным проектам, оставьте комментарии ниже.
Фото
Пленочные конденсаторы от en.busytrade
Керамические конденсаторы от made-in-china
Электролитические конденсаторы от solarbotics
Это те конденсаторы, которые вы ищете? | пользователя MountainGoat
https: // ohmart.files.wordpress.com/2012/03/sat_phase.jpgПри выборе конденсаторов для ваших схем важно выбирать внимательно. Иначе вы рискуете построить неисправную схему. В крайних случаях вы можете попасть в аварию, которая может быть болезненной и дорогостоящей.
На характеристики конденсатораА и его поведение влияют:
— Как построен конденсатор
— Материал, используемый для пластин конденсатора
— Материал, используемый для изготовления диэлектрика конденсатора
— Площадь поверхности пластин конденсатора
http: // www.leapsecond.com/notes/cartoons.htmСпособность предмета накапливать любой электрический заряд называется емкостью .
Емкость конденсатора зависит от трех факторов
1. Площадь поверхности металлических пластин
2. Толщина диэлектрика
3. Диэлектрическая проницаемость между пластинами
Хотя было бы здорово узнать, как рассчитать емкость, это выходит за рамки этого блога. Большинство конденсаторов, с которыми вы столкнетесь, будут иметь задокументированное значение емкости
Вы измеряете емкость в единицах, называемых фарадами и обозначаемых буквой F.
Фарад — это емкость, необходимая для удержания одного кулона заряда с разностью потенциалов в 1 вольт. Однако чаще встречаются конденсаторы в диапазоне микрофарад и пикофарад.
Микрофарад — одна миллионная часть фарада, представленная µF
1 мкФ = 0,000001 фарад
Пикофарад — одна миллионная часть фарада, представленная как pF
1pF = 0,000000000001 фарад
На большинстве конденсаторов будет напечатано их значение на них в фарадах или частях фарада.Конденсаторы с достаточным пространством будут иметь свою емкость и рабочее напряжение.
Конденсаторы используют трехзначную систему для обозначения своих значений. Система измеряется в пикофарадах и работает следующим образом.
Конденсатор, помеченный тремя цифрами, например 123.
Это будет означать значение емкости 12, за которым следуют 3 нуля. То есть 12000 пФ. На некоторых конденсаторах будет две цифры, например 34, это означает, что 34 пФ, отсутствие третьей цифры означает отсутствие нулей для добавления в конце.
Хотя это не так часто, существует другая система, в которой используются как цифры, так и буквы.
7Rl
В этом случае расположение R обозначает десятичную точку.
7R1 = 7,1
В системе единицами измерения могут быть микрофарады или пикофарады.
Некоторые конденсаторы используют одну букву для обозначения допуска конденсатора, например,
123Z
. Z здесь означает, что этот конденсатор имеет допуск от + 80% до -20%, общие допуски см. В таблице ниже. https://www.wikihow.com/Read-a-Capacitor
Иногда обозначается как WV — величина напряжения, которое вы можете упасть на конденсатор.
Превышение этого количества может повредить конденсатор, пропустив нежелательный ток.
Конденсаторы для цепей постоянного тока обычно рассчитаны на WV от 16 до 35 вольт. Многие источники постоянного тока имеют диапазон от 3,3 В до 12 В.
Важно внимательно следить за рабочим напряжением. Всегда выбирайте конденсатор с WV, который на 10–15% больше, чем ваше напряжение питания.
Конденсаторам большей емкости может быть важно, как они будут вставлены в вашу схему. Предназначен для использования в цепях постоянного тока. В них положительный вывод должен иметь более высокое напряжение, чем отрицательный.
Поляризованные конденсаторы обычно имеют знак минус, указывающий на отрицательную клемму. В этих конденсаторах отрицательная клемма обычно короче.
К настоящему времени у вас должно быть понимание
— Как определить емкость
— Определение емкости и ее соответствие вашим потребностям
— Считывание емкости конденсаторов и допусков
— Определение поляризованных конденсаторов
— Выбор конденсаторы с рабочим напряжением, подходящим для ваших нужд
В следующий раз мы исследуем комбинирование конденсаторов и понимание емкостного реактивного сопротивления
Вам понравилось это объяснение того, как определять и выбирать конденсаторы?
Дайте нам знать, хлопнув в ладоши или оставьте комментарий и расскажите, что вы хотели бы видеть больше…
Символы и маркировка — Анализируйте измеритель
Конденсатор — это пассивное устройство с двумя выводами, используемое для хранения энергии в виде электрического заряда .Он состоит из двух параллельных пластин, которые отделены друг от друга воздухом или другим изолирующим устройством, например бумагой, слюдой, керамикой и т. Д. В этом уроке мы добавляем тень на емкость конденсатора , символ конденсатора и конденсатор. маркировка и др.
