Электричество с нуля: Ошибка 404 — документ не найден

Содержание

Изучение электричества с нуля — Инженер ПТО

Предлагаем небольшой материал по теме: «Электричество для начинающих». Он даст первоначальное представление о терминах и явлениях, связанных с движением электронов в металлах.

Особенности термина

Электричество представляет собой энергию маленьких заряженных частиц, движущихся в проводниках в определенном направлении.

При постоянном токе не наблюдается изменения его величины, а также направления движения за определенный промежуток времени. Если в качестве источника тока выбирается гальванический элемент (батарейка), в таком случае заряд движется упорядоченно: от отрицательного полюса к положительному концу. Процесс продолжается до тех пор, пока он полностью не исчезнет.

Переменный ток периодически изменяет величину, а также направление движения.

Схема передачи переменного тока

Попробуем понять, что такое фаза в электричестве. Это слово слышали все, но далеко не всем понятен его истинный смысл. Не будем углубляться в детали и подробности, выберем только тот материал, который необходим домашнему мастеру. Трехфазная сеть является способом передачи электрического тока, при котором по трем разным проводам протекает ток, а по одному идет его возврат. Например, в электрической цепи есть два провода.

По первому проводу к потребителю, например, к чайнику, идет ток. Второй провод используется для его возвращения. При размыкании такой цепи, прохождения электрического заряда внутри проводника не будет. Данная схема описывает однофазную цепь. Что такое фаза в электричестве? Фазой считают провод, по которому протекает электрический ток. Нулевым называют провод, по которому осуществляется возврат. В трехфазной цепи присутствует сразу три фазных провода.

Электрический щиток в квартире необходим для распределения электрического тока по всем помещениям. Трехфазные сети считают экономически целесообразными, поскольку для них не нужны два нулевых провода. При подходе к потребителю, идет разделение тока на три фазы, причем в каждой есть по нолю. Заземлитель, который используется в однофазной сети, не несет рабочей нагрузки. Он является предохранителем.

К примеру, при возникновении короткого замыкания появляется угроза удара током, пожара. Для предотвращения такой ситуации, величина тока не должна превышать безопасный уровень, избыток уходит в землю.

Пособие «Школа для электрика» поможет начинающих мастерам справляться с некоторыми поломками бытовых приборов. Например, если возникли проблемы при функционировании электрического двигателя стиральной машины, ток будет попадать на внешний металлический корпус.

При отсутствии заземления заряд будет распределяться по машине. При прикосновении к ней руками, в роли заземлителя выступит человек, получив удар электрическим током. При наличии провода заземления такой ситуации не возникнет.

Особенности электротехники

Пособие «Электричество для чайников» пользуется популярностью у тех, кто далек от физики, но планирует использовать эту науку в практических целях.

Датой появления электротехники считают начало девятнадцатого века. Именно в это время был создан первый источник тока. Открытия, сделанные в области магнетизма и электричества, сумели обогатить науку новыми понятиями и фактами, обладающими важным практическим значением.

Пособие «Школа для электрика» предполагает знакомство с основными терминами, касающимися электричества.

Советы начинающим

Во многих сборниках по физике есть сложные электрические схемы, а также разнообразные непонятные термины. Для того чтобы новички могли разобраться во всех тонкостях данного раздела физики, было разработано специальное пособие «Электричество для чайников». Экскурсию в мир электрона необходимо начинать с рассмотрения теоретических законов и понятий. Наглядные примеры, исторические факты, используемые в книге «Электричество для чайников», помогут начинающим электрикам усваивать знания. Для проверки успеваемости можно использовать задания, тесты, упражнения, связанные с электричеством.

Если вы понимаете, что у вас недостаточно теоретических знаний для того, чтобы самостоятельно справиться с подключением электрической проводки, обратитесь к справочникам для «чайников».

Безопасность и практика

Для начала нужно внимательно изучить раздел, касающийся техники безопасности. В таком случае во время работ, связанных с электричеством, не будет возникать чрезвычайных ситуаций, опасных для здоровья.

Для того чтобы на практике реализовать теоретические знания, полученные после самостоятельного изучения основ электротехники, можно начать со старой бытовой техники. До начала ремонта обязательно ознакомьтесь с инструкцией, прилагаемой к прибору. Не забывайте, что с электричеством шутить не нужно.

Электрический ток связан с передвижением электронов в проводниках. Если вещество не способно проводить ток, его называют диэлектриком (изолятором).

Для движения свободных электронов от одного полюса к другому между ними должна существовать определенная разность потенциалов.

Интенсивность тока, проходящего через проводник, связана с количеством электронов, проходящих через поперечное сечение проводника.

На скорость прохождения тока влияет материал, длина, площадь сечения проводника. При увеличении длины провода, увеличивается его сопротивление.

Заключение

Электричество является важным и сложным разделом физики. Пособие «Электричество для чайников» рассматривает основные величины, характеризующие эффективность работы электрических двигателей. Единицами измерения напряжения являются вольты, ток определяется в амперах.

У любого источника электрической энергии существует определенная мощность. Она подразумевает количество электричества, вырабатываемое прибором за определенный промежуток времени. Потребители энергии (холодильники, стиральные машины, чайники, утюги) также имеют мощность, расходуя электричество во время работы. При желании можно провести математические расчеты, определить примерную плату за каждый бытовой прибор.

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором – периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока, измеряемой в амперах.

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица –

вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление, измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность, связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электрика для чайников: основы электроники

Древние греки наблюдали электрические явления задолго до начала изучения электричества. Достаточно потереть шерстью или мехом полудрагоценный камень янтарь, как он начинает притягивать кусочки сухой соломы, бумаги или пух и перья.

В современных школьных опытах используются стеклянные и эбонитовые стержни натертые шелком или шерстью. При этом считается, что на стеклянном стержне сохраняется положительный заряд, а на эбонитовом отрицательный. Эти стержни также могут притягивать к себе мелкие кусочки бумаги и т.п. мелкие предметы. Именно это притяжение и есть воздействие электрического поля, которое изучал Шарль Кулон.

По-гречески янтарь называется электрон, поэтому для описания такой силы притяжения Уильям Гильберт (1540 – 1603 гг.) предложил термин «электрический» .

В 1891 году английский ученый Стоней Джордж Джонстон выдвинул гипотезу о существовании в веществах электрических частиц, которые и назвал электронами. Такое утверждение существенно облегчило понимание электрических процессов в проводниках .

Электроны в металлах достаточно свободны и легко отрываются от своих атомов, а под действием электрического поля, точнее разности потенциалов перемещаются между атомами металла, создавая электрический ток. Таким образом, электрический ток в медном проводе представляет собой поток электронов, протекающий вдоль провода, от одного конца к другому.

Электрический ток способны проводить не только металлы. При определенных условиях электропроводны жидкости, газы и полупроводники. В этих средах носителями зарядов являются ионы, электроны и дырки. Но пока речь только о металлах, ведь даже и в них все не так просто.

Пока что речь идет о постоянном токе, направление и величина которого не меняется. Поэтому на электрических схемах возможно стрелками указать, куда же течет ток. Считается, что ток течет от положительного полюса к отрицательному, к такому выводу пришли на ранней стадии изучения электричества.

Позднее выяснилось, что на самом деле электроны движутся как раз в обратном направлении – от минуса к плюсу. Но, тем не менее, от «ошибочного» направления не отказались, более того именно оно называется техническим направлением тока. Какая разница, если лампочка все равно горит. Направление движения электронов получило название истинного и применяется чаще всего в научных исследованиях.

Сказанное иллюстрирует рисунок 1.

Если переключатель на некоторое время «перебросить» в сторону батарейки, то зарядится электролитический конденсатор C, на нем накопится некоторый заряд. После того, как конденсатор зарядился, переключатель повернули в сторону лампочки. Лампа вспыхнула и погасла – конденсатор разрядился. Совершенно очевидно, что длительность вспышки зависит от величины электрического заряда, запасенного в конденсаторе.

Гальваническая батарея тоже хранит электрический заряд, но намного больший, нежели конденсатор. Поэтому время вспышки достаточно велико, — лампочка может гореть до нескольких часов.

Электрический заряд, ток, сопротивление и напряжение

Изучением электрических зарядов занимался французский ученый Ш. Кулон, который в 1785 году открыл закон, названный его именем.

