Диоды позволяют: Применение диодов

Содержание

Применение диодов

Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.

1. Нелинейная обработка аналоговых сигналов

В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.

2. Выпрямители

Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.

3. Стабилизаторы

Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.

4. Ограничители

Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого типа широко применяются диоды, которые имеют прекрасные ограничительные свойства. В сложных устройствах могут использоваться и другие элементы, но большинство ограничителей базируются на самых обычных диодных узлах стандартного типа.

5. Устройства коммутации

Диоды нашли применение и в устройствах коммутации, которые используются для того, чтобы переключать токи или напряжения. Диодные мосты дают возможность размыкать или замыкать цепь, которая служит для передачи сигнала. В работе применяется некоторое управляющее напряжение, под воздействием которого и происходит замыкание или размыкание. Иногда управляющим может быть сам входной сигнал, такое бывает в самых простых устройствах.

6.Логические цепи

В логических цепях диоды применяются для того, чтобы обеспечить прохождение тока в нужном направлении (элементы «И», «ИЛИ»). Подобные цепи используются в схемах аналогового и аналогово-цифрового типа. Здесь перечислены только основные устройства, в которых применяются диоды, но существует и много других, менее распространенных.

Светодиоды

Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.

1. Одиночные светодиоды

Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.

2. 7’Segment

Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.

3. Матрица светодиодов

Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.

4. LED телевизоры

LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.

Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.

Что такое диоды и для чего они используются?

Автор Глеб Захаров На чтение 4 мин. Просмотров 32 Опубликовано

Простейший полупроводниковый компонент – диод – выполняет множество полезных функций, связанных с его основной целью управления направлением потока электрического тока. Диоды позволяют току течь через них только в одном направлении.

Совершенно эффективные диоды представляют собой разомкнутые цепи с отрицательным напряжением, в противном случае они выглядят как короткие замыкания. Но поскольку диоды допускают некоторую неэффективность, их отношение тока к напряжению является нелинейным.

Таким образом, вы захотите ознакомиться с таблицей данных диода, чтобы увидеть график кривой прямого напряжения любого диода относительно его прямого тока, чтобы вы выбрали правильный диод для вашего конкретного проекта.

Применение диодов


Несмотря на то, что диоды являются простыми двухконтактными полупроводниковыми приборами, они жизненно важны в современной электронике. Некоторые из типичных применений диодов включают в себя:

  • Выпрямление напряжения, например, преобразование переменного тока в постоянное напряжение
  • Изоляция сигналов от источника
  • Управление размером сигнала
  • Микширование сигналов

Преобразование мощности


Одним из важных применений диодов является преобразование мощности переменного тока в мощность постоянного тока. Один диод или четыре диода могут быть использованы для преобразования домашнего напряжения 110 В в постоянный ток путем формирования полупроводникового (одиночного диода) или двухполупериодного (четыре диода) выпрямителя . Диод делает это, пропуская через него только половину сигнала переменного тока. Когда этот импульс напряжения используется для зарядки конденсатора, выходное напряжение представляется постоянным напряжением постоянного тока с небольшой пульсацией напряжения. Использование двухполупериодного выпрямителя делает этот процесс еще более эффективным за счет направления импульсов переменного тока, так что положительная и отрицательная половины входной синусоидальной волны рассматриваются как только положительные импульсы, эффективно удваивая частоту входных импульсов для конденсатора, что помогает держать его заряженным и обеспечивает более стабильное напряжение.

Диоды и конденсаторы также могут быть использованы для создания ряда типов умножителей напряжения, чтобы брать небольшое напряжение переменного тока и умножать его для создания выходов очень высокого напряжения. Оба выхода переменного и постоянного тока возможны с использованием правильной конфигурации конденсаторов и диодов.

Демодуляция сигналов


Наиболее распространенным применением диодов является удаление отрицательного компонента сигнала переменного тока. Поскольку отрицательная часть сигнала переменного тока обычно идентична положительной половине, в процессе ее удаления фактически теряется очень мало информации, что приводит к более эффективной обработке сигнала.

Демодуляция сигнала обычно используется в радиооборудовании как часть системы фильтрации, чтобы помочь извлечь радиосигнал из несущей волны.

Защита от перенапряжения


Диоды также функционируют как защитные устройства для чувствительных электронных компонентов. При использовании в качестве устройств защиты по напряжению диоды непроводящие в нормальных условиях эксплуатации, но сразу же закорачивают любой высоковольтный выброс на землю, где он не может повредить интегральную схему. Специализированные диоды, называемые ограничителями переходного напряжения , разработаны специально для защиты от перенапряжения и могут выдерживать очень большие скачки мощности в течение коротких периодов времени, типичные характеристики скачка напряжения или поражения электрическим током, которые обычно повреждают компоненты и укорачивают жизнь электронного продукта.

Аналогично, диод может регулировать напряжение, выступая в роли ограничителя или ограничителя – специализированного назначения, которое ограничивает напряжение, которое может проходить через него в определенной точке.

Текущее рулевое управление


Основное применение диодов – управлять током и следить за тем, чтобы он двигался только в правильном направлении. Одной из областей, где текущая способность управления диодами используется для достижения хорошего эффекта, является переключение с питания, поступающего от источника питания, на питание от аккумулятора. Когда устройство подключено и заряжается – например, сотовый телефон или источник бесперебойного питания – устройство должно получать питание только от внешнего источника питания, а не от батареи, и пока устройство подключено к аккумулятору, должно потребляться питание и перезарядка. Как только источник питания отключен, аккумулятор должен запитывать устройство, чтобы пользователь не заметил прерывания.

Хорошим примером текущего управления является защита от обратного тока. Рассмотрим, например, ваш автомобиль. Когда ваша батарея разрядится, и дружелюбный прохожий предложит помочь с перемычками, если вы смешаете порядок красного и черного кабелей, вы не будете жарить электрическую систему вашего автомобиля, потому что диоды, смежные с батареей, блокируют ток неправильного направления.

Логические ворота


Компьютеры работают в двоичном формате – бесконечное море нулей и единиц. Бинарные деревья решений в вычислениях основаны на логических элементах, включаемых диодами, которые контролируют, включен ли переключатель («1») или выключен («0»).Хотя в современных процессорах появляются сотни миллионов диодов, они функционально такие же, как диоды, которые вы покупаете в магазине электроники, – только намного меньше.

Диоды и Свет


Светодиодный фонарик – это просто фонарик, освещение которого исходит от светодиода. При наличии положительного напряжения светодиоды светятся.

Фотодиод, напротив, принимает свет через коллектор (как мини-солнечная панель) и преобразует этот свет в небольшое количество тока.

Новый спиновой диод для всепогодного машинного зрения

Константин Звездин, старший научный сотрудник лаборатории физики магнитных гетероструктур и спинтроники для энергосберегающих информационных технологий МФТИ, руководитель проекта «Спинтроника» Российского квантового центра, комментирует: «Обычные спиновые диоды со свободными ферромагнитными слоями могут работать на фиксированных частотах, не превышающих двух-четырёх гигагерц. В данной работе мы предложили схему спинового диода, в котором ферромагнитные слои связаны со слоями антиферромагнетиков, что позволяет увеличить частотный диапазон устройства примерно до 10 гигагерц, причём без значительной потери чувствительности. Это существенно расширяет область возможного использования спиновых диодов, открывая для них такие приложения, как, например, всепогодное машинное зрение, основанное на микроволновой голографии».

Спиновой диод

Все современные электронные устройства — диоды, транзисторы, операционные усилители и так далее — работают с электрическим током. Другими словами, все они тем или иным образом управляют потоками заряженных частиц (электронов и дырок). Например, в полупроводниковом диоде соединение областей с повышенной концентрацией электронов и дырок (p-n-переход) приводит к тому, что прибор может пропускать электрический ток только в одну сторону. Используя эту особенность диодов, можно собрать выпрямитель — устройство, которое превращает переменный ток в постоянный.

В то же время, помимо заряда, электроны обладают ещё одним важным свойством: у них есть спин. Спин — это чисто квантовая величина, аналогичная моменту импульса, которым обладают вращающиеся тела из классической механики. В обычном электрическом токе спины электронов направлены хаотично, однако их можно выстроить в одном направлении и получить спиновый ток. Наука, которая занимается изучением спиновых токов, называется спинтроникой. В настоящее время учёные уже научились изготавливать спинтронные наногенераторы, детекторы микроволнового излучения и магнитного поля, которые превосходят свои электронные аналоги.

Аналогом полупроводникового диода в спинтронике является спиновый диод — прибор, который умеет выпрямлять проходящий через него ток. Спиновый диод представляет собой два тонких слоя ферромагнетиков, разделённых слоем диэлектрика, в основе его работы лежат эффекты туннельного магнетосопротивления и вращения в результате переноса спина (spin-transfer torque effect). Если кратко, эти эффекты заключаются в следующем. При пропускании обычного тока через первый слой ферромагнетика спины электронов выстраиваются вдоль намагниченности ферромагнетика, то есть ток становится спиновым. Затем электроны туннелируют через диэлектрик и сталкиваются со вторым ферромагнитным слоем. В зависимости от угла между намагниченностью слоя и спинами электронов, частицы лучше или хуже проходят через него — следовательно, сопротивление прибора зависит от ориентации магнитных слоёв (первый эффект). Одновременно с этим электроны стараются повернуть второй слой, чтобы проходить через него было проще (второй эффект). Поэтому если пропускать через диод переменный ток, намагниченность его слоёв — а следовательно, и сопротивление — будет колебаться одновременно с величиной тока, и в результате ток выпрямляется.

Благодаря этим эффектам можно изготавливать спиновые диоды с чувствительностью более ста тысяч вольт на ватт, хотя максимальная чувствительность обычных полупроводниковых диодов Шоттки не превышает 3 800 вольт на ватт. Чувствительность — это отношение напряжения выходящего постоянного тока к мощности прикладываемого переменного тока; грубо говоря, она описывает, насколько хорошо устройство выпрямляет ток. Тем не менее, есть у спиновых диодов и недостатки. Например, их чувствительность сильно зависит от частоты переменного тока, резко возрастая около резонансного значения и оставаясь близкой к нулю вдали от него. Кроме того, резонансные частоты всех изготовленных ранее спиновых диодов не превышают двух гигагерц. В то же время для некоторых приложений — например, для микроволновой голографии — нужны диоды, работающие на бóльших частотах.

А если «зажать» антиферромагнетиком?

В данной работе учёные из МФТИ описывают способ, с помощью которого можно задавать резонансную частоту спинового диода при изготовлении, а также повысить рабочую частоту. Для этого физики предлагают «зажать» диод между двумя антиферромагнитными слоями. Благодаря обменному закреплению (exchange pinning) слои ферромагнетиков и антиферромагнетиков оказываются связаны, что позволяет управлять углом между намагниченностями ферромагнетиков — а значит, сопротивлением и резонансной частотой прибора. Чтобы проверить работоспособность предложенной схемы, учёные численно смоделировали спиновый диод со слоями толщиной порядка нескольких нанометров, а затем исследовали его свойства.

Кратко поясним, что такое ферромагнетик и антиферромагнетик. В каждом из этих материалов спины атомов обладают дальним порядком — другими словами, на достаточно больших расстояниях структура материала повторяется. В ферромагнетиках спины всех атомов выстроены параллельно заданной оси, а в антиферромагнетиках — антипараллельно. Конечно, в жизни всё немного сложнее, и в действительности при ненулевой температуре на эти картинки накладываются тепловые колебания, поворачивающие спины в случайных направлениях. При превышении определённой температуры дальний порядок полностью разрушается, и вещество становится парамагнетиком, в котором спины всех атомов направлены произвольно. Для ферромагнетиков такая температура называется точкой Кюри, для антиферромагнетиков — точкой Нееля. Кроме того, обычно спины выстраиваются вдоль заданной оси не во всём объёме вещества, а в макроскопических областях, называемых доменами.

Изучили, что получили

Для начала учёные изучили, как угол между намагниченностями ферромагнитных слоёв θ зависит от угла между осями антиферромагнетиков φ (AFM pinning angle), который можно контролировать на этапе изготовления диода, поворачивая антиферромагнетики. Вообще говоря, эти углы не совпадают, хотя и связаны друг с другом (рис. 2). Оказалось, что угол между намагниченностями можно изменять только в диапазоне от 110 до 170 градусов, причём в промежутке от 110 до 140 градусов зависимость является нелинейной. Тем не менее, этого диапазона оказывается достаточно, чтобы контролировать свойства диода.

Затем исследователи выяснили, как зависит чувствительность диода от частоты переменного тока при фиксированном угле между намагниченностями слоёв. Оказалось, что около резонансной частоты чувствительность резко возрастает, при этом достигая значений порядка тысячи вольт на ватт. Это значение меньше максимальной чувствительности изготовленных ранее спиновых диодов, однако всё ещё достаточно велико, чтобы сравниться с обычными полупроводниковыми диодами.

Гораздо более важным является то, что резонансную частоту нового диода можно изменять от 8,5 до 9,5 гигагерц, контролируя угол φ во время изготовления прибора. Впрочем, стоит отметить, что пока учёные рассмотрели предложенную схему только теоретически. Следующим шагом будет изготовление экспериментального образца и непосредственная проверка предсказанных свойств.

Ранее учёные из МФТИ научились закручивать магнитные вихри в спинтронных устройствах, образованных ферромагнетиком и топологическим изолятором. Топологический изолятор — это материал, который проводит электрический ток только по поверхности, а внутри является обычным изолятором.

Работа поддержана Российским научным фондом.

Конструкции и карактеристики диодов, особенности их применения

Конструкции и карактеристики диодов, особенности их применения

Диод — двухэлектродный электронный компонент, обладающий различной электрической проводимостью в зависимости от полярности приложенного к диоду напряжения. Диоды обладают нелинейной вольт-амперной характеристикой, но в отличие от ламп накаливания и терморезисторов, у диодов она несимметрична.

Вольтамперная характеристика диода

Вольтамперная характеристика (ВАХ) полупроводникового диода показана на рисунке 1.