В этой статье вы узнаете:
Емкость конденсатора
Конденсатор состоит из двух проводников, разделенных изолятором, то есть диэлектриком. Диэлектрик может быть разных типов, вы можете использовать любой из диэлектрических материалов между пластинами конденсатора в соответствии с вашими потребностями.Количество электрической энергии, хранящейся в конденсаторе, известно как его емкость. Емкость конденсатора прямо пропорциональна емкости конденсатора для хранения заряда, например. Чем больше резервуар, тем больше воды он может вместить, аналогично, чем больше емкость, тем больше заряда он может хранить. Увеличить емкость конденсатора можно тремя способами:
- За счет увеличения размера пластин.
- За счет уменьшения расстояния между пластинами.
- Сделайте диэлектрик не хуже изолятора.
Хотите знать, что нужно учитывать перед покупкой конденсатора? Щелкните здесь: Семь лучших вещей.
Обозначения и единицы измерения конденсаторов
(i) Символ конденсатора:
Его символ состоит из двух параллельных линий, разделенных друг от друга, т.е. Плоская, изогнутая или через нее проходит стрелка . Плоская линия указывает на то, что конденсатор не поляризован, изогнутая линия указывает, что конденсатор поляризован, а тип стрелки указывает, что он имеет переменный тип.
(ii) Конденсаторный блок:
Емкость конденсатора измеряется в фарад. обозначается как F. Он определяется как конденсатор, имеющий емкость в один фарад, когда один кулон электрического заряда сохраняется в проводнике при приложении разности потенциалов в один вольт. В нем нет отрицательных единиц, он всегда положительный. Заряд, накопленный в конденсаторе, определяется как:
Q = CV
Где Q: заряд, накопленный конденсатором
C: значение емкости конденсатора
В: напряжение, приложенное к конденсатору
Мы можем подключить конденсатор либо последовательно, , либо параллельно в соответствии с требованиями. Следует помнить, что формулы для последовательного или параллельного расчета различаются.
Если мы подключили конденсатор последовательно, то формула емкости будет:
1 / C s = 1 / C 1 + 1 / C 2 + 1 / C 3 +… + 1 / C n
Если мы подключили конденсатор параллельно, то формула емкости будет:
C p = C 1 + C 2 + C 3 +… + C n
Маркировка конденсаторов:
Конденсаторымаркируются по-разному в зависимости от цветового кода, кода напряжения, кода допуска, температурного коэффициента и т. Д.Здесь мы объясним вам значение и значения всех таких кодов, отмеченных на различных типах конденсаторов .
(i) Цветовой код: Для разных типов конденсаторов используются разные схемы. В настоящее время этот тип маркировки конденсаторов используется реже, но он доступен на некоторых старых компонентах.
(ii) Код допуска: Некоторые конденсаторы имеют код допуска в зависимости от материала диэлектрика. Ниже приводится следующий рейтинг толерантности.
Код допуска конденсатора и значения емкости
Алфавит на конденсаторе | Допуск конденсатора |
Z | + 80%, -20% |
M | + — 20% |
К | + — 10% |
Дж | + — 5% |
G | + — 2% |
Ф | + — 1% |
D | + — 0.5% |
С | + — 0,25% |
B | + — 0,1% |
(iii) Коды температурного коэффициента: На некоторых конденсаторах маркировка или код указывает температурный коэффициент конденсатора . Все эти коды стандартизированы EIA (Electronics Industries Alliance), эти коды обычно используются для керамических и пленочных конденсаторов.
Коды температурного коэффициента конденсатора
Альянс электронной промышленности (EIA) | Промышленность | Температурные коэффициенты |
C0G | NP0 | |
S1G | N033 | -33 |
U1G | N075 | -75 |
P2G | N150 | -150 |
S2H | N330 | -330 |
U2J | N750 | -750 |
P3K | N1500 | -1500 |
(iv) Коды рабочего напряжения конденсатора: Рабочее напряжение является ключевым параметром любого электронного компонента .Иногда конденсаторы имеют меньший размер, и на них невозможно записать весь код, поэтому для этой цели мы пишем только один символ над ним, который обозначает определенные значения напряжения. Ниже мы приводим таблицу, в которой указаны конкретные значения напряжения конденсатора.