В формулах электрический заряд обозначается как Q или q. Физический смысл этой величины — способность заряженных тел вступать в электромагнитные взаимодействия: одноименные заряды отталкиваются, разноименные притягиваются. Сила взаимодействия между зарядами прямо пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними. Если в виде формулы, то это выглядит вот так:

Электрический заряд электрона очень мал, поэтому на практике пользуются величиной заряда под названием Кулон . Именно эта величина используется в международной системе СИ (Кл). В одном кулоне содержится ни много ни мало 6,24151*10 18 (десять в восемнадцатой степени) электронов. Если из этого заряда выпускать по 1 млн. электронов в секунду, то этот процесс продлится целых 200 тысяч лет!

За единицу измерения тока в системе СИ принят Ампер (А) , по имени французского ученого Андре Мари Ампера (1775 — 1836). При силе тока в 1А через поперечное сечение проводника за 1 секунду протекает заряд ровно в 1 Кл. Математическая формула в этом случае получается вот такая: I = Q/t.

В этой формуле ток в Амперах, заряд в Кулонах, время в секундах. Все единицы должны соответствовать системе СИ.

Другими словами получается один кулон в секунду. Очень напоминает скорость автомобиля в километрах в час. Поэтому сила электрического тока есть не что иное, как скорость протекания электрического заряда.

Чаще в быту используется внесистемная единица Ампер*час. Достаточно вспомнить автомобильные аккумуляторы, емкость которых указывается как раз в ампер часах. И это всем известно и понятно, хотя про какие-то кулоны в магазинах авто запчастей никто и не вспоминает. Но при этом все-таки существует соотношение: 1 Кл = 1*/3600 ампер*часа. Возможно, что такое количество можно было бы назвать ампер * секундой.

По-другому определению ток в 1 А протекает в проводнике сопротивлением 1 Ом при разности потенциалов (напряжении) на концах проводника 1 В. Соотношение между этими величинами определяется по закону Ома. Это, пожалуй, самый главный электрический закон, недаром народная мудрость гласит: «Не знаешь закон Ома – сиди дома!».

Проверка закона Ома

Этот закон сейчас известен всем: «Ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению». Казалось бы всего три буквы, — I = U/R, любой школьник скажет: «Ну и что?». А на самом деле путь к этой короткой формуле был достаточно тернист и долог.

Для проверки закона Ома можно собрать простейшую схему, показанную на рисунке 2.

Исследование достаточно простое, — увеличивая напряжение источника питания по точкам на бумаге построить график, показанный на рисунке 3.

Казалось бы, что график должен получиться идеально прямой линией, поскольку зависимость I = U/R можно представить в виде U = I*R, а в математике это прямая линия. На самом же деле в правой части линия загибается вниз. Может не очень сильно, но загибается и почему-то весьма разнообразно. При этом загиб будет зависеть от того, как будет нагреваться исследуемое сопротивление. Не зря оно сделано из длинной медной проволоки: можно намотать плотно виток к витку, можно закрыть слоем асбеста, может температура в помещении сегодня одна, а вчера была другая или в помещении гуляет сквозняк.

Это к тому, что температура влияет на сопротивление так же, как на линейные размеры физических тел при нагревании. Каждый металл имеет свой температурный коэффициент сопротивления (ТКС). Вот только про расширение знают и помнят практически все, а про изменение электрических свойств (сопротивление, емкость, индуктивность) забывают. А ведь именно температура в этих опытах является самым стабильным источником нестабильности.

С литературной точки зрения получилась достаточно красивая тавтология, но именно она в данном случае очень точно выражает суть проблемы.

Многие ученые в середине девятнадцатого века пытались открыть эту зависимость, но мешала нестабильность опытов, вызывала сомнения в истинности полученных результатов. Удалось это сделать только Георгу Симону Ому (1787-1854), который сумел отбросить все побочные эффекты или, как говорится, увидеть за деревьями лес. Единица измерения сопротивления 1Ом до сих пор носит имя этого гениального ученого.

Из закона Ома можно выразить любую составляющую: I=U/R, U=I*R, R=U/I.

Для того, чтобы эти соотношения не забывать существует так называемый треугольник Ома , или что-то в этом роде, показанный на рисунке 4.

Рисунок 4. Треугольник Ома

Пользоваться им очень просто: достаточно закрыть пальцем искомую величину и две оставшиеся буквы покажут, что с ними надо делать.

Еще осталось вспомнить, какую роль играет во всех этих формулах напряжение, каков его физический смысл. Обычно под напряжением понимается разность потенциалов в двух точках электрического поля. Чтобы это было легче понять, пользуются аналогиями, как правило, с баком, водой и трубами.

В этой «водопроводной» схеме расход воды в трубе (литры/сек) это как раз есть ток (кулон/сек), а разность между верхним уровнем в баке и открытым краном разность потенциалов (напряжение). При этом если кран открыт, то давление на выходе равно атмосферному, которое можно принять за условный нулевой уровень.

В электрических схемах такая условность позволяет принять какую-то точку за общий провод («землю»), относительно которого производятся все измерения и настройки. Чаще всего за этот провод принимают минусовой вывод источника питания, хотя это и не всегда так.

Разность потенциалов измеряется в вольтах (В) по имени итальянского физика Алессандро Вольта (1745-1827). По современному определению при разности потенциалов в 1 В на перемещение заряда в 1 Кл расходуется энергия в 1 Дж. Пополнение израсходованной энергии производится от источника питания, по аналогии с «водопроводной» схемой это будет насос, поддерживающий уровень воды в баке.

Электричество с нуля обучение — Яхт клуб Ост-Вест

Сейчас без электричества невозможно представить жизнь. Это не только свет и обогреватели, но и вся электронная аппаратура начиная с самых первых электронных ламп и заканчивая мобильными телефонами и компьютерами. Их работа описывается самыми разными, иногда очень сложными формулами. Но даже самые сложные законы электротехники и электроники в основе своей имеют законы электротехники, которые в институтах, техникумах и училищах изучает предмет «Теоретические основы электротехники» (ТОЭ).

Основные законы электротехники

Закон Ома — с этого закона начинается изучение ТОЭ и без него не может обойтись ни один электрик. Он гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению Это значит, что чем выше напряжение, поданное на сопротивление, электродвигатель, конденсатор или катушку (при соблюдении других условий неизменными), тем выше ток, протекающий по цепи. И наоборот, чем выше сопротивление, тем ниже ток.

Закон Джоуля — Ленца. С помощью этого закона можно определить количество тепла, выделившегося на нагревателе, кабеле, мощность электродвигателя или другие виды работ, выполненных электрическим током. Этот закон гласит, что количество тепла, выделяемого при протекании электрического тока по проводнику, прямо пропорциональна квадрату силы тока, сопротивлению этого проводника и времени протекания тока. С помощью этого закона определяется фактическая мощность электродвигателей, а также на основе этого закона работает электросчётчик, по которому мы платим за потреблённую электроэнергию.

Первый закон Кирхгофа. С его помощью рассчитываются кабеля и автоматы защиты при расчёте схем электроснабжения. Он гласит, что сумма токов, приходящих в любой узел равна сумме токов, уходящих из этого узла. На практике приходит один кабель из источника питания, а уходит один или несколько.

Второй закон Кирхгофа. Применяется при подключении нескольких нагрузок последовательно или нагрузки и длинного кобеля. Он также применим при подключении не от стационарного источника питания, а от аккумулятора. Он гласит, что в замкнутой цепи сумма всех падений напряжений и всех ЭДС равна 0.

С чего начать изучение электротехники

Лучше всего изучать электротехнику на специальных курсах или в учебных заведениях. Кроме возможности общаться с преподавателями, вы можете воспользоваться материальной базой учебного заведения для практических занятий. Учебное заведение также выдаёт документ, который будет необходим при устройстве на работу.

Если вы решили изучать электротехнику самостоятельно или вам необходим дополнительный материал для занятий, то есть много сайтов, на которых можно изучить и скачать на компьютер или телефон необходимые материалы.

Видеоуроки

В интернете есть много видеоматериалов, помогающих овладеть основами электротехники. Все видеоролики можно как смотреть онлайн, так и скачать с помощью специальных программ.

Видеоуроки электрика — очень много материалов, рассказывающих о разных практических вопросах, с которыми может столкнуться начинающий электрик, о программах, с которыми приходится работать и об аппаратуре, устанавливаемой в жилых помещениях.