Здесь в одном рисунке показаны ВАХ германиевого (синим цветом) и кремниевого (черным цветом) диодов. Нетрудно заметить, что характеристики очень похожи. На координатных осях нет никаких цифр, поскольку для разных типов диодов они могут существенно различаться: мощный диод может пропустить прямой ток в несколько десятков ампер, в то время как маломощный всего несколько десятков или сотен миллиампер.

Диодов разных моделей великое множество, и все они могут иметь разное назначение, хотя основной их задачей, основным свойством является обеспечение односторонней проводимости тока. Именно это свойство позволяет использовать диоды в выпрямителях и детекторных устройствах. Следует, однако, заметить, что в настоящее время германиевые диоды, равно как и транзисторы вышли из употребления.

Рисунок 1. Вольтамперная характеристика диода

Прямая ветвь ВАХ

В первом квадранте системы координат расположена прямая ветвь характеристики, когда диод находится в прямом включении, — к аноду подключен положительный вывод источника тока, соответственно отрицательный вывод к катоду.

По мере увеличения прямого напряжения Uпр, начинает возрастать и прямой ток Iпр. Но пока это возрастание незначительно, линия графика имеет незначительный подъем, напряжение растет значительно быстрее, чем ток. Другими словами, несмотря на то, что диод включен в прямом направлении, ток через него не идет, диод практически заперт.

При достижении определенного уровня напряжения на характеристике появляется излом: напряжение практически не меняется, а ток стремительно растет. Это напряжение называется прямым падением напряжения на диоде, на характеристике обозначено как Uд. Для большинства современных диодов это напряжение находится в пределах 0,5…1В.

На рисунке видно, что для германиевого диода прямое напряжение несколько меньше (0,3…0,4В), чем для кремниевого (0,7…1,1В). Если прямой ток через диод умножить на прямое напряжение, то полученный результат будет не что иное, как мощность, рассеиваемая на диоде Pд = Uд * I.

Если эта мощность будет превышена относительно допустимой, то может произойти перегрев и разрушение p-n перехода. Именно поэтому в справочниках ограничивается максимальный прямой ток, а не мощность (считается, что прямое напряжение известно). Для отведения излишнего тепла мощные диоды устанавливаются на теплоотводы — радиаторы.

Мощность, рассеиваемая на диоде

Сказанное поясняет рисунок 2, на котором показано включение нагрузки, в данном случае лампочки, через диод.

Рисунок 2. Включение нагрузки через диод

Представьте себе, что номинальное напряжение батарейки и лампочки 4,5В. При таком включении на диоде упадет 1В, тогда до лампочки дойдет лишь 3,5В. Конечно, такую схему никто практически собирать не будет, это просто для иллюстрации, как и на что влияет прямое напряжение на диоде.

Предположим, что лампочка ограничила ток в цепи на уровне ровно в 1А. Это для простоты расчета. Также не будем принимать во внимание то, что лампочка является элементом нелинейным, и закону Ома не подчиняется (сопротивление спирали зависит от температуры).

Нетрудно подсчитать, что при таких напряжениях и токах на диоде рассеивается мощность P = Uд * I или 1В * 1А = 1Вт. В то же время мощность на нагрузке всего 3,5В * 1А = 3,5Вт. Получается, что бесполезно расходуется 28 с лишним процентов энергии, больше, чем четвертая часть.

Если прямой ток через диод будет 10…20А, то бесполезно будет расходоваться до 20Вт мощности! Такую мощность имеет маленький паяльник. В описанном случае таким паяльником будет диод.

Диоды Шоттки

Совершенно очевидно, что избавиться от таких потерь можно, если снизить прямое падение напряжения на диоде Uд. Такие диоды получили название диодов Шоттки по имени изобретателя немецкого физика Вальтера Шоттки. Вместо p-n перехода в них используется переход металл – полупроводник. Эти диоды имеют прямое падение напряжения 0,2…0,4В, что значительно снижает мощность, выделяющуюся на диоде.

Единственным, пожалуй, недостатком диодов Шоттки является низкое обратное напряжение, — всего несколько десятков вольт. Максимальное значение обратного напряжения 250В имеет промышленный образец MBR40250 и его аналоги. Практически все блоки питания современной электронной аппаратуры имеют выпрямители на диодах Шоттки.

Обратная ветвь ВАХ

Одним из недостатков следует считать то, что даже при включении диода в обратном направлении через него все равно протекает обратный ток, ведь идеальных изоляторов в природе не бывает. В зависимости от модели диода он может варьироваться от наноампер до единиц микроампер.

Вместе с обратным током на диоде выделяется некоторая мощность, численно равная произведению обратного тока на обратное напряжение. Если эта мощность будет превышена, то возможен пробой p-n перехода, диод превращается в обычный резистор или даже проводник. На обратной ветви ВАХ этой точке соответствует загиб характеристики вниз.

Обычно в справочниках указывается не мощность, а некоторое предельно допустимое обратное напряжение. Примерно так же, как ограничение прямого тока, о котором было сказано чуть выше.

Собственно зачастую именно эти два параметра, а именно прямой ток и обратное напряжение и являются определяющими факторами при выборе конкретного диода. Это на тот случай, когда диод предназначается для работы на низкой частоте, например выпрямитель напряжения с частотой промышленной сети 50…60Гц.

Электрическая емкость p-n перехода

При использовании диодов в высокочастотных цепях приходится помнить о том, что p-n переход, подобно конденсатору имеет электрическую емкость, к тому же зависящую от напряжения, приложенного к p-n переходу. Это свойство p-n перехода используется в специальных диодах – варикапах, применяемых для настройки колебательных контуров в приемниках. Наверно, это единственный случай, когда эта емкость используется во благо.

В остальных случаях эта емкость оказывает мешающее воздействие, замедляет переключение диода, снижает его быстродействие. Такая емкость часто называется паразитной. Она показана на рисунке 3.

Рисунок 3. Паразитная емкость

Конструкция диодов.

Плоскостные и точечные диоды

Чтобы избавиться от вредного воздействия паразитной емкости, применяются специальные высокочастотные диоды, например точечные. Конструкция такого диода показана на рисунке 25.

Рисунок 4. Точечный диод

Особенностью точечного диода является конструкция его электродов, один из которых является металлической иглой. В процессе производства эта игла, содержащая примесь (донор или акцептор), вплавляется в кристалл полупроводника, в результате чего получается p-n переход требуемой проводимости. Такой переход имеет малую площадь, а, следовательно, малую паразитную емкость. Благодаря этому рабочая частота точечных диодов достигает нескольких сотен мегагерц.

В случае, если используется более острая игла, полученная без электроформовки, рабочая частота может достигать нескольких десятков гигагерц. Правда, обратное напряжение таких диодов не более 3…5В, да и прямой ток ограничен несколькими миллиамперами. Но ведь эти диоды и не являются выпрямительными, для этих целей, как правило, применяются плоскостные диоды. Устройство плоскостного диода показано на рисунке

Рисунок 5. Плоскостный диод

Нетрудно видеть, что у такого диода площадь p-n перехода намного больше, чем у точечного. У мощных диодов эта площадь может достигать до 100 и более квадратных миллиметров, поэтому их прямой ток намного больше, чем у точечных. Именно плоскостные диоды используются в выпрямителях, работающих на низких частотах, как правило, не свыше нескольких десятков килогерц.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов.

Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи.

Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала.

Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания.

Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED — подсветкой, не заметить их просто невозможно.

Ранее ЭлектроВести писали, что в январе 2021 Украина снизила экспорт электроэнергии в 13,4 раза (на 645,3 млн кВт*ч) по сравнению с аналогичным периодом 2020 году – до 51,9 млн кВт*ч.

По материалам: electrik.info.

Как работают диоды Шоттки

Все, что вам нужно знать о том, как работают диоды Шоттки


Подобно другим диодам, диод Шоттки в зависимости от направления течения тока в электрической цепи влияет на ток. В мире электроники эти устройства работают так же, как улицы с односторонним движением – они позволяют току течь только от анода к катоду. Тем не менее, в отличие от обычных полупроводниковых диодов, диод Шоттки известен благодаря низкому падению напряжения при его прямом включении и способностью к быстрому переключению. Это делает его идеальным выбором для использования в высокочастотных устройствах, а также в устройствах, где используются низкие напряжения. Диод Шоттки может применяться в самых разных устройствах, например:

  • Для выпрямления тока большой мощности. Диоды Шоттки могут использоваться в мощных устройствах благодаря низкому падению напряжения при прямом включении. Эти диоды затрачивают меньше энергии, что способствует уменьшению размеров радиатора;

  • В универсальных источниках питания. Диоды Шоттки также могут помогать разделять питание при использовании блоков двойного электропитания, использующих энергию электрической сети и аккумуляторов;

  • В элементах солнечных батарей. Диоды Шоттки могут помочь добиться максимальной эффективности элементов солнечной батареи благодаря низкому падению напряжения при прямом включении. Также они помогают защищать ячейки от обратного заряда;

  • В качестве защелки. Диоды Шоттки могут также использоваться в качестве защелки в транзисторных схемах, а также в цепях с логическими элементами 74LS или 74S.

Преимущества и недостатки диода Шоттки

Одним из главных преимуществ использования диода Шоттки вместо обычного диода является низкое сопротивление его перехода металл-полупроводник, приводящее к тому, что напряжение падает при его прямом включении. Таким образом диод Шоттки потребляет меньшее напряжение, чем обычный диод. На его p-n-переходе падает лишь 0,3-0,4 В. На графике ниже вы можете видеть прямое падение напряжение, составляющее приблизительно 0,3 В. Ток через диод Шоттки значительно возрастает при увеличении напряжения сверх указанного. Через обычный диод ток не растет до напряжения приблизительно 0,6 В.

На рисунках ниже показаны две электрические цепи в качестве иллюстрации преимуществ низкого падения напряжения при прямом включении. В цепи слева обычный диод, а справа – диод Шоттки. У обеих цепей источник питания дает напряжение 2 В постоянного тока.

Обычный диод потребляет 0,7 В, отдавая нагрузке лишь 1,3 В. Благодаря низкому падению напряжения при прямом включении, диод Шоттки потребляет только 0,3 В, отдавая нагрузке 1,7 В. Если нагрузке необходимы 1,5 В, то для такой задачи подойдет только диод Шоттки.

Другие преимущества использования диода Шоттки вместо обычного диода:

  • Малое время обратного восстановления. Диод Шоттки накапливает небольшой заряд, что делает его идеальным для использования в схемах, требующих быстрого переключения — они широко используются при конструировании высокочастотных печатных плат;

  • Пониженный уровень помех. Диод Шоттки добавляет в схему меньшее количество нежелательного шума по сравнению с типичным диодом с p-n-переходом;

  • Более высокие характеристики. Диод Шоттки потребляет меньше энергии, поэтому подходит по техническим требованиям для использования в низковольтных устройствах.

Также следует помнить о нескольких недостатках диодов Шоттки. Диод Шоттки, на который подано обратное напряжение смещения, будет пропускать больший обратный ток, чем обычный диод. Это приводит к тому, что в цепи с обратным включением диода Шоттки ток утечки больше.

Максимальное обратное напряжение диода Шоттки также меньше, чем у обычных диодов, и обычно составляет не более 50 В. При превышении этого напряжения происходит пробой диода Шоттки, в результате чего он начинает пропускать большой ток в обратном направлении. До этой величины обратного напряжения существует лишь небольшой ток утечки через диод Шоттки, впрочем, как и у других диодов.

Как работает диод Шоттки

В обычном диоде полупроводники p-типа и n-типа образуют p-n-переход. В диоде Шоттки вместо полупроводника p-типа используется металл. Этот металл может быть разным – от платины до вольфрама, молибден, золото и т. д.

Металл и полупроводник n-типа образуют переход металл-полупроводник. Он называется барьером Шоттки. Свойства барьера Шоттки различны при отсутствии напряжения смещения, при прямом и при обратном смещении.

Напряжение смещения отсутствует

При отсутствии напряжения смещения свободные электроны будут перемещаться из полупроводника n-типа в металл, чтобы восстановить равновесие. Этот поток электронов создает барьер Шоттки, где встречаются отрицательные и положительные ионы. Чтобы свободные электроны смогли преодолеть этот барьер, требуется приложение внешнего напряжения большего, чем потенциал поля перехода металл-полупроводник.

Прямое смещение

Если положительную клемму батарейки подключить к выводу диода, подключенного к металлической части перехода метал-полупроводник, а отрицательную – к выводу диода, подключенного к полупроводнику, то таким образом мы подадим на диод прямое смещение. В этом состоянии, если напряжение больше 0,2 В, то электроны могут преодолеть переход металл-полупроводник и перейти из полупроводника n-типа в металл. Это приведет к возникновению тока через диод. Так работают все диоды.

Обратное смещение

Если отрицательную клемму батарейки подключить к выводу диода, подключенного к металлической части перехода метал-полупроводник, а положительную – к выводу диода, подключенного к полупроводнику, то таким образом мы подадим на диод обратное смещение. Так мы увеличим ширину барьера Шоттки, не давая току течь через диод. Тем не менее, если напряжение обратного смещения будет возрастать, то, в конце концов, барьер будет пробит. После чего ток потечет в обратном направлении и может повредить этот и другие электронные компоненты.

Изготовление и параметры диода Шоттки

Существуют различные способы изготовления диода Шоттки. Самый простой способ изготовить диод Шоттки – это присоединить к поверхности полупроводника металлический провод, сделав точечный контакт. Некоторые диоды Шоттки до сих пор производятся таким способом, но осуществить контроль качества готовых диодов сложно.

Самая популярная технология использует вакуумное нанесение металла на поверхность полупроводника. Этот метод обладает недостатком, заключающимся в пробое диода вследствие воздействия электрических полей по краям пластины проводника. Для устранения этой проблемы производители защищают полупроводниковую пластину оксидным охранным кольцом. Кроме того, это охранное кольцо защищает переход металл-полупроводник от разрушения вследствие физического воздействия. Такие диоды изготавливаются в том числе в форм-факторе, допускающем поверхностный монтаж компонентов.