Коды рабочего напряжения конденсатора
Письмо | Напряжение | Коды напряжения конденсатора EIA |
e | 2.5 | 0e = 2,5 В постоянного тока |
G | 4 | 0G = 4,0 В постоянного тока |
Дж | 63 | 0J = 6,3 В постоянного тока, 1 Дж = 63 В постоянного тока |
А | 10 | 1 А = 10 В постоянного тока, 2 А = 100 В постоянного тока |
С | 16 | 1C = 16 В постоянного тока, 2C = 160 В постоянного тока |
D | 20 | 2D = 200 В постоянного тока |
E | 25 | 1E = 25 В постоянного тока, 2E = 250 В постоянного тока |
В | 35 | 2 В = 350 В постоянного тока |
H | 50 | 1H = 50 В постоянного тока |
(v) Цифровой код: У большинства конденсаторов на корпусе напечатан номер, указывающий на их электрические свойства .Конденсаторы, такие как электролитические, больше по размеру, обычно отображают фактическую емкость вместе с единицей, например 120 мкФ, в то время как конденсаторы, такие как керамические, меньше по размеру, используют короткие обозначения из трех цифр и букв, где цифра указывает значение емкости в пФ, а буква указывает допуск. Например, рассмотрим текст 343M 220V на корпусе конденсатора. Он обозначает 34 x 10 3 пФ = 34 нФ (± 20%) с рабочим напряжением 220В. Во избежание риска разрушения диэлектрического слоя всегда используйте максимальное рабочее напряжение.
Узнав все, что касается его символов и обозначений, теперь вы можете продолжить и собрать некоторую информацию о его конструкции и работе .
Применения конденсаторов:
Конденсаторышироко используются в электронной промышленности. Ниже приведены его заявки:
- Используется для соединения двух каскадов цепи.
- Используется в фильтрующих сетях.
- Используется для сглаживания выхода цепей питания.
- Используется для приложения задержки, как в микросхеме таймера 555, управляющей зарядкой и разрядкой.
- Используется для изменения фазы.
- В схемах вспышки фотоаппарата накапливает заряды.
Надеюсь, вам всем понравится эта статья. Для любого предложения, пожалуйста, оставьте комментарий ниже, мы всегда ценим ваши предложения.
Руководство по идентификации набора конденсаторов— узнать.sparkfun.com
Введение
Никогда не знаешь, когда тебе понадобится конденсатор. Иногда вам нужно немного больше развязки источника питания, выходной соединительный колпачок или тщательная настройка схемы фильтра — все это приложения, где конденсаторы имеют решающее значение. Набор конденсаторов SparkFun содержит широкий диапазон емкостей конденсаторов, поэтому вы всегда будете иметь их под рукой, когда они вам понадобятся.
Комплект конденсаторов SparkFun
В наличии КОМПЛЕКТ-13698Это набор, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить работу над электроникой.Нет мес…
9Этот учебник поможет вам определить содержимое вашего набора и покажет вам несколько приемов, позволяющих еще больше расширить диапазон значений.
Рекомендуемая литература
Состав набора
Набор конденсаторов содержит колпачки с декадными интервалами от 10 пикофарад до 1000 мкФ.
Комплект конденсатора Состав | ||||||||
Значение | Тип | Маркировка | Количество | Номинальное напряжение | ||||
50V | ||||||||
22pF | Керамика | 220 | 10 | 50V | ||||
100pF | Керамика | 101 | 10 | 10 | 50V | |||
10nF | Керамика | 103 | 10 | 50V | ||||
100nF | Керамика | 50175 | 50174 9017 5 / 50 В | 10 | 50 В | |||
10 мкФ | Электролитический | 10 мкФ / 25 В | 10 | 25 В | ||||
100 мкФ | ||||||||
1000 мкФ | Электролитический | 1000 мкФ / 25 В | 10 | 25 В |
Большинство значений состоит из десяти частей, но 25 частей по 100 нанофарад обычно используются для развязки местного источника питания рядом с ИС.Есть также десять частей по 22 пФ, которые часто используются в качестве нагрузочных конденсаторов при создании кварцевых генераторов.
Идентификация конденсатора
Обзор маркировки конденсатораПосмотрим правде в глаза, Фарад — это большая емкость. Значения конденсаторов обычно крошечные — часто в миллионных или миллиардных долях Фарада. Чтобы кратко выразить эти маленькие значения, мы используем метрическую систему. Следующие префиксы являются современным условным обозначением * .
Конденсатор Метрические префиксы | |||
Префикс | Обозначение СИ | Дробь | Символ |
Mикрофарад | Микрофарад | ||
Нанофарад | 10 -9 | Один миллиард | nf |
Пикофарад | 10 -12 | Один триллион164p | * Эти единицы являются современным условием и в основном соответствуют рекомендациям по применению метрической системы, но не всегда единообразны.