Основы теории электротехники — здесь находятся видеоуроки, наглядно объясняющие основные законы электротехники Общая длительность всех уроков около 3 часов.

  1. Основы электротехники, ноль и фаза, схемы подключения лампочек, выключателей, розеток. Виды инструмента для электромонтажа;
  2. Виды материалов для электромонтажа, сборка электрической цепи;
  3. Подключение выключателя и параллельное соединение;
  4. Монтаж электрической цепи с двухклавишным выключателем. Модель электроснабжения помещения;
  5. Модель электроснабжения помещения с выключателем. Основы техники безопасности.

Книги

Самым лучшим советчиком всегда являлась книга. Раньше необходимо было брать книгу в библиотеке, у знакомых или покупать. Сейчас в интернете можно найти и скачать самые разные книги, необходимые начинающему или опытному электромонтёру. В отличие от видеоуроков, где можно посмотреть, как выполняется то или иное действие, в книге можно держать рядом во время выполнения работы. В книге могут быть справочные материалы, которые не поместятся в видеоурок (как в школе — учитель рассказывает урок, описанный в учебнике, и эти формы обучения дополняют друг друга).

Есть сайты с большим количеством электротехнической литературы по самым разным вопросам — от теории до справочных материалов. На всех этих сайтах нужную книгу можно скачать на компьютер, а позже читать с любого устройства.

Например,

mexalib — разного рода литература, в том числе и по электротехнике

книги для электрика — на этом сайте много советов для начинающего электротехника

электроспец — сайт для начинающих электриков и профессионалов

Библиотека электрика — много разных книг в основном для профессионалов

Онлайн-учебники

Кроме этого, в интернете ест онлайн-учебники по электротехнике и электронике с интерактивным оглавлением.

Это такие, как:

Начальный курс электрика — учебное пособие по электротехнике

Основы электротехники — базовые понятия

Электроника для начинающих — начальный курс и основы электроники

Техника безопасности

Главное при выполнении электротехнических работ, это соблюдение техники безопасности. Если неправильная работа может привести к выходу из строя оборудования, то несоблюдение техники безопасности — к травмам, инвалидности или летальному исходу.

Главные правила — это не прикасаться к проводам, находящимся под напряжением, голыми руками, работать инструментом с изолированными ручками и при отключении питания вывешивать плакат «не включать, работают люди». Для более подробного изучения этого вопроса нужно взять книгу «Правила техники безопасности при электромонтажных и наладочных работах».

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором – периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока, измеряемой в амперах.

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление, измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность, связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электрика для чайников: основы электроники

Как читать электрические схемы – графические, буквенные и цифровые обозначения

Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой деятельности вопросе, как читать электрические схемы? Вопрос, на самом деле серьезный, ведь прежде, чем собрать схему, ее необходимо как-то обозначить на бумаге. Или найти готовый вариант для воплощения в жизнь. То есть, чтение электрических схем – основная задача любого радиолюбителя или электрика.

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО.

Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента. Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.

И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает). Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.

Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Условные обозначения на электрических схемах

Обозначение розетки на электрической схеме по ГОСТам

Как определить полярность электролитического конденсатора

Самоучитель электрика. Обучиться, научиться электромонтажу. Осветительная бытовая электрическая сеть, электричество своими руками. Схема электропроводки, проводки.

Наверняка я что-то упустил. Могут быть разные частные вопросы по электрике, которые я не осветил. Обязательно пишите вопросы в обсуждение статьи. Я, если смогу, на них отвечу.

Техника безопасности

Если Вы самостоятельно никогда не выполняли электромонтажные работы, то не следует думать, что прочитав этот материал, Вы сможете все сделать правильно, безопасно для себя и будущих пользователей. Статья позволит понять, как устроена бытовая осветительная сеть, уяснить основные принципы ее монтажа. Первый раз электромонтажные работы нужно проводить под наблюдением опытного специалиста. В любом случае, вне зависимости от того, имеете ли Вы официальный допуск, Вы берете на себя ответственность за жизнь, здоровье и безопасность себя и окружающих.

Никогда не работайте с высоким напряжением в одиночку. Всегда должен рядом быть человек, который в критической ситуации сможет обесточить систему, вызвать экстренные службы и оказать первую помощь.

Не следует выполнять работы под напряжением. Это развлечение для опытных профессионалов. Обесточьте сеть, с которой будете работать, убедитесь, что никто не сможет случайно включить электричество, когда Вы будете заниматься монтажом.

Не надейтесь на то, что до Вас проводка была выполнена правильно. Обзаведитесь датчиком (индикатором) фазы. Это такое устройство, похожее на отвертку или шило. У него есть щуп. Если щуп прикасается к проводу, находящемуся под напряжением, то загорается индикатор. Убедитесь, что Вы умеете правильно пользоваться этим датчиком. Есть тонкости. Некоторые датчики правильно работают только если пальцем прижимать специальный контакт на ручке. Перед тем, как начинать работу, с помощью индикатора фазы убедитесь, что проводка обесточена. Я не раз встречал ошибочно выполненные варианты проводки, когда автомат на входе разрывает только один провод, не обеспечивая полное обесточивание сети. Такая ошибка очень опасна, так как, отключив автомат, Вы предполагаете, что сеть обесточена, а это не так. Датчик фазы сразу предупредит Вас об опасности.

Главные неисправности электротехники

Мастера говорят, что в электротехнике есть всего два вида неисправностей. Нет нужного надежного контакта и есть ненужный. Действительно, в электромонтажном деле не бывает случаев, когда две точки сети должны быть связаны определенным сопротивлением. Они либо должны быть соединены, либо не соединены.

Схемы электрических соединений

На схеме приведена типовая двухконтурная проводка. На объект через автомат (A2 ), УЗО (A3 ) и электрический счетчик (A4 ) заведено сетевое напряжение осветительной сети (O1 ). Далее это напряжение разводится на два контура – осветительный и силовой. Оба контура имеют отдельные автоматы (A4 – осветительный контур, A5 – силовой) для их защиты от перегрузок и раздельного отключения при ремонтных работах. Автомат осветительного контура обычно выбирается на меньшую силу тока, чем автомат силового контура. К осветительному контуру подключены лампы (L1LN ) и две розетки (S1. S2 ) для подключения маломощных нагрузок, например, компьютера или телевизора. Эти розетки используются при ремонтных работах на силовом контуре для подключения электроинструмента. Силовой контур разведен на силовые розетки (S3SN ).

На схемах место соединения проводников обозначается точкой. Если проводники пересекают друг друга, но точки нет, то это означает, что проводники не соединены, они пересекаются без соединения.

Параллельное и последовательное соединения

Электрические цепи могут быть соединены параллельно и последовательно.

При последовательном соединении электрический ток, выходящий из одной цепи, попадает в другую. Таким образом, через все цепи, соединенные последовательно, протекает одинаковый ток.

При параллельном соединении электрический ток разветвляется на все цепи, соединенные параллельно. Таким образом, суммарный ток равен сумме токов в каждой цепи. Зато на цепи, соединенные параллельно, подается одинаковое напряжение.

На приведенной схеме входной автомат, УЗО, счетчик и вся остальная схема соединены последовательно. В результате автомат может ограничивать силу тока во всей цепи, а счетчик – измерять потребляемую энергию. Оба контура и нагрузки в них соединены параллельно, что позволяет подвести к каждой нагрузке сетевое напряжение, на которое она рассчитана, независимо от других нагрузок.

Здесь приведена принципиальная электрическая схема. Бывают еще монтажные схемы. На них указывается на плане объекта, где должна пройти проводка, где установить щит, где поставить розетки, выключатели и осветительные приборы. Там совсем другие обозначения. Я – не специалист в этих схемах. Информацию о них поищите в других источниках.

Основы электротехники для начинающих

  1. Понятия и свойства электрического тока
  2. Основные токовые величины
  3. Закон Ома
  4. Энергия и мощность в электротехнике
  5. Видео: Основы электротехники. Курс для начинающего электрика

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеств ом. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором – периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока. измеряемой в амперах .

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление. измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность. связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P=IxU. единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Что такое ноль и фаза в электричестве и зачем он нужен?

Очень немного людей  понимают суть электричества. Такие понятия как «электрический ток», «напряжение» «фаза» и «ноль» для большинства являются  темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. Для обучения электричеству с «нуля» нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Электрический ток и электрический заряд

Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон.