Параметры диода Шоттки

Ниже приведен перечень характеристик, на основании которых следует подбирать диод Шоттки для использования в вашем следующем электронном проекте.

Примеры диодов Шоттки

Полезно увидеть, как эти характеристики обычно приводятся на сайте изготовителя или в спецификации. Ниже приведены два примера:

1N5711 – это ультрабыстрый диод Шоттки, обладающий высоким пробивным напряжением, низким падением напряжения при прямом включении и охранным кольцом для защиты перехода металл-полупроводник.

1N5828 – это диод Шоттки в корпусе штыревого типа, используемый для выпрямления тока.

Управление током

Вы планируете поработать над высокочастотным или мощным устройством, в котором требуется применение низкого напряжения? Ваш выбор – диоды Шоттки! Эти диоды широко известны благодаря их низкому падению напряжения при прямом включении и высокой скорости переключения. Используются ли они в ячейках солнечных батарей или для выпрямления тока, нет других подобных устройств, обладающих падением напряжения всего 0,3 В, дающее дополнительную эффективность. Современные ПО для разработки электронных устройств уже имеют множество готовых к использованию бесплатных библиотек, содержащих диоды Шоттки. Самому не нужно ничего делать. Попробуйте уже сегодня!

Характеристика диодов

История возникновения диода

Возникновение диода обязано ученому из Великобритании Фредерику Гутри и немецкому физику Карлу Фердинанду Брауну. В 1873 и 1874 годах они открыли принцип работы термионных диодов и принцип работы кристаллических диодов. Позже термионными диодами стали называть специализированные вакуумные лампы. В начале 1880 года Томас Эдиссон повторно задокументировал работу термионного диода, но развитие этого радиоэлектронного компонента произошло только через 9 лет, когда немецкий ученый Карл Браун показал действие выпрямителя на кристалле. В начале 20 века Гринлиф Пикард предъявил публике первый радиоприемник, в основе которого был положены свойства диода реагировать на электромагнитные колебания. Промышленный выпуск диодов термионного типа (ламповых диодов) был налажен в Британии с разрешения Джона Флеминга в 1904 году, а через 2 года американец Пикард запатентовал первый детектор из кристаллов кремния. Современную терминологию слова «диод» (от греч. «di» — два, «odos» — путь) ввел Вильям Генри Иклс в 1919 году. В СССР главную роль в развитии полупроводниковых компонентов сыграл физик Б. М. Вул.

Первое развитие получили ламповые диоды или кенотроны (электровакуумные диоды), а так же газонаполненные диоды (газотроны, стабилитроны, игнитроны). Однако основной вклад в развитие радиоэлектронных компонентов внесли полупроводниковые диоды на основе кремния и германия.

Физические основы работы диода

Открытый в 1882 году химический элемент «германий» Клеменсом Винклером в процессе изучения в электричестве позволил выявить эффект полупроводника тока. Эксперименты физиков для получения одностороннего проводника тока привели к такому результату, что если к германию присоединить акцепторную примесь (барий, алюминий, галлий или индий), способную захватывать электроны, накопленные в германии, то в результате получится электронный элемент, способный пропускать электроны только в одну сторону (от германия к акцепторной смеси). Как мы знаем, электрон – это отрицательно заряженная частица, притягивающаяся к положительной частице, однако в электронике принято обозначение перемещения тока от плюса к минусу. Таким образом, диод представляет собой смесь германия или кремния с акцепторным материалом. Германий, за счет накопленных электронов несет в себе отрицательный N заряд (N — negative), а акцепторная смесь насыщается положительными P ионами (P — positive). Процесс протекания тока из P области в N область через место «соединения» или p-n переход и есть принцип работы диода. Его особенностью является возможность протекания тока только в одном направлении, поэтому диод является однонаправленным полупроводником. Отрицательно заряженную сторону с германием принято называть «катодом», а положительно заряженную половину «анодом». На схемах диод обозначается в виде направления протекания тока в виде стрелки к отрицательно заряженной стороне.

Когда диод не подключен к источнику питания, p-n переход находится в состоянии покоя. И в результате притягивания электронов к положительным ионам происходит их дрейф через переход. Такой процесс называется «диффузией», предусматривающий притягивание электронов через переход к «дыркам» положительных ионов. Диффузионное движение из-за постоянно меняющейся концентрации ионов и электронов происходит возле перехода постоянно.

При подключении к p-n структуре внешнего источника напряжения или напряжения смещения происходит изменение условий переноса заряда через переход. Важным фактором здесь становится полярность внешнего напряжения, подключенного к аноду и катоду диода.

Прямое подключение напряжения к p-n структуре

При прямом включении диода, когда плюс источника питания подключен к p-области, а минус к n-области происходит прямое протекание тока через переход. При этом электроны, находящиеся в n-области за счет подключенного минуса источника питания будут передвигаться ближе к переходу. Собственно, с положительно заряженными частицами в p-области будет происходить то же эффект. В результате p-n переход будет заполняться электронами в «дырках» (положительных ионах). Возникнет электрическое поле, которое позволит свободным электронам преодолеть сопротивление перехода, пройти барьерную зону и p-область к положительному контакту источника питания. В данной цепи возникнет электрический ток, который называют прямым током смещения перехода. Величина этого тока будет ограничена техническими характеристиками диода.

Момент, когда создается электрическое поле в p-n переходе на положительной ветви Вольт — Амперной Характеристики диода (ВАХ) отмечен некоторым напряжением ∆Ua. Это напряжение определено не только силой тока, но и сопротивлением самого p-n перехода. Чем ниже это сопротивление, тем меньше необходимо энергии для того, чтобы открыть переход, а так же его закрыть. Отступив от темы статьи, стоит сказать, что энергия в переходе при исчезновении питания моментально не пропадает. Происходит эффект рассасывания заряда, обусловленный емкостью перехода. Чем ниже эта емкость, тем быстрее диод перейдет в «выключенное» состояние с успокоением всех переходных процессов в p-n переходе. Этот параметр очень важен в частотных диодах, о которых мы расскажем ниже. В современных диодах значения напряжения ∆Ua варьируется от 0,3 до 1,2 вольта (кремний 0,8 – 1,2В., германий 0,3 – 0,6В.) в зависимости от мощности диода. Так же его называют падением напряжения p-n перехода.

Обратное подключение напряжения к p-n структуре

При подключении к диоду питания в обратном направлении происходит увеличение сопротивление p-n перехода и барьер возрастает, вследствие того, что электронам в n-области и свободным ионам в p-области легче соединиться с зарядом источника питания. При увеличении напряжения питания происходит лавинообразный отток заряженных частиц от перехода. В результате диод переходит в закрытое состояние из-за обратного напряжения.

На обратной ветви ВАХ участок 0 – 1 обусловлен небольшим обратным напряжением. При этом увеличение обратного тока наблюдается за счет уменьшения диффузионной составляющей. Другими словами в p и n областях присутствуют неосновные носители. Даже когда диод закрыт, через барьер при малом напряжении они могут протекать из одной области в другую. Значение этого тока несоизмеримо мало по сравнению с прямым током, поскольку количество неосновных носителей в разных областях p и n минимально. Начиная с точки 1 основные носители уже не способны преодолеть барьер, а диффузионные неосновные носители полностью рассасываются в свои области переходов. Этим объясняется отсутствие роста тока при увеличении обратного напряжения. Поскольку концентрация неосновных носителей заряда зависит от температуры сплава (иначе «кристалла»), то обратный ток будет увеличиваться в зависимости от увеличения температуры кристалла. Именно поэтому его называют тепловым. Это лавинообразный процесс и он подчиняется экспотенциальному закону. Именно из-за обратных токов диоды начинают греться и их устанавливают на теплоотводы. Если значение обратного тока будет выше предусмотренного диодом, то начнется неконтролируемый процесс так называемого теплового пробоя, после которого следует электрический пробой, приводящий диод в негодность. Стабильная работа кремниевых диодов возможна при температуре 130 – 135 градусов. Разрушение кристалла германиевых диодов происходит при температуре 50 – 60 градусов.

Полная вольт – амперная характеристика диода

Вольт – амперная характеристика отображает зависимость протекающего через диод тока от величины приложенного прямого и обратного напряжения. Чем круче и ближе к оси Y прямая ветвь и ближе к оси X его обратная ветвь, тем лучше выпрямительные свойства диода. При несоизмеримо большом обратном напряжении у диода наступает электрический пробой. При этом резко возрастает обратный ток. Нормальная работа диода возможна в том случае, если приложенное к нему обратное напряжение не превышает максимально допустимое, называемое пробивным напряжением. Как мы уже писали, токи диодов зависят от температуры кристалла. На каждый градус падение напряжения на p-n переходе изменяется на 2мВ. Если температура кристалла растет вверх, то обратный ток германиевых диодов увеличивается в 2 раза, у кремниевых диодов обратный ток растет в 2,5 раза на каждые 10 градусов. При этом пробивное напряжение при увеличении температуры понижается.

Конструктивное исполнение диодов

По технологическому исполнению диоды могут быть плоскостные и точечные. P-n переход плоскостных диодов (на рисунке б – плоскостной сплавной диод) выполняется на границе двух слоев в полупроводнике. Слои имеют электропроводимость разных типов. За счет большей площади перехода плоскостные диоды могут пропускать большие токи через себя. Их недостатком является большая переходная емкость , что ограничивает применение плоскостных диодов в высокочастотной технике. Однако, есть гибридные диоды, сочетающие в себе и малую емкость, и малое переходное сопротивление, и возможность пропускать большие токи. Примером может быть отечественный диод КД213.

У точечных диодов p-n переход изготовляется в месте контакта полупроводниковой пластины с острием металлической иглы. Современные диоды производят с применением германия, кремния, фосфида и арсенида галлия. 

Типы и характеристика диодов

Выпрямительные диоды

Выпрямительные диоды используются для выпрямления переменных токов на частотах, как правило, ниже 50 кГц. Конструктивное исполнение таких диодов преимущественно плоскостное. За счет этого диоды позволяют проводить через себя большие выпрямленные токи. Большей частью материалом изготовления выпрямительных диодов является кремний за счет устойчивости к температурным изменениям. Основными параметрами, определяющими характеристику диода, являются:

Uпр. – постоянное прямое напряжение на диоде при заданном постоянном прямом токе.

Uобр. – постоянное напряжение, приложенное к диоду в обратном направлении.

Iпр. – постоянный ток, протекающий через диод при подключении в прямом направлении.

Iобр. – постоянный ток, протекающий через диод, включенный в обратном направлении.

Iпр.ср. – прямой ток, усредненный за период.

Iобр.ср. – обратный ток, усредненный за период.

Rдиф. – отношение приращения напряжения на диоде к вызвавшему его малому приращению тока.

Кроме того, всех типов существуют ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДИОДОВ, определяющие их максимальные технические возможности, к которым относятся:

Uобр.max – максимальное напряжение, приложенное при обратном включении диода.

Iпр.max – максимально допустимый постоянный прямой ток (один из важнейших параметров).

Iпр.ср.max – максимально допустимый средний прямой ток.

Iвп.ср.max – максимально допустимый средний выпрямленный ток.

К дополнительным параметрам относится интервал рабочих температур.

Выпрямительные диоды широко применены в электронной схемотехнике. На их основе нередко можно встретить диодные мосты для изменения формы тока из переменного в постоянный.

Современное развитие электроники невозможно без применения высокочастотных диодов.

Высокочастотные диоды

Данные диоды используются в широком диапазоне частот вплоть до нескольких сотен мегагерц и выше. Чаще всего их применяют для модуляции и детектирования, а так же в высокочастотных радиоцепях. В качестве высокочастотных диодов используются элементы, выполненные в точечном исполнении из-за малой емкости перехода.

Для таких диодов дополнительно важны две характеристики, это максимальная рабочая частота в МГц и емкость диода в пФ.

Импульсные диоды

Импульсные диоды предназначены для преобразования импульсных сигналов. В силовой схемотехнике мощные импульсные диоды могут работать в качестве выпрямителей. Примером может служить импульсный блок питания, где они используются во вторичной цепи после импульсного трансформатора. Так же импульсные диоды применяют в телевизионной технике (детекторах видеосигналов), в ключевых и логических устройствах. Различают двух и трех электродные импульсные диоды (спаренные). Трех электродные диоды могут быть с общим анодом или с общим катодом. Для импульсных диодов свойственны следующие дополнительные характеристики:

Uпр.и – пиковое прямое напряжение при заданном импульсе тока.

Uобр.и – соответственно, обратное напряжение в пике как однократное, так и периодически повторяющееся.

Сд – общая емкость диода при заданных напряжениях и частоте. Большой параметр Сд снижает частотные свойства диода. Так же от значения Сд напрямую зависит следующий параметр.

τ вос – время восстановления с момента окончания импульса тока в состояние заданного обратного запирающего напряжения (окончание переходных процессов рассасывания заряда в p-n переходе)

Qпк – часть накопленного заряда, вытекающего во внешнюю цепь при реверсивном изменении тока с прямого значения на обратное.

Одним из основных параметров диодов Шотки является

Iпр.и max – максимально допустимый ИМПУЛЬСНЫЙ прямой ток.

Стабилитроны и стабисторы

Данный тип диодов необходим в цепях стабилизации напряжения при изменении проходящего через диод тока. Его основными характеристиками является:

Uст — напряжение стабилизации.

Iст. max и Iст. min – максимальный и минимальный ток стабилизации.

Pmax – максимально допустимая рассеиваемая мощность.

Для стабилитронов рабочим является пробойный участок ВАХ. На рисунке он отмечен расстоянием между точками Iст.min и Iст.max. На этом участке напряжение на стабилитроне остается постоянным при существенном изменении значения тока. Для стабисторов рабочим является прямой участок ВАХ. Так же существуют двуханодные стабилитроны, включающие в себя два встречно включенных p-n перехода. Каждый из этих переходов является основным при изменении полярности его подключения.