Заряд электрона — минимальный электрический заряд (квант, порция заряда), который встречается в природе у свободных долгоживущих частиц.

Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью).

Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны).

Кстати, о том, что такое ток, напряжение и сопротивление можно дополнительно почитать в нашей отдельной статье, посвященной закону Ома.

 

Электрический ток – это направленное движение заряженных частиц (носителей заряда) по проводнику. Само движение заряженных частиц возникает под действием электромагнитного поля – одного из фундаментальных физических полей.

Электрический ток может быть постоянным и переменным. При постоянном токе направление и величина тока не меняются. Переменный ток – это ток, изменяющийся во времени.

Источником постоянного тока является, например, батарейка. Но именно переменный ток используется в бытовых розетках, которые стоят в наших домах. Причина в том, что переменные токи гораздо проще получать и передавать на большие расстояния.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Основным видом переменного тока является синусоидальный ток. Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.

 

Непосредственно о таинственных фазе и нуле

Все мы слышали про фазу, три фазы, ноль и заземление.

Простейший случай электрической цепи – однофазная цепь. В ней всего три провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Третий провод в однофазной сети – земля (или заземление).

Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или «стекает» в землю.

Провод, по которому ток идет к прибору, называется фазой, а провод, по которому ток возвращается – нулем.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому — отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного.

Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ — 50 Гц.

В разных странах действуют разные стандарты напряжений и частот в сети. Например, в обычной домашние розетки в США подается переменный ток напряжением 100-127 Вольт и частотой 60 Герц.

Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску.

Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза — белого, черного или коричневого. Провод заземления также имеет свой окрас — желто-зеленый.

 

Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в студенческий сервис. С помощью наших специалистов даже самая дикая и сложная задача станет вам «по зубам».

Электричество из земли своими руками: схема, видео, идеи

Вопросами бесплатного получения электроэнергии задавалось множество хороших инженеров, таких как Никола Тесла, так и толпы лжеученных, которых ждало лишь разоблачение. Результатом их работы является целый ряд схем и способов получения энергии из альтернативных источников. Реально действующих установок или опытов, которые могут нести практическую пользу немного. В этой статье мы рассмотрим, как можно получить электричество из земли.

Возможно ли это?

Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.

Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.

Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.

Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.

Электричество из нуля и заземлителя

Этот способ подходит для жителей частных домов, если у них есть заземляющий контур. Знаете ли вы, что между заземлителем и нулевым проводом часто наблюдается разность потенциалов в 10-20 Вольт? Это значит, что их можно использовать бесплатно. Повысить их вы можете с помощью трансформатора.

Энергия потребленная таким образом счётчиком учитываться не будет. Такое напряжение можно определить либо вольтметром, либо подключив между этими двумя проводами низковольтную лампочку типа тех, что устанавливают в габариты или приборные панели автомобилей.

Важно! Не перепутайте фазу с нулём – это опасно!

Стоит отметить, что в качестве заземлителя используется отдельное устройство из металлических штырей, вбитых на глубину более 1 метра. Трубопровод в большинстве случаев не даст хорошего результата. Подробнее про заземление в частном доме вы можете узнать из нашей отдельной статьи.

Потенциал между крышей и землей

Этот метод также требует вбить в землю металлический штырь, к нему подключается провод. Второй провод подключается к металлической крыше. Так вы получите пару Вольт. Ток от такой схемы будет ничтожно мал и не факт, что его хватит для включения одного светодиода.

Гальванический элемент

Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.

Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.

Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними. Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи. Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.

На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.

Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.

Метод получения электричества по Белоусову

Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.

На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:

Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.

Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.

Наверняка вы не знаете:

Основы электротехники и электромеханики: начальный курс для чайников

Понятно желание людей любого возраста постичь такую науку, как электротехника. Помогут в этом основы электротехники для всех начинающих. В интернете и печати публикуется масса материалов, часто под заглавием «Электротехника для чайников». Начинать нужно с усвоения положений и законов электричества.

Учебное пособие по электротехнике

Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы. Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Что изучает электротехника

Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.

Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.

Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.

С чего начать изучение основ электротехники

Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.

Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК. Учебник всегда будет под рукой.

Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.

Основные характеристики тока

К основным характеристикам относятся сила тока, напряжение, сопротивление и мощность. Параметры электрического тока, протекающего по проводу, характеризуются именно этими величинами.

Сила тока

Параметр означает количество заряда, проходящего по проводу, за определённое время. Силу тока измеряют в амперах.

Напряжение

Это есть не что иное, как разница потенциалов между двумя точками проводника. Величина измеряется в вольтах. Один вольт – эта разность потенциалов, при которой для переноса заряда в 1 кулон потребуется произвести работу, равную одному джоулю.

Сопротивление

Этот параметр измеряется в омах. Его величина определяет сопротивление энергопотоку. Чем больше масса и площадь поперечного сечения проводника, тем больше сопротивление. Оно также зависит от материала и длины провода. При разнице потенциалов на концах проводника в 1 Вольт и силе тока 1 Ампер сопротивление проводника равно 1 Ому.

Мощность

Физическая величина выражает скорость протекания электроэнергии в проводнике. Мощность тока определяется произведением силы тока и напряжения. Единица мощности – ватт.

Закон Ома

Постижение основ электротехники нужно начинать с закона Ома. Именно он является фундаментом всей науки об электричестве. Выдающийся немецкий физик Георг Симон Ом в 1826 году сформулировал закон, в котором определяет взаимозависимость трёх основных параметров электрического тока: силы, напряжения и сопротивления.

Закон Ома

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

N = I x U.

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Электротехника и электромеханика

Электрическая механика – это раздел электротехники. Эта научная дисциплина изучает принципиальные схемы оборудования, двигателей и прочих приборов, использующих электрическую энергию.

Пройдя курс электромеханики для начинающих, новички могут самостоятельно научиться ремонтировать бытовые электрические устройства и приборы. Основные законы электромеханики дают возможность понять, как устроен электродвигатель, чем отличается трансформатор от стабилизатора, что такое генератор и многое другое.

Стенд для изучения основ электромеханики

Дополнительная информация. Несомненную пользу новичкам принесут учебные пособия и видео курсы по электротехнике и электромеханике. Если есть друзья или знакомые, разбирающиеся в этом деле, то это только поможет быстро освоить азы этих дисциплин.

Безопасность и практика

Основы электротехники для начинающих делают особое ударение на правилах техники безопасности. Их несоблюдение на практике порой может стать причиной получения электротравм и повреждения имущества. Для новичков в электротехнике надо следовать четырём основным требованиям ТБ.

Четыре правила техники безопасности для новичков:

  1. Перед работой с каким-либо устройством или оборудованием следует ознакомиться с его документацией. Все руководства по эксплуатации имеют раздел безопасности. В нём описаны опасные действия, которые могут вызвать короткое замыкание или удар электрическим током.
  2. Прежде, чем приступать к работе с электротехническими устройствами или электропроводкой, нужно отключить электричество. Затем произвести осмотр состояния изоляции проводников. Если обнаружено нарушение изоляционного покрытия, то оголённую часть проводников надо покрыть отрезком изоляционной ленты.
  3. При работе с проводкой и оборудованием под напряжением бытовой электросети надо использовать диэлектрические перчатки, защитные очки и обувь на толстой резиновой подошве. В электрораспределительных шкафах, щитах и электроустановках новичкам вообще делать нечего. Ими занимаются квалифицированные электрики, которые имеют допуск к работе под напряжением.
  4. Ни в коем случае нельзя касаться оголённых проводников руками. Для этого есть отвёртки-пробники, мультиметры и другие электроизмерительные приборы. Только убедившись в отсутствии напряжения, можно касаться проводов.

Электрика для чайников

Электроника окружает человека в виде различных устройств и приборов. Современная бытовая техника в большинстве своём управляется с помощью электронных схем. Курсы обучения основам электроники для начинающих нацелены на то, чтобы новичок мог отличать транзистор от резистора и понимать, как и для чего служит та или иная электронная схема.

Учебник по электронике для новичков

Учебные пособия и видеокурсы способствуют пониманию принципов построения электронных схем. Что такое печатная плата, как создать схему своими руками – на все эти вопросы отвечают основы электроники для новичков. Усвоив азы электроники, домашний «мастер» сможет определить вышедшую из строя радиодеталь в телевизоре, аудио устройстве и другой бытовой технике и заменить её. Кроме этого, новичок приобретёт опыт работы с паяльником.

Электронная схема усилителя звука

Видеокурсы, печатная продукция несут в себе массу информации по освоению основ электротехники, электромеханики и электроники. Приобрести знания в этих сферах можно, не выходя из дома. Просмотреть нужное видео, заказать учебники позволяет доступность сети интернета.

Видео

Электричество из земли своими руками: схема для дома

Из года в год стоимость электроэнергии в наших домах и квартирах растет, что заставляет большинство людей задуматься об ее экономии. Но есть и такие, что пытаются всеми возможными способами добыть хоть немного бесплатной энергии, например, электричество из земли. Поскольку число этих людей неуклонно растет, есть смысл рассмотреть вопрос подробнее, что и будет сделано в данной статье.

Мифы и реальность

На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.

Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.

Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.

Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.

Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.

Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.

Электричество от двух стержней

Данный способ основан совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А теория эта – о взаимодействии гальванических пар в солевом растворе. Если взять два стержня из разных металлов, погрузить их в такой раствор (электролит), то на концах появится разница потенциалов. Ее величина зависит от многих факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так далее.

Такое получение электричества возможно и через землю. Берем 2 стержня из разных металлов, образующих так называемую гальваническую пару: алюминиевый и медный. Погружаем их в землю на глубину ориентировочно полметра, расстояние между электродами соблюдаем небольшое, хватит 20—30 см. Участок земли между ними обильно поливаем солевым раствором и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора могут быть разными, но в лучшем случае вы получите 3 В.

Примечание. Показания вольтметра зависят от влажности почвы, ее природного солесодержания, размеров стержней и глубины их погружения.

В действительности все просто, получившееся бесплатное электричество – это результат взаимодействия гальванической пары, при котором влажная земля служила электролитом, принцип похож на работу солевой батарейки. Реальный эксперимент о разнице потенциалов на электродах, забитых в землю, можно посмотреть на видео:

Электричество от земли и нулевого провода

Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой. Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.

Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно. Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.

Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее. Они создают опасность поражения током для всех соседей.

Заключение

Извлекать электроэнергию из магнитного поля планеты своими руками – нереально. Описанные выше способы – другое дело, но их практическая ценность невелика. Разве что заряжать телефон во время похода, но тогда придется тащить с собой металлические трубы. Касаемо второго способа надо отметить, что напряжение между землей и нулем появляется далеко не всегда, а если и есть, то очень нестабильно. Прочие методы требуют большого количества меди и алюминия при неизвестном результате, о чем честно предупреждает автор установки, изображенной на рисунке:

Ввод в дом или подключения электричества с нуля в Анапе, электрик Анапа

 

Информация на данную тему была актуальна до июня 2020г., с 06.2020г. все заявки на подключение принимаются через сайт «госуслуги». Все работы выполняются за счёт поставщиков электроэнергии.                                       ……………………………………………………………………………………………………………………………………………..

Приветствую вас дорогие посетители, и так допустим вы приобрели земельный участок и намерены начать строительство дома, либо вы купили недостроенный дом и вам, как воздух нужно где то взять электричество.

Что делать и с чего начать, вот об этом я вам сейчас и постараюсь всё рассказать. Перво-наперво вам надо сходить в электро. снабжающую организацию:

 

  • «АНАПАЭЛЕКТРОСЕТЬ» — г.к.Анапа, ул.Лермонтова, д.117,                 т.(86133) -9-39-42, т.(86133) -6-37-00. Для городских жителей.

 

  • Либо «РАЙОННЫЕ ЭЛЕКТРОСЕТИ» — г.к.Анапа, пер.Строителей, д.5,   т.(86133) -5-42-22, т.(86133) -5-43-28. Для жителей прилегающих посёлков и хуторов.

Там вы пишете заявление на подключение к электро. сетям, бланк и форму заполнения вам подскажут в приёмном кабинете.

Небольшое отступление: на время строительства дома они обязаны  вам выделить 3kW. (вы сможете включить болгарку, пилу, бетономешалку  т.п.), далее вы определяетесь сколько в принципе вам нужно киловатт  для комфортной жизни в доме. Практика показывает, что уже 10kW. в среднем достаточно на дом площадью до 170кв.м., а на дом до 300кв.м. желательно иметь  15kW.  .

Продолжим,  в энерго. снабжающей организации вам выдадут на руки бумагу  — «Технические условия для присоединения к электрическим сетям… «, в которой будет указан весь список, что вам необходимо выполнить:

  • Указана подстанция от которой вам дадут энергию
  • Указан номер опоры к которой вы должны подтянуть провода
  • Указана марка и сечение проводов
  • Указана модель и класс счётчика
  • Указан номинал вводного автомата ограничивающего потребление электричества
  • И многие прочие параметры…  .

Так же срок исполнения этих условий ограничен двумя годами (верно на 2017г.).

Ну вот, первые шаги в нужном направлении вы уже совершили, что же дальше?Как правило мастера из гор. сетей не берутся за такую работу, она для них слишком мелкая, т.к. основные деньги они делают по опорам электропередач , воздушным линиям и подстанциям. Скорее всего вам посоветуют найти частного мастера.

Вот от сюда у вас и начинается второй этап самый проблематичный, но преодолимый.

Проблема заключается в том, что многие электрики с охотой берутся за такую работу, но далеко не многие знают все нюансы её выполнения. Сколько раз приёмщик из гор. сетей отказывал в подключении таких (вводов), то порядок подключения нарушен, то не та модель счётчика, не так выполнено заземление, не на том месте щит и многое другое. А помимо прочего несколько раз я наблюдал принятый на баланс энерго. сетей, опечатанный и подключённый вводной щит, но открыв его и посмотрев я просто ужасался безалаберности монтажников.

Приведу пример.

У человека куплено 15kW., соответственно три фазы, коммутационные провода в щите должны быть не менее десяти квадрат сечения (по меди), а я наблюдаю в таких щитах смонтированными горе электриками провода сечением два с половиной квадрата !!! Весь ужас в том, что всё опломбировано и просто так их уже не поменяешь, а когда человек начнёт пользоваться всеми электроприборами по полной, эти провода просто сгорят, ведь номинал автоматов рассчитан на пропуск всех 15kW., а провод может пропустить всего 5kW.!

Идём далее.

С специалистом электромонтажником вы определились, третий этап — покупка материала.

Ниже приведу ссылку, что вам может понадобится, но всегда в каждом конкретном случае советуйтесь с электриком, т.к. очень много нюансов.

Список материалов: ОДНОФАЗНЫЙ ВВОД, ТРЁХФАЗНЫЙ ВВОД.

В среднем поход в магазин за материалом для однофазного ввода вам обойдётся в 11-15т.р., а для трёхфазного ввода 19-22т.р. . Основные затраты это: программируемый счётчик, узо, провод… После покупки сразу нужно отдать счётчик на программирование в электро. снабжающую организацию, часто в помощь заказчику этим вопросом занимается электрик. После программирования собирается щит (автоматы, счётчик), монтируются провода на опору (но пока не подключаются к ней!) и обязательно нужен контур заземления. Описывать в подробностях сам монтаж я не буду т.к. вам это всё равно не пригодится а специалисты электрики сами знают процесс досконально.

Когда монтаж закончили вы должны ещё раз обратиться в электро. сетевую организацию, они в свою очередь проверят правильность выполненных работ и если всё смонтировано грамотно, опломбируют счётчик с вводным автоматом, выдадут вам «бумагу» — добро на подключение к линии электропередач.

Только после этого можно включится в электрическую сеть и наслаждаться цивилизацией.

На этом я заканчиваю и надеюсь, что  моя маленькая статья поможет вам наиболее легко пройти путь электрификации своего дома.

Полезная информация? Поделитесь с друзьями!

 

НАЗАД

Copyright © 2002г. — 2021г. www.elektrik193.ru все права защищены.

Создание электричества в эпоху пещерных людей

Допустим, вы хотите изобрести электричество заново. Большая часть современной электроэнергии вырабатывается путем перемещения проводников в магнитном поле. Итак, вам нужно магнитное поле, проводник и движение. Водяное колесо может приводить в движение, поэтому вам просто понадобится провод и несколько магнитов, и вы сможете вырабатывать электричество. На бумаге это звучит великолепно, но на самом деле приукрашивает интересную уловку-22 в использовании постоянных магнитов для выработки электричества.Это правда, что большая часть современного электричества вырабатывается путем перемещения проводников через магнитное поле, но сила магнитного поля, необходимого для создания любого практического количества электричества, намного сильнее, чем поле, создаваемое естественным магнитом. Сегодняшние магниты производятся с использованием больших электрических токов. Итак, вам нужно электричество, чтобы сделать сильный магнит, но вам нужен сильный магнит, чтобы произвести электричество. Это Уловка-22. К счастью, эту дилемму можно решить.(Я пропускаю, как сделать постоянный магнит, но если вы действительно хотите знать, посмотрите это видео.