Варикап

Специальный полупроводниковый диод. Его емкость p-n перехода изменяется в значительных пределах в зависимости от приложенного к нему обратного напряжения. В случае увеличения обратного напряжения, емкость перехода уменьшается и наоборот. Варикапы активно применяются в гетеродинах (радиоблоках, где необходима регулировка частоты). К примеру, варикап довольно часто можно встретить в FM – радиоприемниках. К основным характеристикам варикапа относятся:

Сн – измеренная емкость при заданном напряжении.

Кс – соотношение емкостей при минимальном и максимально допустимом напряжении.

Iобр – максимальный ток, протекающий через варикап в обратном напрявлении. (ток утечки).

Туннельный диод

Туннельный диод используется в высокочастотных усилителях и генераторах электрических колебаний (например телевизионных усилителях). Кроме того его применяют в различных импульсных устройствах. Его особенностью является участок А-В с отрицательным дифференциальным сопротивлением, определяющим отношение между изменением напряжения к приращению тока. К его дополнительным параметрам относятся:

Iп – прямой ток в точке максимума ВАХ, при котором приращение тока к напряжению равняется 0.

Lд – индуктивность диода, препятствующая прохождению высокочастотного сигнала.

Кш – шумовая составляющая диода.

Rп – сопротивление потерь туннельного диода.

Диод Шоттки

Популярный диод в радиотехнике за счет малого шума и высокого быстродействия. Его относят к подвиду импульсных диодов. Технологически диод Шоттки выполняется из структуры металл-полупроводник. Применение диодов с барьером Шоттки самое разнообразное, от ATX блоков питания ПК, до СВЧ устройств. Переход диода Шоттки выполнен по принципу p-i-n, где в качестве i выступает высокоомный слаболегированный полупроводник. Под действием напряжения изменяются его частотные характеристики, что позволяет использовать диод в схемах управления сигналами, например аттеньюаторах, ограничителях уровня, модуляторах. Мощные диоды Шоттки могут использоваться в качестве выпрямительных радиоэлементов частотных блоков питания.

Светодиод

Специальный тип диода, который может создавать некогенерентное излучение (испускание видимых фотонов света атомами p-n перехода). В зависимости от количества легирующего материала изменяют длину спектра. За счет этого светодиоды могут изготавливать разных цветов. Применение светодиода самое широкое: от сигнальных цепей оповещения, до бытового освещения. Кроме того, при использовании специальных материалов изготовления светодиод может излучать в инфракрасном спетре. Это свойство нашло ему применение в пультах дистанционного управления и других электронных устройствах. Современные светодиоды выполняются на большие мощности (до 10Вт.) p-n переход очень чувствителен к токовым изменениям, поэтому для его использования необходим специализированный драйвер, представляющий собой стабилизатор / регулятор тока.

Фотодиод

Часто применяется для приема инфракрасного светового спектра, а так же в цепях гальванической развязки. Кроме того, первые солнечные батареи использовали именно фотодиод. Совместно с излучающими диодами или транзисторами может организовывать единое устройство, называемое оптопарой. Работа фотодиода основана на фотогальваническом эффекте, при котором за счет разделения электронов и дырок в p-n переходе начинает появляться ЭДС. В зависимости от степени освещенности уровень вырабатываемой ЭДС в фотодиоде так же изменяется.

Преимущества диодов | Где дешево

tatiana_z Дизайн 10.01.2019

С появлением на отечественном рынке диодов появилось больше возможностей не только экономить, но и сделать нашу жизнь красивее, гармоничнее, и проще. Светильники не требует существенных затрат при установке или демонтаже.

Все происходит легко, быстро и без специального оборудования. Их преимущества по достоинству оценили на государственном уровне. Доверив современной технологии освещение улиц и магистралей. Таким осветительным приборам не страшны перепады в электросети и низкие температуры. Мгновенно зажигаясь они отлично освещают дорогу, при этом снижая затраты на потребление электроэнергии. Также диоды позволяют контролировать уровень освещения, и по необходимости снижать его в определенные периоды.

Диоды имеют широкий цветовой диапазон и ассортимент форм, и размеров. Именно эти качества так привлекают дизайнеров. Они создают оригинальную атмосферу внутри помещения, подчеркивая необходимые зоны, и надежно служат снаружи здания. Потребляя мало энергии диоды способны освещать террасу, бассейн и сад всю ночь, никак не сказываясь на кошельке владельцев. Идеальный прибор для загородных домов. Благодаря длительному сроку эксплуатации диода можно монтировать в любом месте, не волнуясь за смену лампочки.

Диоды позволяют выбирать тот цвет освещения, который больше подходит. Для коммерческих помещений (витрин, прилавков и т.д.) и освещения автомагистралей используют холодный белый свет. Для бытовых целей предпочтителен желтый цвет, наиболее близкий к естественному солнечному свету. Качество света также улучшает угол рассеивания света. У диодов он намного лучше, чем у обычной лампочки. При всех своих достоинствах, такой осветительный прибор не требует высокого напряжения в электросети.

Набирающая в последнее время обороты тенденция использовать безопасную и экологичную продукцию полностью одобряет диоды. В их работе отсутствие столь вредная вибрация, пульсация и ультрафиолетовое освещение. Технология не наносит вред окружающей среде. В ее составе нет опасных веществ, требующих специфической утилизации. Что также позволяет сэкономить. Долгий срок службы, низкое потребление электроэнергии и неприхотливость делают диод бессменным лидером на рынке энергосберегающих приборов.

Если вы ищите качественные электронные компоненты, то непременно стоит заглянуть в интернет-магазин Пин Груп. Здесь вы найдете широкий ассортимент, доступные цены и высокий уровень обслуживания.

Нет тегов

всего просмотров 65 , сегодня 1

  

диодов | Клуб электроники

Диоды | Клуб электроники

Сигнал | Выпрямитель | Мостовой выпрямитель | Зенер

Смотрите также: светодиоды | Блоки питания

Диоды позволяют электричеству течь только в одном направлении. Стрелка символа схемы показывает направление, в котором может течь ток. Диоды — электрическая версия вентиль и первые диоды на самом деле назывались вентилями.

Типы диодов

Обычные диоды можно разделить на два типа:

Дополнительно есть:

Подключение и пайка

Диоды должны быть подключены правильно, на схеме может быть указано a или + для анода и k или для катода (да, это действительно k, а не c, для катода!).Катод отмечен линией, нарисованной на корпусе. Диоды обозначены своим кодом мелким шрифтом, вам может потребоваться ручная линза, чтобы прочитать его.

Сигнальные диоды могут быть повреждены нагреванием при пайке, но риск невелик, если только вы используете германиевый диод (коды начинаются OA …), и в этом случае вы должны использовать радиатор (например, зажим «крокодил»), прикрепленный к проводу между соединением и корпусом диода.

Выпрямительные диоды достаточно прочные, и при их пайке не требуется специальных мер предосторожности.


Испытательные диоды

Вы можете использовать мультиметр или простой тестер. проект (батарея, резистор и светодиод), чтобы проверить, что диод проводит только в одном направлении.

Лампу можно использовать для проверки выпрямительного диода, но НЕ используйте лампу для проверки сигнальный диод, потому что большой ток, пропускаемый лампой, разрушит диод.


Падение прямого напряжения

Электричество потребляет немного энергии, проталкиваясь через диод, как человек. толкая дверь пружиной.Это означает, что есть небольшое прямое падение напряжения через проводящий диод. Для большинства диодов, сделанных из кремния, оно составляет около 0,7 В.

Прямое падение напряжения на диоде почти постоянно, независимо от тока, протекающего через диода, поэтому они имеют очень крутую характеристику (вольт-амперный график).

обратное напряжение

При подаче обратного напряжения проводит не идеальный диод, а настоящие диоды утечка очень крошечного тока (обычно несколько мкА).Это можно игнорировать в большинстве схем. потому что он будет намного меньше, чем ток, текущий в прямом направлении. Однако все диоды имеют максимальное обратное напряжение (обычно 50 В или более), и если при превышении этого значения диод выйдет из строя и будет пропускать большой ток в обратном направлении, это называется поломка .



Диоды сигнальные (малоточные)

Сигнальные диоды обычно используются для обработки информации (электрических сигналов) в цепях, поэтому они требуются только для пропускания небольших токов до 100 мА.

Сигнальные диоды общего назначения, такие как 1N4148, изготовлены из кремния и имеют прямое падение напряжения 0,7 В.

Rapid Electronics: 1N4148

Германиевые диоды , такие как OA90, имеют меньшее прямое падение напряжения 0,2 В, что делает Их можно использовать в радиосхемах в качестве детекторов, выделяющих звуковой сигнал из слабого радиосигнала. Сейчас они используются редко, и их может быть трудно найти.

Для общего использования, где величина прямого падения напряжения менее важна, кремниевые диоды лучше, потому что они менее легко повреждаются под воздействием тепла при пайке, имеют меньшее сопротивление при проводке и имеют очень низкие токи утечки при приложении обратного напряжения.

Защитные диоды для реле

Сигнальные диоды также используются для защиты транзисторов и микросхем от кратковременного высокого напряжения, возникающего при обмотке реле. выключен. На схеме показано, как защитный диод подключен к катушке реле «в обратном направлении».

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Выпрямительные диоды (большой ток)

Выпрямительные диоды используются в источниках питания для преобразования переменного тока (AC). к постоянному току (DC) этот процесс называется выпрямлением. Они также используются в других схемах, где через диод должен проходить большой ток.

Все выпрямительные диоды изготовлены из кремния и поэтому имеют прямое падение напряжения 0,7 В. В таблице указаны максимальный ток и максимальное обратное напряжение для некоторых популярных выпрямительных диодов. 1N4001 подходит для большинства цепей низкого напряжения с током менее 1 А.

Rapid Electronics: 1N4001

Диод Максимум
Ток
Максимум
Обратное
Напряжение
1N4001 1A 50V
1N4002 1A 100V
1N4007
1N5401 3A 100V
1N5408 3A 1000V

Книги по комплектующим:



Мостовые выпрямители

Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель — один из них, и он доступен в специальных пакетах, содержащих четыре необходимых диода. Мостовые выпрямители рассчитаны на максимальный ток и максимальное обратное напряжение. У них есть четыре вывода или клеммы: два выхода постоянного тока помечены + и -, два входа переменного тока помечены .

На схеме показана работа мостового выпрямителя при преобразовании переменного тока в постоянный. Обратите внимание, как проводят чередующиеся пары диодов.

Rapid Electronics: мостовые выпрямители

Мостовые выпрямители различных типов

Обратите внимание, что у некоторых есть отверстие в центре для крепления к радиатору

Фотографии © Rapid Electronics


Стабилитроны

Стабилитроны

используются для поддержания постоянного напряжения.Они рассчитаны на «поломку» в надежном и неразрушающим способом, чтобы их можно было использовать в обратном порядке для поддержания фиксированного напряжения на их выводах.

Стабилитроны

можно отличить от обычных диодов по их коду и напряжению пробоя. которые напечатаны на них. Коды стабилитронов начинаются BZX … или BZY … Их напряжение пробоя обычно печатается с буквой V вместо десятичной точки, поэтому 4V7 означает, например, 4,7 В.

a = анод, k = катод

Rapid Electronics: стабилитроны

На схеме показано, как подключен стабилитрон с последовательно включенным резистором для ограничения тока.

Стабилитроны

имеют номинальное напряжение пробоя и максимальную мощность . Минимальное доступное напряжение пробоя составляет 2,4 В. Широко доступны номинальные мощности 400 мВт и 1,3 Вт.

Для получения дополнительной информации см. Страницу источников питания.


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому.На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google.Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

различных типов диодов и принцип их работы

Стабилитрон, Шоттки, выпрямители, тиристоры, кремний и симисторы

Меган Тунг

Диод — это двухконтактное электрическое устройство. Диоды изготавливаются из полупроводника, чаще всего кремния, но иногда и германия. Существуют различные типы диодов, но здесь обсуждаются стабилитрон, выпрямитель, шоттки, ограничитель переходного напряжения, тиристор, кремниевый выпрямитель и симистор.На затвор выбора транзистора подается импульс «включено», вызывая большой ток стока. Высокое напряжение на соединении затвора притягивает электроны, которые проникают через тонкий оксид затвора и накапливаются на плавающем затворе. EPROM можно стереть, подвергнув его воздействию сильного ультрафиолетового источника света, что означает, что они могут быть перезаписаны много раз (в отличие от PROM). EPROM не подходят для хранения информации, которая будет часто меняться, потому что для перепрограммирования чип необходимо будет удалить из устройства, в котором он находится.

Стабилитроны

Стабилитрон

— это кремниевые полупроводниковые устройства, которые позволяют току течь либо в прямом (от анода к катоду), либо в обратном направлении. Сильнолегированный p-n переход позволяет устройству проводить в обратном направлении при достижении напряжения пробоя. Обратный пробой Зенера происходит из-за квантового туннелирования электронов, вызванного сильным электрическим полем. В режиме прямого смещения стабилитроны работают как обычные диоды. При подключении в обратном режиме может протекать небольшой ток утечки.Когда обратное напряжение увеличивается ближе к напряжению пробоя, через диод начинает течь ток. Максимальный ток определяется последовательным резистором. По достижении максимума ток стабилизируется и остается постоянным в широком диапазоне приложенных напряжений.

Выпрямители

Выпрямители — это двухпроводные полупроводники, которые пропускают ток только в одном направлении. Выпрямитель состоит из одного или нескольких диодов, которые преобразуют переменный ток (AC) в постоянный (DC).Полупериодный выпрямитель — это когда на входе подается питание переменного тока, только положительный полупериод становится видимым через нагрузку, в то время как отрицательный полупериод скрывается (либо блокируется, либо теряется). В однополупериодном выпрямителе используется только один диод. Двухполупериодные выпрямители преобразуют полный входной сигнал переменного тока (положительный полупериод и отрицательный полупериод) в пульсирующий выходной сигнал постоянного тока. Для двухполупериодного выпрямителя используются два или четыре диода. КПД полуволнового выпрямителя ниже, потому что видна только положительная часть входной формы волны.Выпрямители используются в различных устройствах, включая источники питания постоянного тока, радиосигналы или детекторы, системы передачи электроэнергии постоянного тока высокого напряжения и некоторые бытовые приборы (ноутбуки, игровые системы и телевизоры).