Вместо того, чтобы пытаться сделать постоянный магнит, гораздо более практичным подходом было бы сделать примитивную батарею и использовать ее для питания электромагнита. Затем используйте электромагнит вместо постоянного магнита в генераторе. Часть произведенного электричества затем возвращается к электромагниту, и как только генератор начинает работать, аккумулятор может быть полностью отключен.Конечно, если генератор когда-нибудь остановится, весь процесс придется повторить. Технически это называется использованием внешнего возбуждения для индукции самовозбуждения полевых катушек в генераторе. Самовозбуждение — это то, как работает большинство крупных генераторов, подобных тем, что используются на современных электростанциях. Они не используют постоянные магниты, а питают внутренний электромагнит частью вырабатываемого электричества.

Давайте быстро посмотрим, как работает электромагнит, и почему не годится любой медный провод, и как вырабатывается электричество при перемещении проводников через магнитное поле.

Движущиеся электроны создают магнитное поле. Это очень похоже на то, как движущаяся лодка создает след.

Итак, любой проводник, по которому проходят электроны, имеет вокруг себя магнитное поле. Обычно это поле очень слабое (по сравнению с современными магнитами), но его можно усилить, намотав множество катушек проволоки в небольшом пространстве, и если катушки намотаны вокруг чего-то ферромагнитного, например, куска железа, то магнитное поле сфокусировано. .Так создается электромагнит. Но это не может быть просто медный провод — голый медный провод не подойдет. На провод необходимо нанести тонкий слой изоляции. Изоляция — это то, что заставляет электроны проходить через все катушки вместо того, чтобы сокращать путь от первой катушки к последней. Современный медный провод для обмоток имеет тонкий слой эмали, изолирующий провод и предотвращающий короткое замыкание. Подойдет любая непроводящая изоляция, но она должна быть тонкой, потому что толстая изоляция ограничивает количество витков провода, которое вы можете намотать на небольшом пространстве.Вы когда-нибудь «сжигали» электродвигатель? Это происходит, когда двигатель становится слишком горячим, и изоляция плавится, что позволяет сократить электроэнергию. Этот короткий путь снижает силу магнитного поля настолько, что двигатель больше не работает.

Вместо того, чтобы вдаваться в подробности того, как работают генераторы и двигатели, я просто направлю вас к этому отличному видео, которое стоит посмотреть каждому путешественнику во времени. Если после просмотра вы не понимаете, как построить приличный двигатель постоянного тока или генератор, то вам, вероятно, не стоит возиться с машинами времени.

8 доступных генераторов своими руками, которые ваша электрическая компания презирает

На всякий случай Джек | Последнее обновление: 15 мая 2017 г.

Невозможно перечислить все причины, по которым вы хотите построить генератор своими руками.

Может быть, вы готовитесь к долговременной чрезвычайной ситуации и хотите, чтобы генерировал собственную электроэнергию, если сеть выйдет из строя.

Может быть, вы живете в хижине в дикой местности, поддерживаемой землей, поддерживает мать-природа.

Возможно, вы мечтаете о автономной независимости и самостоятельности.

Может быть, вы хотите сэкономить несколько долларов на счетах за электроэнергию или даже полностью избавиться от них.

Может быть, вам не хочется тратить деньги на что-то вроде генератора энергии Патриота.

Или, может быть, вы хотите сделать это ради чистой радости создания функциональной науки.

Независимо от причины, цель всегда одна и та же; для производства и потребления собственного электричества.

Теперь для того, чтобы жить за пределами сети, не нужно электричество. Вы можете отключиться от сети без него. Без него люди выживали по всему миру десятки тысяч лет.

Можно разбить лагерь и прокормиться без электричества. Вместо лампочек используйте свечи. Забудьте о печи, используйте тепло камина. Вместо духовки используйте дровяную печь и толстые одеяла. Вы можете сделать это с правильным набором книг по выживанию и ноу-хау лесоруба.

Но электричество значительно облегчает жизнь. И большинство согласятся, что от этого становится лучше.

Например, холодильник и морозильная камера — очень трудные приспособления для жизни в нашем современном обществе.

Но электричество — это инструмент выживания, как и любой другой, просто нематериальный и нематериальный. Но чрезвычайно полезно.

Электричество — это универсальный инструмент, который помогает достичь многих целей, связанных с выживанием. Тепло, свет, готовка, развлечения, общение, строительство.

Приложения бесконечны.

Самое приятное то, что для создания генераторов своими руками не требуется интеллекта Никола Тесла.

Или даже степень в области электротехники.

Вы можете купить генераторы энергии и установить их у себя в собственности. Или вы можете построить свой собственный. Генераторы своими руками — чрезвычайно полезные инструменты. И они могут даже способствовать повышению устойчивости вашего автономного форпоста.

Создание собственного генератора — это навык, который имеет огромное значение в ситуации «SHTF».Даже если вы не планируете делать генератор своими руками сегодня, просто знание того, «как» — это ценный навык, которым вы должны обладать.


В качестве способа познакомить вас с навыками выживания, мы раздаем наш полный контрольный список для подготовки к работе с предметом # 78. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

Принципы производства электроэнергии

Прежде чем мы перейдем к различным генераторам, которые вы можете построить своими руками, давайте рассмотрим общую концепцию. Все электрические генераторы основаны на одних и тех же основных принципах.Итак, это действительно важные концепции, которые необходимо понять.

Каждый раз, когда вы используете электричество, вы используете энергию, пришедшую откуда-то еще. Будь то угольная электростанция, водопровод или ветер, энергия исходит из другого вида энергии.

Вы конвертируете один вид энергии ( ветровая, водяная, геотермальная, горения) в другой (, электричество, ).

Итак, как превратить энергию движущейся воды в электрическую энергию, хранящуюся в батарее?

Независимо от того, какие именно генераторы своими руками вы собираетесь построить, эти две детали очень важны: статор и ротор.

Статор — это неподвижная оболочка, в которой находится ротор, который вращается внутри статора. Ротор наполнен магнитами, которые при вращении внутри статора генерируют электрический ток.

Этот ток улавливается встроенными катушками статора и передается в накопитель.

Теперь для хранения электроэнергии, вырабатываемой статором и ротором, вам понадобится аккумулятор.

Есть много коммерческих аккумуляторов, предназначенных исключительно для хранения энергии собственного производства.По сути, чем больше батарея, тем больше энергии вы можете сохранить.

Если вы планируете часто использовать генератор, я бы порекомендовал приобрести большую батарею. Один со значительным потенциалом хранения энергии. Или, что еще лучше, набор батарей, соединенных последовательно.

Если вам нужно просто электричество для зарядки фотоаппарата и фонарика, идеально подойдут небольшие батарейки.

Теперь можно собрать собственную батарею, но лично я предпочитаю вернуть старую батарею к жизни. Это проще и менее опасно.

Если вы хотите узнать, как восстановить старые батареи, ознакомьтесь с этим курсом по восстановлению батарей EZ.


В качестве способа познакомить вас с навыками выживания, мы раздаем наш полный контрольный список для подготовки к работе с предметом # 78. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

Создание самодельных генераторов своими руками — 8 лучших решений

Есть несколько способов снять шкуру с кошки.Правильно? Если вы хотите сделать электричество своими руками, вы можете смотреть в небо, смотреть на море, смотреть в землю, заглядывать в свой гараж…

Потенциал производства электроэнергии есть повсюду.

Это хорошо, потому что в любой ситуации есть возможность выработки электроэнергии. Вам просто нужно понять, как это использовать.

По этой причине я составил очень краткий, но исчерпывающий список генераторов DIY.

1. Велогенератор:

Я поставил это первым, потому что это очень простая идея.

Поворачивая шестерни ( или колесо ) вашего велосипеда, вы превращаете его в ротор. Таким образом, вы можете одновременно производить электричество и тренироваться.

Нужно вскипятить воду? Нет проблем, потратите двадцать минут на самодельный велосипедный генератор — и готово!

Нужна лампа для чтения? Нажмите на педаль во время чтения, и у вас будет свет, пока вы находитесь на велосипеде!

Очевидно, это требует физического труда. Вы не будете обогревать большой дом с помощью велосипедного генератора.Но если вам нужно электричество для небольших быстрых задач, велосипедный генератор — отличный способ сделать это.

Для этой установки вам даже не понадобится целый велосипед — вы можете собрать велосипедный генератор своими руками, используя старые детали велосипеда. Таким образом, нет необходимости разбирать ваш любимый велосипед.

В следующем видео они используют двигатель беговой дорожки для преобразования энергии ног в электрическое напряжение, вот где вы можете получить двигатель беговой дорожки.

2. Гидроэлектрический генератор:

Я собираюсь пойти дальше и назвать гидроэнергетику ЛУЧШИМ вариантом в этом списке.Потому что он надежен, стабилен и чрезвычайно эффективен.

Гидроэлектроэнергия используется тысячи и тысячи лет. Древние греки были первыми приписывают преобразование движущейся воды в измельчение пшеницы. Они не использовали электричество, но они использовали энергию. Они превратили проточную воду в полезное занятие по производству муки.

Какая именно концепция лежит в основе производства гидроэлектроэнергии?

Гидравлические колеса — самый популярный способ получения гидроэнергетики.Помещая колесо в движущуюся воду, движение воды передается на прялку. Затем это колесо прикрепляется к ротору. И энергия накапливается статором перед передачей в батарею.

Многие ручьи и реки текут с почти постоянной скоростью. Таким образом, гидроэлектроэнергия вырабатывается круглосуточно — эффективно и рационально.

К сожалению, построить и установить действующую гидроэлектростанцию ​​самому сложно. Не невозможно, но требует большой дальновидности, подготовки и планирования.

И, конечно же, рядом нужен проточный водоем. Таким образом, они не зависят от местоположения, что делает их относительно редкими.

3. Энергия ветра:

Ветер — один из лучших вариантов после гидроэнергетики.

Основная идея та же — большие лопасти улавливают импульс ветра и передают его на ротор / статор.

К сожалению, ветряные турбины представляют проблему для обычного Джо. Обычно они требуют постоянного ухода и обслуживания.

Вот почему большинство крупных ветряных электростанций имеют команду высококвалифицированных инженеров. Их специально обучили управлению этими ветряными турбинами. Но становится легче.

Наиболее важным аспектом установки ветряной турбины является инвестирование в эффективную установку ротора / статора. Установка турбины, позволяющая улавливать как можно больше ветра.

Однако это действительно работает только в ветреных регионах. Ветер не принесет вам никакой пользы, если вы живете в месте, где воздух постоянно неподвижен ( или даже непредсказуемый ).

Если вы хотите, чтобы ваш ветряной электрогенератор окупился, вам нужно много стабильных и надежных ветров.

А вот подробное видео, как превратить старую аккумуляторную дрель в ветряную турбину.

Дополнительным преимуществом энергии ветра и воды является их экологическая устойчивость. Использование этих природных ресурсов (ветер и поток воды ) для выработки электроэнергии не приводит к выбросу загрязняющих веществ в процесс.


В качестве способа познакомить вас с навыками выживания, мы раздаем наш полный контрольный список для подготовки к работе с предметом # 78. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

4. Ручной генератор:

У меня есть фонарик, который не требует зарядки и замены батареек. Это ручной фонарик.

Все, что вам нужно сделать, это повернуть ручку, пока вы не создадите достаточное трение, чтобы привести вещь в действие. Это базовый тип ручного кривошипного генератора, и тот, который вы можете построить, аналогичен ему.

Это электрическое поколение похоже на велосипедный генератор.Он преобразует человеческую энергию в электрическую. Другими словами, вы получаете то, что вкладываете в это.

Если вам нужно экономить калории из-за недостатка еды, ручной генератор — плохой выбор. Но если вы потерялись в море и вам нужно подать сигнал о помощи, очень полезно иметь ручной генератор света.

Это ситуативно — ручные генераторы — не лучший вариант, но они подойдут в крайнем случае.

Вот видео о том, как превратить старую аккумуляторную дрель в ручной генератор, сделанный своими руками.

5. Компостный теплогенератор

Как насчет выработки тепла из отходов?

Тепло — это не электричество. , однако, тепло — это форма энергии, которая очень полезна.

Также интересно иметь возможность использовать компостные материалы ( древесной щепы, скошенной травы, мульчи, сена и т. Д. ) для генерирования большого количества тепла. Тепло, которое можно использовать для обогрева небольшого дома, теплицы, или даже для обогрева гидромассажной ванны.

Единственное предостережение: для циркуляции воды необходимо запустить насос.Таким образом, хотя эта установка создает тепло, для ее работы требуется некоторое количество энергии.

6. Генератор атмосферной энергии

Наша атмосфера полна этой потенциальной электрической энергии, которая ждет, чтобы ее использовали. Но вот в чем проблема: как использовать эту энергию для использования и потребления?

Можно генерировать небольшие количества «свободной» энергии, но ничего из того, что я знаю, не было изобретено для этого в масштабе . Однако это источник энергии, за которым нужно следить, потому что в нашем современном мире постоянно создаются и разрабатываются новые изобретения.

7. Солнечная энергия

Все знают о солнечной энергии, и на самом деле многие дома полностью или частично питаются от солнечной энергии.

Сейчас солнечные лучи свободны, но собирать их и преобразовывать в полезную энергию — нет.

Тем не менее, вы можете значительно сократить расходы на установку солнечной системы, если поймете, как она работает и как построить свою собственную солнечную энергетическую систему своими руками.

Если вы заинтересованы в правильной настройке системы для самостоятельной работы на солнечной энергии, , посмотрите The Backyard Revolution.

  • Неважно , если у вас нет денег, чтобы потратить на нелепую стандартную систему стоимостью 20 тысяч долларов.
  • Не имеет значения , если у вас нет времени или терпения, чтобы пройти через испытания и ошибки.
  • Неважно , если вы никогда раньше ничего не строили ( даже стул IKEA )

Это просто, легко и дешево — возможно, это лучшее решение для генераторов своими руками на рынке сегодня!

Нажмите здесь, чтобы узнать больше

8.Генератор биогаза

Общая идея генератора биогаза довольно проста. Вам просто нужен источник органических отходов, таких как сельскохозяйственных отходов, , навоза, , городских отходов, , растительного материала, сточных вод, , зеленых отходов , или пищевых отходов, . Затем вы берете эти органические отходы и помещаете их в большой контейнер или резервуар, называемый варочным котлом.

В варочный котел вы наполняете его органическим материалом и водой в определенном соотношении.

При разложении органических отходов выделяется тепло и газ.

Этот биогаз может затем приводить в действие генератор , который затем преобразует дешевый ( часто бесплатный ) биогаз «отходы» в электричество.

Если это похоже на установку, которую вы хотите построить, попробуйте Liberty Generator.

Применение самодельного электричества для выживания

Очевидно, что электричество облегчает жизнь. Качество человеческой жизни во всем мире резко возросло, когда она стала общим ресурсом.

Но для наглядности вот краткий список применений электричества для выживания:

Тепло

Во-первых, наиболее важное использование электричества для выживания — это способность вырабатывать тепло. Особенно в зимние месяцы и в более прохладных регионах.

Наличие метода быстрого и эффективного обогрева вашего убежища меняет правила игры.

Кулинария

Благодаря электричеству вам не придется разжигать огонь каждый раз, когда вы хотите готовить. Также не нужно иметь под рукой большой запас сухих дров (, хотя я очень рекомендую ).

Но жизнь проще, если использовать конфорки, электрические сковороды, тостеры или мультиварки. Все это значительно упрощает приготовление еды.

Это еще более важно для того, чтобы уметь готовить еду в чрезвычайной ситуации.

Освещение

Аварийные свечи и газовые фонари вызывают ностальгию и работают в более короткие сроки. Но все мы знаем, что это не самый эффективный или самый действенный способ осветить комнату.

Современные светодиодные электрические лампы потребляют очень мало энергии и служат очень долго. Есть также много вариантов перезаряжаемых фонарей, фонариков и ламп. Это эффективно и безопасно для окружающей среды.