Диоды Шоттки

Диоды Шоттки — это полупроводниковые устройства, образованные соединением кремниевого полупроводника (n-типа) с металлическим электродом. Диоды Шоттки известны своим быстрым переключением и низким прямым падением. Прямое падение напряжения существенно меньше, чем у обычного кремниевого диода с p-n переходом.Падение напряжения в диодах Шоттки обычно находится в пределах 0,15-0,45 В. При прямом смещении электроны перемещаются от материала n-типа к металлическому электроду, позволяя течь току. Диоды Шоттки не имеют обедненного слоя, что означает, что они униполярны.

Ограничитель переходных напряжений

Диоды ограничителя переходного напряжения (TVS) используются для защиты электроники от скачков напряжения. Переходные процессы — это временные скачки напряжения или тока, которые могут отрицательно повлиять на цепи.TVS-диоды шунтируют избыточный ток, когда индуцированное напряжение превышает потенциал лавинного пробоя. Благодаря своей способности подавлять все перенапряжения, превышающие его напряжение пробоя, TVS является фиксирующим устройством. TVS может быть однонаправленным или двунаправленным. Однонаправленный допускает только напряжение выше или ниже земли (положительное или отрицательное напряжение). Двунаправленный выбирается, когда ожидается, что защищенный сигнал будет колебаться над или под землей, например, при переменном напряжении или сигнале постоянного тока предполагается работать как с положительным, так и с отрицательным напряжением.Некоторые из приложений включают линии передачи данных и сигналов, микропроцессоры и MOS-память, линии электропередач переменного тока, телекоммуникационное оборудование и переключение / ограничение в цепях / системах с низким энергопотреблением.

Тиристорные диоды

Тиристорные диоды — это три оконечных устройства. Три терминала — затвор, анод и катод. Затвор управляет током, протекающим между анодом и катодом. В тиристорном диоде небольшой ток на затворе вызывает гораздо больший ток между анодом и катодом.Даже если ток затвора убран, больший ток продолжает течь от анода к катоду. Диод остается в этом состоянии до сброса цепи. В семействе тиристоров есть несколько типов диодов, в том числе тиристоры и симисторы.

Выпрямители с кремниевым управлением

Выпрямители с кремниевым управлением (SCR)

— это тип диодов из семейства тиристоров. SCR — это четырехслойные твердотельные устройства управления током. Четыре слоя полупроводника — это P-N-P-N. Есть три вывода: анод, катод и затвор.Устройство изготовлено из кремниевого материала, который контролирует высокую мощность и преобразует высокий переменный ток в постоянный ток (выпрямление). SCR однонаправленные, электрический ток допускается только в одном направлении. SCR используются в приложениях управления мощностью, таких как мощность, подаваемая на электродвигатели, управление системой освещения, реле управления или индукционные нагревательные элементы.

ТРИАК

TRIAC — это три оконечных устройства, также принадлежащих к семейству тиристоров. Первый вывод — это вентиль, который действует как триггер для включения устройства.Два других вывода называются анодом 1 и анодом 2 (также называются основным выводом 1 и основным выводом 2). Эти две клеммы не взаимозаменяемы, ток затвора должен поступать со стороны анода 2 схемы. Схема аналогична двум SCR, соединенным встык параллельно; тем не менее, TRIAC фактически построены из цельного куска полупроводникового материала, который соответствующим образом легирован и имеет слои. TRIAC переключают высокое напряжение и большой ток. Это двунаправленные переключатели, поэтому ток может проходить в обоих направлениях после срабатывания затвора.Некоторые из приложений включают управление мощностью переменного тока, регуляторы освещенности, управление двигателем и другие простые схемы с низким энергопотреблением, где требуется переключение мощности.


Меган Тунг проходит летнюю стажировку в Jameco Electronics , посещает Калифорнийский университет , Санта-Барбара (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.

Что такое диод и для чего он нужен?

ОСНОВНЫЕ ЗНАНИЯ — ДИОД Что такое диод и для чего он используется?

Автор / Редактор: Люк Джеймс / Erika Granath

Диод может быть самым простым из всех полупроводниковых компонентов, однако он выполняет множество важных функций, включая контроль потока электрического тока. Вот краткий обзор простого диода и того, для чего он обычно используется.

Связанные компании

Диод — это устройство, которое позволяет току течь в одном направлении, но не в другом.Это достигается за счет встроенного электрического поля.

(Bild: Public Domain)

Диод — это устройство, которое позволяет току течь в одном направлении, но не в другом. Это достигается за счет встроенного электрического поля. Хотя самые ранние диоды состояли из раскаленных проволок, проходящих через середину металлического цилиндра, который сам находился внутри стеклянной вакуумной трубки, современные диоды являются полупроводниковыми диодами.Как следует из названия, они сделаны из полупроводниковых материалов, в основном из легированного кремния.

Проведение электрического тока в одном направлении

ВАХ (зависимость тока от напряжения) диода с p – n переходом.

(Bild: CC BY-SA 4.0)

Несмотря на то, что диоды являются не более чем простыми двухконтактными полупроводниковыми приборами, они жизненно важны для современной электроники.
Некоторые из их наиболее распространенных приложений включают преобразование переменного тока в постоянный, изоляцию сигналов от источника питания и микширование сигналов.Диод имеет две «стороны», и каждая сторона легирована по-разному. Одна сторона — это «сторона p», она имеет положительный заряд.
Другая сторона — это «n-сторона», она имеет отрицательный заряд. Обе эти стороны наслоены вместе, образуя так называемое «n-p соединение», где они встречаются.

Когда отрицательный заряд прикладывается к n-стороне и положительный к p-стороне, электроны «перепрыгивают» через этот переход, и ток течет только в одном направлении. Это свойство сердечника диода; обычный ток течет от положительной стороны к отрицательной только в этом направлении.В то же время электроны текут в одном направлении только с отрицательной стороны на положительную. Это связано с тем, что электроны заряжены отрицательно и притягиваются к положительному полюсу батареи.

Для чего используются диоды?

Диоды — чрезвычайно полезные компоненты, которые широко используются в современной технике.

Светодиоды (LED)

Возможно, наиболее широко известное современное применение диодов — это светодиоды. В них используется особый вид легирования, так что, когда электрон пересекает n-p переход, испускается фотон, который создает свет.Это связано с тем, что светодиоды светятся при наличии положительного напряжения. Тип легирования может быть изменен так, что может излучаться свет любой частоты (цвета), от инфракрасного до ультрафиолетового.

Преобразование мощности

Хотя светодиоды могут быть наиболее широко известным приложением для обычного человека, наиболее распространенным применением на сегодняшний день является использование диодов для преобразования мощности переменного тока в мощность постоянного тока. Используя диоды, можно создавать различные типы выпрямительных схем, самые основные из которых — это полуволновые, полнополупериодные выпрямители с центральным ответвлением и полные мостовые выпрямители.Они чрезвычайно важны в источниках питания для электроники — например, в зарядном устройстве портативного компьютера — где переменный ток, исходящий от источника питания, должен быть преобразован в постоянный ток, который затем может быть сохранен.

Защита от перенапряжения

Чувствительные электронные устройства необходимо защитить от скачков напряжения, и диод идеально подходит для этого. При использовании в качестве устройств защиты по напряжению диоды не проводят ток, однако они немедленно замыкают любой всплеск высокого напряжения, отправляя его на землю, где он не может повредить чувствительные интегральные схемы.Для этого разработаны специальные диоды, известные как «ограничители переходных напряжений». Они могут справляться с резкими скачками мощности в течение коротких периодов времени, которые обычно приводят к повреждению чувствительных компонентов.

(ID: 46381408)

Диод

НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАТЕЛЬНОЙ СТРАНИЦЫ

ДИОД

В. Райан 2002-2009

ФАЙЛ PDF — НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТИ НА ОСНОВЕ РАБОТА НИЖЕ

Диод пропускает электричество только в одном направлении и блокирует поток в обратном направлении.Их можно рассматривать как односторонние клапаны, и они используются в различных контурах, обычно как форма защита. Существуют разные типы диодов, но их основные функции: тоже самое. Они указаны ниже вместе с примерами используемых диодов.

Самый распространенный тип диода — кремниевый диод.это заключен в стеклянный цилиндр с темной полосой, обозначающей катод Терминал. Эта линия указывает на плюс цепи. Противоположный терминал называется анодом.
Обычно диоды не проводят до тех пор, пока напряжение не достигнет примерно 0,6. вольт, это называется пороговой точкой. Если ток становится слишком высоким диод может треснуть или расплавиться.

ТИПИЧНОЕ ИСПОЛЬЗОВАНИЕ ДИОДОВ

ЗАЩИТА ОБРАТНОЙ ПОЛЯРНОСТИ

Диод в этой цепи защищает магнитолу или магнитолу. и т.п… В случае, если аккумулятор или источник питания подключен неправильно Кстати, диод не пропускает ток. Электронные устройства могут могут быть повреждены или даже разрушены при обратной полярности (положительная и отрицательные подключены к неправильным клеммам).

ПРОТЕКТОР ПЕРЕХОДА

Когда индукторное устройство, такое как реле, выключено, короткое время может генерироваться высокое напряжение (рис. 1).Этот скачок напряжения может повредить реле и другие компоненты. Однако диод не позволяет ток проходит через него в неправильном направлении и замыкает это шип.
Диод также можно использовать для защиты измерителя от обратного тока (диам. 2).

ДИОДЫ ЗЕНЕРА

Обычно ток не течет через диод в обратное направление.Стабилитрон специально разработан для начала проводя в обратном направлении, когда обратное напряжение достигает порог напряжения. Стабилитроны иногда используются в качестве чувствительных к напряжению выключатель.

Вы можете придумать что-нибудь другое? устройства, которые могут выиграть от использования диодов? А как насчет соленоидов?

НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАНИЯ ЭЛЕКТРОНИКИ

Все, что вы хотели знать и многое другое

Добро пожаловать в мир диодов.В этом руководстве я расскажу вам обо всех основных моментах, от диодов до их использования в электронике.

Это часть нашей серии статей о диодах и транзисторах.

Что такое диод?

Самый простой способ определить диод:

Определение диода

= электрический компонент, который проводит ток в основном в одном направлении.

Эта уникальная возможность делает диоды очень полезными в электронике. Они похожи на дороги с односторонним движением в городе.По этой аналогии они позволяют вам направлять поток так, как вы хотите.

# 1 Урок для диодов заключается в том, что они похожи на односторонние вентили, которые позволяют вам контролировать направление тока, протекающего через вашу схему.

Как работает диод?

Чтобы увидеть, как работает диод, давайте посмотрим на поведение диода.

Идеальный диод

Диод выполняет две функции:

  1. позволяет току течь в одном направлении, называемом прямым направлением
  2. блокирует ток в другом направлении, называемом обратным направлением

Он идеален в том смысле, что он делает и то, и другое отлично.Если мы построим график зависимости тока через диод от напряжения, это будет выглядеть следующим образом: идеальная ВАХ диода.

Реальные диоды не так совершенны из-за процесса изготовления. Мы обсудим почему, когда продолжим.

Символ диода

Оказывается, есть простой способ представить диоды с помощью символов на схеме. Вот они:

Обратите внимание, что существует множество различных обозначений диодов для типов диодов. Это небольшие отклонения от штатной диодной схемы.

Например, символ стабилитрона просто имеет две дополнительные линии, направленные в противоположные стороны.

Полярность диода

Теперь, когда у нас есть хорошая основа, мы должны обсудить полярность диода. Оказывается, направление диода играет ключевую роль в его поведении.

Почему?

Ну это тут физика в диоде. Давайте разберем два конца диода следующим образом:

Анод диода: положительный конец диода, когда напряжение здесь выше, чем на катоде и достаточно высокое, чтобы включить диод, через него будет протекать ток

Диод Катод: отрицательный конец диода, он не будет пропускать ток через этот конец, если напряжение не станет достаточно высоким, чтобы диод не мог с ним справиться, что известно как пробой.

PN Junction Diode

Физика твердого тела, лежащая в основе работы PN-диода, связана с манипуляциями с электронами.

Оказывается, мы можем изготавливать материалы с избытком электронов, N-тип, а также без электронов, или P-тип.

Когда мы помещаем материал N-типа рядом с материалом P-типа, мы получаем аккуратное поведение.

Секция P-типа, не имеющая электронов, действует как «дырки», которые создают положительные носители заряда.

Секция N-типа имеет избыток электронов.

Так почему бы электронам не присоединиться к дыркам и не уравновесить все в материале?

Что приятно, так это то, что материалы сделаны таким образом, что лишние электроны не могут легко попасть в отсутствие электроны, потому что они сдвинуты по отношению друг к другу.

Когда на диод подается прямое напряжение, что означает, что на анод подается более положительное напряжение, то сдвиг между электронами и отверстиями перемещается намного ближе друг к другу, обеспечивая хорошее движение электронов (тока) через устройство.

Так создается ваша улица с односторонним движением.

Когда применяется обратное напряжение смещения, сдвиг между электронами и дырками, который уже существует, перемещается еще больше, что затрудняет прохождение электронов через диод.

Дорожная преграда для тока создана.

Что делает диод

Как мы уже говорили, диоды похожи на улицу с односторонним движением. Мы можем использовать их, чтобы помочь направить ток определенными путями и предотвратить его возвращение определенными путями.

Мы более подробно рассмотрим различные способы использования диодов позже, в разделе «Использование диодов».

Во-первых, давайте обсудим еще несколько ключевых понятий о диодах.

Диод с прямым смещением

Что означает наличие диода со смещением в прямом направлении? Ответ довольно прост, если вы посмотрите на него правильно.

Видите ли, диод сам по себе состоит из материала N-типа и P-типа, зажатого вместе, как мы уже обсуждали ранее.

Объединяя эти два материала и их поведение, мы получаем то, что называется областью истощения, которая препятствует легкому протеканию тока через устройство.

Однако, если мы приложим прямое напряжение, которое обычно составляет 0,7 В для обычного диода, между анодом и катодом, мы можем заставить исчезнуть область обеднения, что позволит току легко течь через диод.

Мы можем видеть этот эффект на изображении выше. Обратите внимание, как на анод подается 0,7 Вольт по сравнению с катодом в нижнем примере, и теперь ток свободно течет через устройство, потому что область истощения теперь исчезла.

Диод обратного смещения

Точно так же, как прямое напряжение может удалить область обеднения, напряжение обратного смещения может сделать область обеднения еще больше.

Это дает эффект повышения блокирующей способности диода, не позволяя току течь от катода к аноду через устройство.

Типичный диод имеет диапазон напряжения обратного смещения до 50 вольт. Конечно, вы можете получить диоды, которые идут намного выше этого. Иногда в технических данных эту переменную называют напряжением блокировки постоянного тока.

Как вы можете видеть на изображении выше, приложив напряжение к катодному концу диода в нижнем примере, вы можете еще больше увеличить область обеднения, блокируя протекание любого тока через устройство.

Утечка обратного смещения

Настоящие диоды не идеальны, так как некоторый ток утечки будет проходить от катода к аноду. Однако это количество обычно невелико, но если это является проблемой для вашей конструкции, важен правильный выбор диода.

Напряжение пробоя

Что произойдет, если мы продолжим увеличивать напряжение на катоде и превысим номинальное значение обратного смещения на диод?

Авария — вот что происходит. Это происходит тогда, когда диод выходит за рамки ожидаемого расчетного поведения, и теперь диод начинает пропускать ток через него от катода к аноду.

Большинство диодов обычно повреждаются, когда это происходит

Характеристики диода

Чтобы наглядно представить себе, что мы только что узнали, давайте посмотрим на график, который показывает различные режимы работы диода. Это ВАХ реального диода.

Обратите внимание, как ток по оси Y протекает через диод при прямом напряжении 0,7 В для типичного диода. Напряжение пробоя — это когда ток начинает течь в противоположном направлении, что составляет -50 Вольт для типичного диода.

Все настоящие диоды также будут иметь ток утечки, в котором ток будет течь от катода к аноду без прямого смещения.

Иногда есть другие характеристики, которые вам могут понадобиться, например, сопротивление диода. Для многих схем этот фактор не имеет значения.

Однако для более чувствительных схем одним из способов определения сопротивления диода в режиме прямого смещения является использование классического уравнения сопротивления = напряжение / ток.

В этом случае вы можете измерить падение напряжения на диоде для различных режимов схемы, которые вам интересны, в зависимости от тока через диод.

Уравнение диода

Полезным упражнением для понимания поведения диода является изучение уравнения тока диода.

Давайте сначала рассмотрим уравнение идеального диода, а затем посмотрим, как эффекты реального мира меняют его поведение. Это выглядит следующим образом:

где:

  • Is = ток темнового насыщения
  • q = значение заряда электрона
  • Vd = напряжение на диоде
  • n = идеальный коэффициент, n = 1 для идеальных диодов и n = 1-2 для реальных диоды
  • k = постоянная Больцмана, 1.38064852E-23 Джоуль / Кельвин
  • T = температура (Кельвин)

Чтобы уменьшить уравнение, мы знаем, что kT / q — это то, что называется тепловым напряжением, или Vt. Мы можем изменить уравнение следующим образом:

Здесь Vt = 0,026 В при нормальной температуре.

Как видите, уравнение нелинейное, что затрудняет моделирование поведения диодов. Это просто означает, что настоящие диоды в основном делают то же, что и идеальные, но не идеально.

Если вас интересует моделирование диодов, здесь есть отличная статья.

Типы диодов

Лавинный диод

Лавинные диоды — это диоды, которые специально предназначены для работы в режиме пробивного напряжения. Следовательно, они не повреждаются при переходе в режим пробоя, потому что их конструкция более равномерно распределяет плотность тока.

Эти диоды обычно используются как форма защиты от нежелательных или неожиданных напряжений. Они могут переходить в режим пробоя и проводить избыточную энергию в землю, сохраняя цепь, которая не предназначена для работы с этими напряжениями.

Германиевый диод

Обычные диоды сделаны из кремния, который обладает особыми свойствами, которые приводят к его прямому напряжению 0,7 Вольт. Но что, если вам нужен диод с более низким напряжением?

Вот где может пригодиться германиевый диод. Учитывая свойства материала, эти диоды имеют типичное прямое напряжение 0,3 В.

Низкое напряжение делает этот тип диодов удобным в аудио- и FM-схемах. Раньше это был популярный диод еще до того, как кремниевые диоды стали мейнстримом.

Диод Ганна

Диод Ганна также известен как устройство с переносом электронов (TED). Он отличается от других диодов тем, что в нем используется только материал N-типа (в нем нет материала P-типа).

Он имеет две секции материала N-типа, соединенные тонкой секцией материала N-типа. Что происходит, так это то, что по мере увеличения напряжения на устройстве ток увеличивается до определенной точки, в которой ток начинает уменьшаться.

Это заставляет устройство работать так, как будто оно имеет отрицательное сопротивление.Он также может проводить ток в обоих направлениях из-за отсутствия материала P-типа.

Они обычно используются в схемах электронных генераторов для создания микроволн, в том числе радарных стрелок и автоматических открывателей дверей.

Светодиодный диод

Светодиодный диод обозначает светоизлучающий диод. Диодный светодиод — это устройство, которое излучает фотоны, когда через него проходит ток.

Светодиоды в наши дни чрезвычайно распространены и их можно найти повсюду в электронике. Цена снизилась до такой степени, что они даже используются в схемах для обозначения функций на уровне платы.

Новые технологии работают над снижением стоимости органических светодиодов, которые предлагают еще больше преимуществ, включая гибкие дисплеи.

Фотодиод

Фотодиод — это устройство, которое генерирует ток, когда поглощает фотоны. Следовательно, эти устройства удобны для обнаружения фотонов на многих различных длинах волн.

Фактически, все технологии цифровых фотоаппаратов работают с использованием матрицы фотодиодов, где каждый диод считается пикселем.

Есть даже такие вещи, которые называются детекторами с диодной матрицей, которые имеют массив фотодиодов, которые работают при обнаружении различных длин волн света, так что можно собирать информацию в широком спектральном диапазоне.

PIN-диод

PIN-диод, как следует из названия, — это место, где нелегированный материал помещается между материалами P-типа и N-типа. Нелегированный материал создает так называемую внутреннюю область.

Эти диоды удобны в высокочастотных цепях. Из них получаются отличные ВЧ- и СВЧ-аттенюаторы и переключатели.

Диод Шоттки

Диод Шоттки — это диод, в котором удаляется материал P-типа, а вместо материала N-типа используется металл для создания диода.

Преимущество — более низкое прямое напряжение, которое помогает увеличить частоту коммутации в определенных приложениях. Это в сочетании с более быстрым временем восстановления делает их полезными в схемах, таких как импульсные источники питания.

Диод Шокли

Диод Шокли — один из первых, изобретенных Уильямом Шокли.Он состоял из четырех слоев материала PNPN.

Эти диоды больше не производятся, но их поведение можно имитировать с помощью динисторов.

Кремниевый диод

Кремниевые диоды — это повседневная работа обычных диодов, которые вы найдете в схемах. Они наиболее распространены и обычно имеют прямое напряжение около 0,7 В.

Изображение 1N914 можно увидеть ниже.

Туннельный диод

Туннельный диод использует эффект, называемый квантовым туннелированием.

В этих устройствах замечательно то, что сначала ток очень легко проходит от анода к катоду. Затем, когда прямое напряжение увеличивается, ток, протекающий через устройство, уменьшается, создавая отрицательное сопротивление.

Затем по мере увеличения напряжения он начинает работать как обычный диод. Однако диод желателен из-за его области отрицательного сопротивления. Они полезны в схемах преобразователя частоты и детектора.

Варакторный диод

Назначение варакторного диода — использовать зависящую от напряжения емкость диода в режиме обратного смещения.

Фактически, они могут использоваться в качестве конденсаторов с регулируемым напряжением и удобны в схемах генератора и умножителя частоты.

Стабилитрон

Стабилитроны имеют гораздо более резкую кривую тока, чем другие диоды в области пробоя.

Это означает, что, хотя они работают как другие обычные диоды (от анода к катоду), они также могут пропускать ток в обратном направлении (от катода к аноду) при достижении напряжения обратного смещения.

Другие диоды не предназначены для работы в режим пробивного напряжения, тогда как стабилитроны предназначены для работы именно там.

Общие диоды

Серия 1N400X

Отличным диодом общего назначения для многих различных приложений является серия 1N400X. Их часто можно найти в цепях питания постоянного тока для защиты. Изображение диода 1N4001 можно увидеть ниже.

Вот почему они великолепны:

  • низкая стоимость
  • низкая обратная утечка
  • высокий прямой импульсный ток
  • максимальный прямой ток макс = 1 А
  • максимальное прямое напряжение при максимальном токе = 1,1 В
  • максимальное обратное напряжение смещения меняется на выбранной части X, от 50 В до 1000 В

Некоторые конкретные примеры:

  1. Диод 1N4001 — обратное смещение = 50 В, перемычка
  2. 1N4004 диод — обратное смещение = 400 В, перемычка
  3. 1N4007 диод — обратное смещение = 1000 В, ссылка

1N540X Series

Если вам нужен больший прямой ток, то серия 1N540X — отличный вариант.Они очень похожи на серию 1N400X, за исключением:

  • максимальный прямой ток = 3 А
  • импульсный ток намного выше

Пример:

1N5408 диод — обратное смещение = 1000 вольт, л чернил

Малый сигнал

Для других типов цепей, включая приложения для малых сигналов, доступны более подходящие диоды.

Эти диоды пригодятся, когда вы имеете дело с более низкими токами и напряжениями.

Вот несколько отличных примеров:

  1. 1N914 диод — обратное смещение = 100 В, прямой ток = 0.2 А, ссылка
  2. Диод 1N4148 — обратное смещение = 100 В, прямой ток = 0,2 А, ссылка

Упаковка диодов

Диоды поставляются во многих различных вариантах комплектации, включая сквозное отверстие, поверхностный монтаж и подобные более крупные корпуса используется в ВЧ-устройствах и приложениях большой мощности

В зависимости от технических характеристик диода его размер может быть разным. Например, высоковольтные диоды будут иметь гораздо больший размер, чем низковольтные.

Маркировка диодов

Диоды будут иметь определенную маркировку для обозначения номера детали, а также полярности устройства.

Например, диоды со сквозным отверстием будут иметь цифры, напечатанные на детали, а также будут иметь тонкую полосу на одном конце диода, которая обозначает катод.

Техническое описание детали покажет вам, из чего состоит маркировка и что они означают.

Пример германиевого диода со сквозным отверстием можно увидеть ниже.

Использование диодов

Давайте рассмотрим некоторые из самых популярных схем диодов, чтобы лучше понять, как использовать диоды.

Выпрямительный диод

Диодный выпрямитель — один из наиболее распространенных способов использования диода.Давайте теперь рассмотрим некоторые конкретные примеры.

Диодный мост

Здесь стоит упомянуть две разновидности: полуволновые и двухполупериодные выпрямители.

Полуволновый выпрямитель

Допустим, у вас есть сигнал переменного тока (AC), и вам нужна только его часть. сигнал выше 0 В. Для этого можно использовать диод.

Обычно этот тип схемы используется для выпрямителя переменного тока на 120 В., как показано ниже, он называется полуволновым выпрямителем.

Обратите внимание, как передаются только положительные компоненты входного сигнала, а отрицательные — нет.

Проблема в том, что в этом примере вы получаете только половину сигнала, положительную половину. Во многих ситуациях это может быть все, что вам нужно.

В ситуациях, когда вам нужны оба компонента, вам понадобится полная волна, которую мы рассмотрим далее.

Полнополупериодный выпрямитель

Полнополупериодный выпрямитель представляет собой комбинацию 4 диодов вместе, чтобы преобразовать как положительную, так и отрицательную составляющие сигнала в положительный выход.

Диоды расположены таким образом, что входной сигнал всегда проходит через диоды, независимо от его положительного или отрицательного напряжения. Такое расположение диодов можно увидеть ниже.

Входной сигнал преобразуется во все положительные, как показано ниже (вход и выход имеют цвет, соответствующий приведенной выше диаграмме.

Двухполупериодные выпрямители

поставляются в готовой упаковке с более высокими предельными значениями тока. Пример можно увидеть ниже.

Вы также можете расположить свои собственные диоды индивидуально, чтобы создать свой собственный полноволновой мост.Вы можете выбрать хорошие силовые диоды или диоды с более высоким прямым током и более высоким напряжением пробоя для вашего приложения.

Детали 1N4007 и 1N5408 — отличный выбор для прямого выпрямления 120 В переменного тока, в зависимости от ваших требований к максимальному току. Обратите внимание, что максимальное обратное смещение здесь имеет решающее значение, и номинальное напряжение в 1000 вольт на этих деталях дает вам большой запас прочности.

Если вы используете понижающий трансформатор между 120-вольтовым переменным током и двухполупериодным мостом, определите максимальное напряжение и убедитесь, что выбранные вами диоды имеют достаточный запас (в 2-3 раза выше) для обратного смещения.

Если вы заинтересованы в сглаживании пульсаций, вы можете использовать конденсатор на выходе, который подходит для вашего тока в вашей цепи, и получить хорошее постоянное напряжение на выходе.