Развлечения

Хотите верьте, хотите нет, но развлечения могут быть столь же ценным средством выживания, как и свежие продукты, потому что они сохраняют ваше рассудок, что бесценно в ситуации выживания.Черт возьми, здравомыслие — ценный ресурс в любой ситуации.

Зарядка мобильного телефона или небольшого радиоприемника может превратить неприятные обстоятельства в сносные.

Конечно, библиотека книг о выживании и игральных карт на выживание также является развлечением без электричества.

Пленка / Фотография

Камеры и оборудование для съемки используют электричество, и для работы требуются батарейки. Поэтому, если вам нужно дождаться выстрела, вам, возможно, придется использовать небольшой самодельный генератор энергии для зарядки и питания вашего оборудования.

Мучая врагов

Вы смотрели фильм «Одержимые»? Ну, в нем Лиам Нисон использует автомобильный аккумулятор, чтобы пытать и допросить похитителей своей дочери. Это довольно жестоко — , но, черт возьми, свою работу он выполняет.

В любом случае, если вам нужна форма «расширенного допроса», электричество ее предлагает.


В качестве способа познакомить вас с навыками выживания, мы раздаем наш полный контрольный список для подготовки к работе с предметом # 78. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .

Последнее слово

Электричество — один из самых эффективных инструментов выживания, когда-либо использовавшихся человеком. Это облегчает жизнь на Земле. Мы используем его для достижения бесконечного количества целей.

И что самое приятное в этом, энергия повсюду — она ​​ждет вас и ваши домашние генераторы .

Извлеките его из ветра или воды, используйте свою физическую силу или перенесите из другого источника энергии.

Если вы поймете концепцию сбора энергии, вы далеко пойдете. Если вы запомните эти принципы, у вас будет возможность построить генератор с нуля практически в любом месте.

Теперь это уверенность в своих силах.


В качестве способа познакомить вас с навыками выживания, мы раздаем наш полный контрольный список для подготовки к работе с предметом # 78. Нажмите здесь, чтобы получить БЕСПЛАТНУЮ копию .
Помни: готовься, адаптируйся и побеждай,
Джек «На всякий случай»

стр.с. Вы знаете, где находится ближайший ядерный бункер от вашего дома?

В США есть много абсолютно бесплатных природных ядерных убежищ. И один из них находится рядом с вашим домом.

Щелкните здесь, чтобы увидеть ближайший к вашему дому природный ядерный бункер?

Нажмите на изображение выше, чтобы узнать, где вам нужно укрыться.

Получите видео «10 шагов к базовой готовности» БЕСПЛАТНО.

Плюс ежедневные советы по выживанию (отписаться в любой момент).

Рекомендуемая литература

Жизнь за пределами сети: как вырабатывать собственное электричество

Когда мы с женой переехали в Монтану, мы нашли удобный дом на нескольких акрах земли с видом на горы.

Была только одна загвоздка — дом был отключен от электросети. Фактически, каждый в подразделении генерировал свою собственную энергию, включая отель типа «постель и завтрак» поблизости.

Это не значит, что он был примитивным. В доме были солнечные батареи, ветряная турбина, аккумуляторная батарея и инвертор, генератор и полный набор бытовой техники, включая стиральную машину и сушилку, холодильник, плиту, спутниковое телевидение, пропановую печь и даже посудомоечную машину.

Поскольку я работал на когенерационной электростанции до приезда в Монтану, я не слишком беспокоился о выработке собственной электроэнергии, поэтому мы купили дом.


Солнечная панель с трекером

Жизнь вне сети

Предыдущий владелец показал мне важные объекты и рассказал, как ими управлять.Когда мы въехали, мы вставили компактные люминесцентные лампы в каждую розетку, запрограммировали термостат на автоматическое понижение температуры ночью и обязательно выключили свет, когда выходили из комнаты. Мы думали, что у нас все под контролем.

В нашу третью ночь в доме мы легли спать, как обычно, под слабый шум ветра снаружи, звук, который мы уже начали получать, потому что он генерировал большую часть нашей энергии. Среди ночи меня разбудил звук — ничего.Ни гула холодильника, ни вентилятора печи, ни ветра. Крошечный индикатор питания на детекторе угарного газа не горел, как и цифровой дисплей на радиочасах. У нас не было силы.


Ветряная турбина

Я встал и вышел на улицу, чтобы проверить силовое оборудование. Очевидно, ветер утих ночью, и небольшое количество потребляемой энергии истощило батареи. Я запустил бензиновый генератор, и он начал подавать электроэнергию в наш дом и заряжать батареи.

Я только что усвоил первый урок энергии ветра и солнца: на них не всегда можно рассчитывать, когда они нужны. Независимо от того, где вы находитесь, солнце всегда заходит, а ветер перестанет дуть.

№ 2610: Ежедневное электричество

Сегодня повседневное электричество. Инженерный колледж Хьюстонского университета представляет эту серию о машинах, которые делают нашу цивилизацию бегут, и люди, чья изобретательность создала их.

Я уже говорил о проблеме Коннектикут Янки при дворе короля Артура. Представьте, что вас установили в раннесредневековой Англии и попросил построить двигатель или летающий машина. Я сомневаюсь, что мы могли бы. Любая технология — это совокупное приращение идеи. Один человек не вселяется и не создает современный мир сразу. Книга Марка Твена была всего лишь социальной сатирой.

Теперь у меня есть книга Дона Кэмерона Шафера 1914 года о Ежедневное электричество и это проливает другой свет на наших янки из Коннектикута.Шафер берет земной взгляд на его предмет. Он говорит: «Электричество — это форма энергии. Бесполезно пытаться это объяснить. И не надо думать [различные теории] его происхождения «.

Потом он с головой окунается в электричество своими руками начиная с простых батареек. Батареи — это то, что наш прагматичный янки мог бы сделать. Все, что он нужны две разнородные металлические тарелки и кувшин с каустической содой или соленой водой.

В книге рассказывается о разновидностях коммерческих аккумуляторов, о том, как подключать аккумуляторные схемы, как установить зуммеры и сигнализацию. Но Шафер постоянно подталкивает своего читателя к строительство с нуля. Позже в книге он предлагает нам построить свой собственный электрический мотор. В разделе о намотке якоря он говорит: «Почти каждый испытывает трудности с изготовлением первой арматуры».

Хорошо, я думаю, мы можем принять , что за чистую монету.Но он не останавливается на достигнутом. Мы можем построить собственную индукционную катушку — собственный трансформатор. Он говорит нам «Обильно покройте первичные катушки тремя или четырьмя слоями плотной хлопчатобумажной ткани и шеллака».

Если Шафер пытается превратить своих читателей в янки Коннектикута, его усилия сломаются. вниз в точку. Нам много рассказывают о том, как подключить электрическое освещение. Но, в конце концов, мы должны купить лампочку в строительном магазине. Далее он говорит:

Мужчина из Канзаса купил несколько электрических ламп и был разочарован. потому что они не зажигали.Он был очень удивлен, когда обнаружил выяснилось, что он не мог использовать их без установки частной электростанции.

Однако Шафер не из тех, кто бросит этого человека в беде. Следующий раздел его В книге рассказывается, как построить гидроэлектрический генератор в ручье, протекающем через ферму.

Shafer отражает самоуверенный и решительный дух Америки до Первой мировой войны. Когда Твен написал его Connecticut Yankee, 25 лет назад, плохо справились.Людям не понравилось его мрачная, циничная картина неспособности технологий преодолевать политические силы. Но, ко времени Шафера казалось, что технологии могут привести нас куда угодно — будь проклята политика.

Тем не менее, я так и не намотал свою арматуру. И я содрогаюсь при мысли о том, чтобы открыть свой телевизор сделать ремонт. И Твен, и Шафер покачали бы головами, если бы увидели сегодняшнее черный ящик мира. Если ничего другого, Книга Шафера — мрачное напоминание о том, как далеко мы ушли от любого янки из Коннектикута. правдоподобие, которое у нас когда-либо было.

Я Джон Линхард из Хьюстонского университета, где нас интересуют изобретательные умы работай.

(Музыкальная тема)

Д. К. Шафер, Harper’s Everyday Electricity. (Нью-Йорк: Харпер и братья Издательство, 1914 г. Все изображения взяты из этого источника.

Подробнее о том, что я называю Проблема Янки Коннектикута , см. В эпизоде ​​1021.

Двигатели нашей изобретательности Авторские права © 1988-2010, Джон Х. Линхард.


Производство электроэнергии | Code Club Australia

ACTDIK034