Обратный диод

Есть много названий для того же типа диода, включая демпферный диод, диод свободного хода и ограничительный диод.

Обратный диод — удобный способ использования диода для уменьшения внезапных скачков напряжения, которые возникают при внезапном изменении тока через индуктивную нагрузку .

Как мы обсуждали в статье об индукторах, всякий раз, когда индуктор видит изменение тока, проходящего через него, он создает всплеск напряжения ЭДС, чтобы попытаться стабилизировать изменение тока.

Во многих схемах эта генерируемая ЭДС обычно нежелательна и иногда может вызывать повреждение других частей схемы.

Чтобы исключить повреждение, диод можно разместить так, чтобы в случае скачка напряжения ЭДС через диод протекал ток, а не через другие компоненты схемы, которые могут быть повреждены.

Распространенной схемой, где это полезно, является управление небольшим вентилятором или релейным индуктором. Как правило, большинство цифровых выводов могут давать ток менее 20 мА, поэтому это необходимо для усилителя тока. См. Пример схемы диода ниже.

Здесь хорошо работает NPN-транзистор, потому что цифровой вывод может подавать 10 миллиампер для включения NPN-транзистора, а транзистор может обрабатывать примерно ампер тока, необходимого для вентилятора или катушки индуктивности реле.

Каждый раз, когда транзистор выключается, в катушке индуктивности происходит резкое падение тока и возникает всплеск обратной ЭДС.

Без диода пик проходит через транзистор, обычно повреждая его. При размещении диода параллельно катушке индуктивности скачок напряжения ЭДС включает диод и позволяет току течь через диод и обратно в катушку индуктивности, где он рассеивается.

Этот обратный ток обратно в катушку индуктивности и является источником названия этого типа диода.

Для диода D1 в приведенной выше схеме обычно выбирается 1N4001, который имеет прямой ток 1 А. , высокий импульсный ток и обратное смещение 50 Вольт.Это хорошо работает в цепях с напряжением 12 В. Если у вас напряжение выше, вам может понадобиться более способная деталь.

Стабилитрон-стабилизатор напряжения

Как уже говорилось ранее, стабилитроны предназначены для работы в режиме напряжения пробоя.

Одним из способов воспользоваться этим преимуществом является стабилитрон. Нам просто нужны правильно подобранные резистор и стабилитрон, чтобы дать нам желаемое выходное напряжение

Пример схемы стабилитрона можно увидеть ниже.

Стабилитрон ограничивает входное напряжение до напряжения пробоя диода в этой цепи для выхода.Для этого он должен пропускать ток через диод, который будет рассеиваться в виде тепла, но только тогда, когда входное напряжение выше напряжения пробоя.

Требуемое выходное напряжение будет определять стабилитрон, поскольку вы выбираете диод на основе его напряжения пробоя, чтобы соответствовать выходному напряжению. Вы должны получить диод, способный выдержать рассеиваемую мощность.

Резистор необходимо тщательно выбирать в зависимости от силы тока цепи. Отличный калькулятор для выбора этих деталей здесь.

Блокирующий диод

Такое использование диода — это просто название ситуации, когда диод используется для управления током, протекающим только в одном направлении.

Отличный пример — схема солнечной панели и зарядного устройства. Когда солнце отсутствует и солнечные панели вырабатывают ток, они обычно имеют более высокое напряжение, чем батарея, которую заряжает цепь, поэтому ток будет течь от панелей в батарею.

Однако в ночное время солнечный свет не попадает на солнечные панели, поэтому они не будут вырабатывать ток.Батарея в этот момент будет иметь более высокое напряжение, и без блокирующего диода ток будет течь от батареи к панелям, тратя энергию.

Когда диод помещается между солнечными панелями и батареей, он позволяет току течь от панелей к батарее, но не позволяет току течь от батареи к панелям.

Следовательно, он «блокирует» протекание тока нежелательным образом

Еще одно место, где это полезно, — это батареи в цепи.Каждый раз, когда есть вероятность, что кто-то может вставить батареи задом наперед или подключить питание постоянного тока наоборот, отличный способ защитить цепь — это использовать блокирующий диод.

Диод гарантирует, что только правильная полярность напряжения позволит току течь в цепи, защищая их от отрицательного напряжения.

Загвоздка в том, что вы должны выбрать диод, который может выдерживать максимальный прямой ток, который будут тянуть цепи. Кроме того, напряжение в цепи будет уменьшено прямым напряжением диода.

Ограничивающий диод

Ограничивающий диод — это просто способ использования конденсатора и диода для управления уровнем постоянного тока сигнала.

В приведенном ниже примере схемы конденсатор и диод создают смещение постоянного тока на входном сигнале переменного тока.

Если мы хотим изменить направление смещения постоянного тока, мы просто меняем направление диода, как показано ниже.

Вы можете пойти еще дальше, если поместите источник напряжения между диодом и землей, чтобы можно было добавить дополнительное смещение постоянного тока в желаемом направлении.

Клипсационный диод

В отличие от зажима есть клипсование. Здесь вы можете использовать последовательный резистор и диод, чтобы отсечь нежелательную часть входного сигнала.

Для положительного ограничения диод расположен так, что он включен, когда сигнал выше прямого напряжения, и, следовательно, диод проводит ток, ограничивая верхнее напряжение на уровне около 0,7 В.

Пример можно увидеть ниже. R2 — это просто пример резистора и не требуется.

В приведенном выше примере обратите внимание, как максимальное верхнее напряжение ограничено 0,7 В, что является прямым напряжением диода.

Если требуется отрицательное ограничение, вы можете просто перевернуть диод. В этом случае, когда входной сигнал отрицателен за пределами прямого напряжения, диод будет включаться и проводить ток, ограничивая отрицательный сигнал на уровне -0,7 вольт.

Пример ниже. Опять же, R2 не требуется.

Обратите внимание на то, что в приведенном выше примере отрицательная часть сигнала обрезается до -0.7 Вольт.

Чтобы пойти еще дальше, вы можете добавить напряжение между диодом и землей, чтобы сместить место ограничения входного сигнала.

Вы также можете выполнить как положительное, так и отрицательное ограничение вместе, разместив два диода параллельно с противоположными полярностями, чтобы ограничить верхнюю и нижнюю части сигнала.

Вам понравилась эта статья или у вас есть интересный опыт работы с диодами? Сообщите нам об этом в комментариях ниже!

Диоды — Справочник по электронике

Меню курса Модуль 1 Введение в теорию электричества Модуль 2 Основные понятия Модуль 3 — Цепи постоянного тока Введение в схемы постоянного тока Резисторы и схемы резисторов Конденсаторы и схемы конденсаторов Модуль 5 — Полупроводники Модуль 6 — Аналоговые схемы Набор светодиодов может использоваться для украшения или даже безопасности.

Что такое диоды?

Диоды являются одними из наиболее распространенных электрических компонентов и встречаются практически во всех электронных схемах. Диоды — это электронные компоненты, которые позволяют электрическому току течь в одном направлении, предотвращая протекание тока в противоположном направлении. Они являются электрическим эквивалентом механического обратного клапана (также известного как односторонний клапан), поскольку пропускают ток только в одном направлении.

Диоды имеют один вход и один выход, что делает их двумя оконечными устройствами, такими как резисторы.В отличие от резисторов, диоды имеют полярность, что означает, что они будут работать только при правильной ориентации в цепи. Если диод установлен с неправильной направленностью, он будет работать с точностью до наоборот; это предотвратит ток, который вы хотите, в то же время позволяя току течь в неправильном направлении.

Идеальный диод имеет нулевое сопротивление току в одном направлении и бесконечное сопротивление току в противоположном направлении. Реальные диоды никогда не бывают идеальными, но, выбирая правильный диод для правильного применения, мы часто можем игнорировать неидеальные характеристики диодов.

Первые диоды были сделаны на электронных лампах, которые до сих пор иногда используются для приложений большой мощности. Диоды на самом деле являются самым простым типом ламповых устройств. Но наиболее распространенными сегодня диодами являются твердотельные полупроводниковые диоды, изготовленные из легированной кремниевой подложки. Эти устройства обычно конструируются из специально разработанных P-N переходов.

Диоды могут также называться выпрямителями , потому что они «выпрямляют» направление тока. Обычно выпрямитель — это диод, который используется для преобразования переменного тока в постоянный.Одно из наиболее распространенных применений диодов — в выпрямительных цепях переменного тока в постоянный. В схемах выпрямителя используется комбинация диодов для минимизации потерь при преобразовании переменного тока в постоянный.

Как работают диоды?

Диоды пропускают ток, когда они находятся в конфигурации с прямым смещением, но предотвращают прохождение тока в конфигурации с обратным смещением.

Ток течет от анода к катоду.

В диоде ток может только течь от анода к катоду:

Анод : положительный вывод компонента схемы (например, диода).

Катод : отрицательный вывод компонента схемы (например, диода).

Когда положительный вывод диода (анод) соединен с положительным выводом источника питания, эта конфигурация называется с прямым смещением . Прямое смещение на самом деле относится к степени, в которой прямой потенциал передается через диод. Большее прямое смещение означает, что на диоде размещается более высокая разность электрических потенциалов (напряжение), при этом напряжение проталкивает ток от анода к катоду.Обратное смещение означает, что либо диод помещен в противоположную конфигурацию, либо на диоде подается отрицательное напряжение. В любом случае обратное смещение — это напряжение, которое пытается протолкнуть ток от катода к аноду (т. Е. Противоположно обычному направлению, в котором ток проходит через диод).

Когда применяется прямое смещение, ток течет от анода через диод и выходит из катода, который соединен с отрицательной клеммой источника питания.Электронный поток всегда противоположен текущему. Итак, в диоде физически происходит то, что электроны перемещаются от катода к аноду.

Итак, идеальный диод спроектирован так, чтобы пропускать ток только при прямом смещении через него и предотвращать протекание тока при использовании обратного смещения.

Два основных типа диодов

Есть два основных класса диодов; вакуумная трубка (также известная как термоэлектронная) и твердотельная .У них разные функции, которые позволяют работать каждому, и мы кратко рассмотрим оба, поскольку понимание одного полезно для понимания другого.

Вакуумные ламповые диоды

В вакуумных ламповых диодах для инжекции электронов от катода к аноду используется нагретый металл, таким образом генерируя ток от анода к катоду. Схематическое изображение дает довольно хорошую основу для понимания того, как это работает: в

вакуумных ламповых диодах (также называемых термоэлектронными диодами) используется нагреватель, который заставляет катод выбрасывать электроны, которые «приземляются» на анод.

На этом рисунке кружок представляет собой вакуумную лампу. Катод находится в нижней части трубки, а его конечная точка подключения торчит слева. Анод находится в верхней части вакуумной трубки. Под катодом находится нагреватель n-образной формы, который нагревает катод. Когда катод достигает достаточно высокой температуры, он начинает выбрасывать электроны, которые захватываются анодом в верхней части трубки.

Из этого простого объяснения мы можем понять, почему ламповый диод позволяет току течь только в одном направлении.Это потому, что анод не нагревается; он просто не может выбрасывать электроны так, как катод.

Твердотельные диоды

Твердотельные диоды работают по совершенно иному принципу, а именно по принципу P-N перехода.

В P-N переходе полупроводниковая подложка легирована так, что одна сторона перехода имеет дырки для свободных электронов, что называется материалом «P-типа». Это достигается путем добавления атомов, у которых на один электрон меньше, чем у атомов объемного кристалла полупроводника.Другая сторона перехода имеет свободные электроны и называется материалом «N-типа». Это делается путем добавления атомов, у которых на один электрон больше, чем у атомов кристалла полупроводника.

На стыке образуется область истощения, через которую ток не может пройти. Если напряжение приложено в одном направлении, область истощения сузится и пропустит ток. Если напряжение приложено в другом направлении, область истощения будет расти, и переход P-N будет сопротивляться току еще больше.

Большинство полупроводниковых диодов являются версиями P-N перехода. У диода с прямым смещением сторона P соединена с положительной клеммой источника питания, а ее ‘N-кристалл — с отрицательной клеммой источника питания.

Кривая вольт-амперной характеристики (ВАХ) диода

ВАХ диода, демонстрирующая неидеальное поведение: прямое напряжение В F и напряжение пробоя В BR

Как и большинство компонентов схемы, настоящие диоды этого не делают. вести себя идеально.При прямом смещении диод будет существенно проводить только при приложении определенного напряжения; это известно как пороговое значение или напряжение включения. Это одно из основных различий между идеальными и настоящими диодами.

Другое важное неидеальное поведение диодов называется напряжением пробоя. Если на диод подается достаточно высокое обратное смещение, он начинает пропускать ток от катода к аноду.

Прямое напряжение, также известное как пороговое напряжение, или напряжение включения

Диоды будут правильно работать только при подаче минимального прямого напряжения.

Это напряжение известно как прямое, пороговое напряжение или напряжение включения и чаще всего обозначается как V F . Пороговое напряжение соответствует напряжению, необходимому для проталкивания носителей заряда через область истощения. Щелкните здесь, чтобы узнать об области истощения в P-N-переходе.

При очень низких напряжениях диод может вообще не пропускать ток. При более высоких напряжениях, которые ниже порогового напряжения, диод демонстрирует значительное сопротивление, но при этом пропускает некоторый ток.При превышении порогового значения сопротивление падает, и диод пропускает ток с небольшим падением напряжения на нем.

Напряжение пробоя

Диоды также показывают неидеальное поведение при обратном смещении. Диод будет пропускать ток при обратном смещении, если на нем будет подано достаточно большое отрицательное напряжение. Это явление называется пробоем обратного смещения, а напряжение, при котором оно возникает, называется напряжением пробоя V BR .

В некоторых случаях это действительно задумано, а в других может означать выход из строя самого диода.

При выборе правильного диода для схемы напряжение пробоя является одним из наиболее важных факторов. Необходимо рассчитать максимально возможное обратное смещение на диоде. Затем диод, который имеет более высокое напряжение пробоя, чем максимально возможное обратное смещение, используется в качестве основного параметра для выбора.

Где / как используются диоды?

Диоды выполняют множество функций и используются во многих различных типах схем. Диоды — это не универсальные диоды. Хотя все диоды разделяют основные функции диода, различные типы диодов разработаны для конкретных применений.

Одно из наиболее распространенных применений диодов — преобразование переменного тока в постоянное. Эффективная схема выпрямителя эффективно преобразует переменный ток в постоянный с минимальными потерями мощности.

Диоды часто используются для защиты цепей, предотвращая прохождение тока в неправильном направлении.

Светоизлучающие диоды (LED) обеспечивают выпрямляющую функцию диода, а также излучают свет. Это может быть полезно в качестве индикатора производительности или функциональности схемы или может быть основным назначением, как в случае светодиодного освещения.Светодиоды также используются в большинстве современных телевизоров, в которых они обеспечивают освещение каждого пикселя.

Типы твердотельных диодов

Существует несколько различных типов твердотельных диодов, функциональность которых немного отличается от обычных диодов с P-N переходом.

Светодиоды (светодиоды)

Светодиоды, или светодиоды, являются одними из наиболее распространенных электронных компонентов. Они работают как выпрямители, как обычные диоды, но также излучают свет при прохождении через них тока.Излучаемый свет зависит от материалов и конструкции диода.

Во всех диодах на основе P-N перехода происходит высвобождение энергии, поскольку электроны и дырки рекомбинируют в центре перехода при приложении прямого смещения. Светодиоды используют это высвобождение энергии, создавая диод таким образом, чтобы энергия находилась в полосе частот видимого света.

В отличие от ламп накаливания, они излучают свет только на очень определенных частотах.Это делает их чрезвычайно эффективными при преобразовании электрической энергии в свет, а также позволяет им работать при гораздо более низких температурах, чем большинство традиционных источников света.

Лазерные диоды (LD)

Лазерные диоды лежат в основе большинства имеющихся в продаже лазеров, включая лазерные указки, обычно используемые на работе и дома.

Лазерные диоды очень похожи на светодиоды по принципу действия. Как и светодиоды, лазерные диоды генерируют свет за счет рекомбинации носителей заряда на переходе.Однако лазерные диоды производят свет определенной частоты из-за явления, называемого вынужденным излучением, при котором один фотон света стимулирует испускание большего количества фотонов той же точной частоты.

Кроме того, свет, излучаемый LD, ограничивается, а затем фокусируется так, что он производит единый коллимированный луч света.

Стабилитроны

Стабилитроны предназначены для использования с обратным смещением. Они имеют тщательно подобранное напряжение пробоя, которое позволяет току проходить, если приложено достаточно высокое обратное смещение.Стабилитроны также спроектированы таким образом, чтобы выдерживать обратное смещение, не повреждая его.

Фотодиоды

Фотодиоды несколько отличаются от других диодов. Там, где большинство диодов сконструировано так, чтобы свет не попадал на переход, фотодиоды используют энергию света для генерации тока. Фотодиоды — это не выпрямители, а датчики, которые поглощают свет и используют энергию света для управления рекомбинацией носителей на переходе.

Фотоэлектрические солнечные элементы, возможно, являются наиболее распространенным примером фотодиода.

Как выбрать диод

Есть несколько полезных шагов для определения правильного диода для использования в цепи:

  1. Определите максимальное обратное смещение на диоде. Напряжение пробоя диода должно быть выше этого показателя.
  2. Рассчитайте максимальный прямой ток. Диод должен быть рассчитан, по крайней мере, на эту величину тока.
  3. Определите максимально допустимое падение напряжения на диоде.

Используйте комбинацию этих параметров для определения характеристик используемого диода.

Модуль 5 — Полупроводники

Урок 0 : Введение в модуль 5

Урок 1 : Введение в полупроводники

Урок 2 : Полупроводниковый допинг

Урок 3

Урок 3

4 : Диоды

Урок 5: Светоизлучающие диоды

Урок 6 : Стабилитроны

Урок 7 : Транзисторы

Урок 8 : Биполярные транзисторы

0001 как транзисторы напряжения ES

Абстрактные

Когда к усилителю применяются условия внешнего перенапряжения, антистатические диоды являются последней линией защиты между усилителем и электрическим перенапряжением.При правильном понимании того, как элемент ESD реализован в устройстве, разработчик может значительно расширить диапазон выживания усилителя с помощью соответствующей схемы. Эта статья призвана познакомить читателей с различными типами реализаций ESD, обсудить характеристики каждой реализации и предоставить рекомендации по использованию этих ячеек для повышения устойчивости проекта.

Введение

Во многих приложениях, где вход не находится под управлением системы, а скорее подключается к внешнему миру, например, к испытательному оборудованию, контрольно-измерительным приборам и некоторому измерительному оборудованию, входные напряжения могут превышать максимальное номинальное напряжение входного усилителя. .В этих приложениях должны быть реализованы схемы защиты, чтобы сохранить диапазон выживания и надежность конструкции. Внутренние антистатические диоды входного усилителя иногда используются для ограничения условий перенапряжения, но необходимо учитывать множество факторов, чтобы эти зажимы обеспечивали достаточную и надежную защиту. Понимание различных архитектур ESD-диодов, которые находятся внутри входных усилителей, наряду с пониманием тепловых и электромиграционных последствий данной схемы защиты может помочь разработчику избежать проблем с их схемами защиты и повысить долговечность их приложений в полевых условиях.

Конфигурации диодов ESD

Важно понимать, что не все диоды ESD представляют собой простые диодные зажимы для источников питания и земли. Существует множество возможных реализаций, которые можно использовать, например, несколько последовательно соединенных диодов, диодов и резисторов, а также обратных диодов. Некоторые из наиболее распространенных реализаций подробно описаны ниже.

Диод, подключенный к источнику питания

На рисунке 1 показан пример усилителя с диодами, подключенными между входными контактами и источниками питания.Диоды смещены в обратном направлении при нормальных условиях эксплуатации, но становятся смещенными в прямом направлении, когда входы поднимаются выше положительного напряжения питания или ниже отрицательного напряжения источника питания. Когда диод становится смещенным в прямом направлении, через входы усилителя течет ток к соответствующему источнику питания.

В случае схемы на Рисунке 1 входной ток не ограничивается самим усилителем, когда перенапряжение превышает + V S , и потребует внешнего ограничения тока в виде последовательного резистора.Когда напряжение опускается ниже –V S , резистор 400 Ом обеспечивает некоторое ограничение тока, что следует учитывать при проектировании.

Рисунок 1. Входная топология ESD AD8221.

На рис. 2 показан усилитель с аналогичной конфигурацией диодов, но в этом случае ток ограничивается внутренним последовательным резистором 2,2 кОм. Это отличается от схемы, показанной на Рисунке 1, не только величиной ограничивающего резистора R, но и тем, что 2,2 кОм защищает от напряжений выше + V S .Это пример тонкостей, которые необходимо полностью понять, чтобы оптимизировать защиту при использовании диодов ESD.

Рис. 2. Топология входа ESD AD8250.

Токоограничивающие полевые транзисторы

В отличие от реализации на рисунках 1 и 2, токоограничивающие полевые транзисторы могут использоваться в конструкциях ИС в качестве альтернативы диодным зажимам. На рисунке 3 показан пример использования полевых транзисторов JFET для защиты устройства, когда входное напряжение превышает указанный рабочий диапазон устройства. Это устройство изначально защищено до 40 В от противоположной шины с помощью входов JFET.Поскольку полевой транзистор JFET ограничивает ток на входных контактах, ячейки ESD не могут использоваться в качестве дополнительной защиты от перенапряжения.

Там, где требуется защита по напряжению до 40 В, защита JFET этого устройства предлагает хорошо управляемый, надежный и полностью определенный вариант защиты. Это часто контрастирует с использованием диодов ESD для защиты, где информация о предельных значениях тока диодов часто указывается как типовая или, возможно, не указывается вообще.

Рисунок 3. Схема защиты входа AD8226.

Диодные стеки

В приложениях, где входное напряжение может превышать напряжение источника питания или заземления, для защиты входа от ESD-событий может использоваться стек диодов. На рисунке 4 показан усилитель, реализующий схему многоуровневой диодной защиты. В этой конфигурации цепочка диодов используется для защиты от отрицательных переходных процессов. Цепочка диодов используется для ограничения тока утечки в используемом диапазоне входных сигналов, но обеспечивает защиту при превышении отрицательного синфазного диапазона.Имейте в виду, что единственным ограничением тока будет эквивалентное последовательное сопротивление цепочки диодов. Для уменьшения входного тока при заданном уровне напряжения можно использовать внешнее последовательное сопротивление.

Рисунок 4. Схема защиты входа низкого напряжения AD8417.

Задние диоды

Обратные диоды также используются, когда диапазон входного напряжения может превышать напряжение источника питания. На рисунке 4 показан усилитель, в котором установлены встречные диоды для обеспечения защиты от электростатического разряда на устройстве, которое допускает напряжения до 70 В с использованием 3.Питание 3 В. D4 и D5 — это высоковольтные диоды, используемые для защиты от высоких напряжений, которые могут присутствовать на входных контактах, а D1 и D2 используются для предотвращения токов утечки, пока входные напряжения находятся в пределах нормального рабочего диапазона. В этой конфигурации использование этих ячеек ESD для защиты от перенапряжения не рекомендуется, потому что превышение максимального обратного смещения высоковольтного диода может легко привести к ситуациям, которые вызывают необратимые повреждения.

Рисунок 5. Схема защиты входа высокого напряжения AD8418.

Без зажимов ESD

Некоторые устройства не имеют устройств защиты от электростатических разрядов во внешнем интерфейсе. Хотя очевидно, что разработчик не может использовать диоды ESD для фиксации, если их нет, эта архитектура упоминается как ситуация, на которую следует обратить внимание при исследовании вариантов защиты от перенапряжения (OVP). На рисунке 6 показано устройство, в котором для защиты усилителя используются только резисторы большого номинала.

Рисунок 6. Схема защиты входа AD8479.

Ячейки ESD как зажимы

Помимо понимания того, как реализованы ячейки ESD, важно понимать, как использовать структуры для защиты.В типичном приложении для ограничения тока в заданном диапазоне напряжений используется последовательный резистор.

Когда усилители сконфигурированы, как показано на Рисунке 7, или когда входы защищены диодом от источника питания, входной ток ограничивается с использованием уравнения в следующей формуле.

Рисунок 7. Использование ячеек ESD в качестве зажимов.

Предположение, используемое для уравнения 1, состоит в том, что V НАПРЯЖЕНИЕ > V SUPPLY . Если это не так, следует измерить и использовать для расчета более точное напряжение на диоде вместо 0.Приближение 7 В.

Ниже приведен пример расчета для защиты усилителя, использующего источники питания ± 15 В, от входных напряжений до ± 120 В при ограничении входного тока до 1 мА. Используя уравнение 1, мы можем использовать эти входные данные для вычисления следующего.

С учетом этих требований, R PROTECTION > 105 кОм ограничит ток диода до <1 мА.

Понимание текущих ограничений

Максимальные значения для I DIODE будут варьироваться от детали к детали, а также зависеть от конкретных сценариев применения, в которых применяется напряжение.Максимальный ток будет отличаться для одноразового события, длящегося миллисекунды, по сравнению с тем, если бы ток применялся постоянно в течение всех 20 или более лет жизни профиля миссии приложения. Указания по конкретным значениям можно найти в технических паспортах усилителей в разделе «Абсолютные максимумы» или в примечаниях к применению и обычно находятся в диапазоне от 1 мА до 10 мА.

Режимы отказа

Максимальный номинальный ток для данной схемы защиты в конечном итоге будет ограничен двумя факторами: тепловым воздействием мощности, рассеиваемой в диоде, и максимальным номинальным током для пути тока.Рассеиваемая мощность должна быть ниже порога, который поддерживает рабочую температуру в допустимом диапазоне, а ток следует выбирать в пределах указанного максимума, чтобы избежать проблем с надежностью из-за электромиграции.

Термические последствия

Когда ток течет в диоды ESD, происходит повышение температуры из-за мощности, рассеиваемой в диодах. В большинстве технических паспортов усилителей указано тепловое сопротивление (обычно указывается как Ө JA ), которое указывает, как температура перехода будет увеличиваться в зависимости от рассеиваемой мощности.Рассмотрение наихудшего случая температуры применения, а также повышения температуры наихудшего случая из-за рассеивания мощности, даст представление о жизнеспособности схемы защиты.

Электромиграция

Даже если ток не вызывает тепловых проблем, ток диода все равно может создавать проблемы с надежностью. Существует максимальный номинальный ток в течение срока службы для любого пути электрического сигнала из-за электромиграции. Предел тока электромиграции для пути тока диода обычно ограничивается толщиной внутренних дорожек, последовательно соединенных с диодами.Эта информация не всегда публикуется для усилителей, но ее необходимо учитывать, если диоды активны в течение длительного периода времени, в отличие от переходных процессов.

Примером проблемы может быть электромиграция, когда усилитель контролирует шину напряжения, которая не зависит от собственной шины питания, и, следовательно, подключена к ней. Когда имеется несколько областей мощности, могут быть случаи, когда последовательность подачи питания может привести к временному превышению напряжений условий абсолютного максимума.Рассматривая путь тока наихудшего случая, продолжительность жизни, в течение которой этот ток может быть активным, и понимая максимально допустимый ток для электромиграции, можно избежать проблем с надежностью из-за электромиграции.

Заключение

Понимание того, как внутренние антистатические диоды усилителя активируются во время электрических перегрузок, может помочь в простом улучшении устойчивости конструкции. Изучение как тепловых, так и электромиграционных последствий схемы защиты может выявить потенциальные проблемы и указать, где может потребоваться дополнительная защита.Учет условий, описанных здесь, позволяет разработчикам делать разумный выбор и избегать потенциальных проблем с надежностью в полевых условиях.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *