общий принцип работы, маркировка, обозначение
Электротехника и радиоэлектроника пестрят многими понятиями, одним из которых является диод Шоттки, используемый в многочисленных схемах электроцепей. Многие задаются вопросами о том, что такое диод Шоттки, как он обозначается на схемах, а также каков принцип работы диода Шоттки.
Внешний вид Диода Шоттки с маркировкой 1N5817
Общая информация и принцип работы
Диод Шоттки – диодное полупроводниковое изделие, которое при прямолинейном включении в цепь выдает малый показатель уменьшения напряжения. Состоит данный элемент из металла и полупроводника. Назван диод в честь известного немецкого физика-испытателя В. Шоттки, какой в 38 году 20 века изобрел его.
В промышленности применяется такой диод с ограниченным обратным напряжением – до 250 В, но на практике в бытовых целях для предотвращения движения тока в противоположную сторону применяются в основном низковольтные варианты – 3-10В.
Диоды Шоттки можно разделить на 3 класса по мощностным характеристикам:
- высокомощные;
- среднемощные;
- маломощные.
Диод с барьером Шоттки (более точное наименование изделия) состоит из проводника, для контакта с каким используется металл, кольца защиты и пассивации стеклом.
Структура диода с барьером Шоттки 1N5817
В тот момент, когда по электроцепи проходит ток, в разных участках корпуса по всей области полупроводникового барьера и на защитном кольце собираются отрицательные и положительные заряды, что приводит к возникновению электрополя и выделению тепловой энергии – это большой плюс диода для многих физических опытов.
Диодные сборки этого типа могут выпускаться в нескольких вариациях:
- диоды Шоттки с общим анодом;
- диодные изделия, имеющие вывод с общего катода;
- диоды, собранные по схеме удвоения.
Технические характеристики популярных модификаций диодов Шоттки
Наименование | Предельное обратное пиковое напряжение | Предельный выпрямительный электроток | Пиковый прямой электроток | Предельный обратный электроток | Предельное прямое напряжение | |
---|---|---|---|---|---|---|
Ед. измерения | В | А | оС | А | µА | В |
1N5817 | 20 | 1 | 90 | 25 | 1 | 0,45 |
1N5818 | 30 | 1 | 90 | 25 | 1 | 0,55 |
1N5819 | 40 | 1 | 90 | 25 | 1 | 0,6 |
1N5821 | 30 | 3 | 95 | 80 | 2 | 0,5 |
1N5822 | 40 | 3 | 95 | 80 | 2 | 0.525 |
Габаритные размеры диодных сборок типа Шоттки серии 1N5817
Различия от иных полупроводников
Диоды Шоттки различаются от иных диодных изделий тем, что имеют преграду в виде перехода – полупроводник-металл, характеризующийся односторонней электропроводностью. Металлом в них могут выступать кремний, арсенид галлия, реже могут использоваться соединения германия, вольфрама, золота, платины и прочие.
Работа этого электронного компонента будет полностью зависеть от выбранного металла. Чаще всего в таких конструкциях встречается кремний, так как отличается большей надежностью и отличными рабочими характеристиками на высоких мощностях. Могут также использоваться соединения галлия и мышьяка, германия. Производственная технология этого электронного изделия проста, что обуславливает его низкую стоимость.
Изделие Шоттки характеризуется более стабильным функционированием при подаче электротока, чем прочие типы полупроводниковых диодов. Достигается это за счет того, что в его корпус внедряются специальные кристаллические образования.
Достоинства и недостатки
Вышеописанные диоды имеют некоторые достоинства, которые заключаются в следующем:
- электроток отлично удерживается в цепи;
- небольшая емкость барьера Шоттки увеличивает срок службы изделия;
- низкое падение электронапряжения;
- быстродействие в электроцепи.
Самым же существенным недостатком компонента является огромный обратный ток, что даже при скачке этого показателя в несколько единиц приводит к выходу диода из строя.
Обратите внимание! При эксплуатации электроэлемента Шоттки в цепях с мощным электротоком при неблагоприятных условиях теплового обмена случается теплопробой.
Диод Шоттки: обозначение и маркировка
Диод Шоттки на электросхемах обозначается практически точно так же, как и обычные полупроводники, но с некоторыми особенностями.
Условные графические обозначения основных полупроводников и диодов, в том числе диода с барьером Шоттки
Стоит отметить, что на схемах могут встречаться и сдвоенные варианты диода Шоттки. Представляет собой такая конструкция два соединенных диода в общем корпусе, имеющие спаянные катоды или аноды, что ведет к образованию трех выводов.
Внешний вид и обозначение сдвоенного диода Шоттки с общим катодом
Маркировка таких элементов проставляется сбоку в виде букв и символов. Каждый производитель осуществляет маркирование своих изделий по-своему, но выполняя определенные международные стандарты.
Важно! Если буквенно-цифирное обозначение на корпусе диода не понятно, то рекомендуется смотреть расшифровку в радиотехническом справочнике.
Область применение
Применение диодных конструкций с барьером Шоттки можно встретить во многих приборах и электротехнических структур. Наиболее часто они применяются на электросхемах в следующей технике:
- электроприборы для дома и компьютеры;
- блоки питания различного типа и стабилизаторы напряжения;
- теле,- и радиоаппаратура;
- транзисторы и батареи, работающие от солнечной энергии;
- прочая электроника.
Столь широкая область применения связана с тем, что такой электротехнический элемент увеличивает многократно эффективность и работоспособность конечного изделия, восстанавливает обратное сопротивление электротока, сохраняет его в электросети, снижает численность утерь динамики электронапряжения, а также вбирает в себя довольно много различного типа излучений.
Диагностирование диодов Шоттки
Проверить исправность электроэлемента Шоттки несложно, однако для этого потребуется некоторое время. Для диагностики неисправностей необходимо проделать нижеследующее:
- Из электросхемы или диодного моста требуется изначально выпаять интересующий элемент;
- Провести визуальный осмотр на возможные механические повреждения, наличие следов химических и прочих реакций;
- Проверить диод тестером или мультиметром;
- Если проверка проводится мультиметром, то необходимо после его включения подвести щупы к концам катода и анода, в итоге прибор выдаст реальное напряжение диодной сборки.
Важно! При проведении проверочных мероприятий мультиметром, следует учитывать электроток, который обычно указан сбоку изделия.
Схема проверки диодной сборки Шоттки посредством мультиметра
Итогом этих простых действий станет установление технического состояния полупроводника. Неисправным же диод может стать по следующим причинам:
- При возникновении пробоин элемент Шоттки перестает удерживать электроток, соответственно из полупроводника превращается в проводника;
- Когда в диодном мосту или самом диодном элементе случается обрыв, то пропуск электротока прекращается вообще.
Стоит отметить, что при таких происшествиях не будет видно ни дыма, ни запаха гари, соответственно, проверять потребуется все диоды, а лучше всего обратиться в специализированные мастерские.
Диод Шоттки – простой и неприхотливый, но в то же время крайне необходимый элемент в современной электронике, так как именно благодаря ему удается обеспечить бесперебойную работу многих приборов и технических изделий.
Видео
Оцените статью:Диод шоттки маркировка на корпусе
Что такое диод Шоттки? Это полупроводниковый элемент, название которого соответствует фамилии знаменитого физика и изобретателя, работавшего в Германии. Специфика диода Шоттки заключается в минимальном снижении напряжения. Эта низкая динамика наблюдается при прямом введении компонента в цепь. На практике используется при обратном напряжении с небольшими значениями (в среднем 3-10В), при возможности применять в промышленности с гораздо большими величинами значение может достигать до 1200В.
Внешний вид
Разновидности диодов Шоттки
Все полупроводниковые элементы, работающие по принципу барьера Шоттки, делятся по мощности на:
Сдвоенный диод
На рисунке показан сдвоенный элемент, являющий собой по сути два элемента.
Особенности и принцип работы диода Шоттки
Как работает диод Шоттки? В чем принципиальные отличия его работы от аналогов с другим барьерным переходом?
Устройство диода Шоттки имеет отличие от других элементов того же назначения использованием барьером в виде перехода между металлом и полупроводником. У аналогов обычно работает с этой же целью p-n переход. Так в первом случае имеется односторонняя электропроводность. В зависимости от того, какой конкретно металл выбран для перехода в элементе, различаются и характеристики элемента. Чаще всего выбирается кремний, возможно применение арсенида галлия. Реже могут применяться сплавы вольфрама, платины и других материалов.
Кремний — самый распространенный и надежный элемент в диодах Шоттки, с ним конструкция надежно работает в условиях высокой мощности. Изделие стабильнее в работе, чем другие полупроводниковые аналоги, а простота изготовления и устройства диода Шоттки делают его очень доступным вариантом.
Металл-полупроводник: принцип работы перехода
Структура элемента
Принцип работы диода Шоттки основан на особенностях барьера. Эффект Шоттки при контакте компонентов, из которых выполнен непосредственно полупроводник и металл заключается в образовании бедного электронами участка. Последний имеет вентильные характеристики, аналогичные p-n взаимодействию. Контактный слой останавливает носителей заряда. По сравнению с другими типами полупроводниковых вентилей такое решение обладает:
- минимальным обратным током;
- стремящейся к нулю собственной емкостью;
- обратным напряжением самой низкой допустимой величины;
- при прямом включении — меньшим снижением напряжения (до 0.5 В в сравнении с 2-3 В в случае аналога).
В переходной зоне нет лишних носителей заряда. Благодаря этому там не возникают диффузии и рекомбинации, что наблюдается в контактных слоях p-n перехода.
Преимущества и недостатки диода Шоттки
Несомненными преимуществами подобных полупроводниковых изделий являются:
- надежное удерживание электротока;
- минимальная емкость барьера обеспечивает длительную эксплуатацию;
- быстродействие.
Высокие показатели обратного тока — основной недостаток устройств с диодом Шоттки. Из-за этого при скачке обратного тока диод может выйти из строя.
Важно! При внедрении подобных диодов в цепи с высокой мощностью электротока создается риск теплового пробоя.
Маркировка и схема диода Шоттки
На схеме преподносится почти как стандартный полупроводниковый диод, но имеются и отличия.
Обозначения диодов
В маркировке используется набор символов, они всегда обозначаются сбоку изделия. Используются международные стандарты, но в зависимости от производителя маркировка может отличаться.
Сочетание цифр и букв на корпусе не всегда понятно, но в радиотехнических справочниках всегда можно найти точную расшифровку.
Работа в ИБП
Подобные элементы очень широко используются в импульсных схемах, в приборах для стабилизации напряжения, а также в блоках питания. Преимущественно выбираются сдвоенные элементы, имеющие в одном корпусе общий катод.
Использование в ИБП сдвоенного диода Шоттки с общим катодом является признаком высокого качества и надежности блока питания.
При этом сгоревший элемент относится к частым и типовым неисправностям импульсного устройства. Нерабочее состояние возникает при:
- утечке на корпус;
- электроприборе.
Встроенная защита приводит к блокировке ИБП в обоих случаях. При утечке возможно присутствие незначительных нестабильных пульсаций напряжения на выходе, а также слабые «подергивания» вентилятора.
Для диагностики следует выполнить шаги:
- Выпаять элемент и схемы.
- Осмотреть на предмет механических повреждений, присутствия следов разрушительных химических реакций.
- Выполнить проверку мультиметром.
Проверка мультиметром
Отличие процедуры от диагностики обычных диодов заключается в необходимости демонтажа сборки или элемента, иначе проверить его состояние будет очень сложно. Утечку диагностировать сложнее. При использовании типичного мультиметра может отображаться полная работоспособность элемента при работе прибора в режиме «диод». Потому лучше устанавливать режим «омметр» и заменить элемент при демонстрации сопротивления. Показатель 5 кОм не устанавливает точно неисправность диода, но лучше считать его подозрительным и выполнить замену.
Важно! Если для проверки работоспособности диода Шоттки используется типовой мультиметр, нужно учитывать указанный сбоку показатель электротока.
Применение
Отличительные особенности и принцип работы диода Шоттки обусловливают его широкое применение в быту и в промышленности. Кроме блоков питания компьютера, его часто можно встретить в схемах:
- бытовых электроприборов;
- стабилизаторов напряжения;
- во всем спектре радио- и телеаппаратуры;
- в другой электронике.
Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией.
Такое универсальное использование элемента связано с способностью полупроводникового диода с эффектом Шоттки во много раз усиливать работоспособность любого прибора и увеличивать его эффективность. Обратное сопротивление электротока восстанавливается, за счет чего он сохраняется в электрической сети. Потери динамики напряжения минимизируются. Также диод Шоттки вбирает несколько видов излучений.
Диод с барьером Шоттки — неприхотливый и простой элемент, обеспечивающий бесперебойную работу множества современных приборов. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции.
Обозначение, применение и параметры диодов Шоттки
К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.
Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.
Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки.
В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.
На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.
Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.
У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.
К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).
Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!
Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.
К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.
К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.
В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.
Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.
Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.
Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.
В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.
То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.
Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.
Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.
Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.
Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.
Виды диодов
Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собраться, но есть небольшие отличия.
Простой диод выглядит на схемах вот так:
обозначение диода на схеме
Стабилитрон уже обозначается, как диод с “кепочкой”
обозначение стабилитрона на схеме
Диод Шоттки имеет две “кепочки”
обозначение диода шоттки на схеме
Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)
Обратное напряжение диода
Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.
Это значение можно найти в даташите
обратное напряжение диода
Для каждой марки диода оно разное
Если превысить это значение, то произойдет пробой, и диод выйдет из строя.
Падение напряжения на диоде Шоттки
Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.
прямое падение напряжения на диоде
Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:
Vf – прямое падение напряжение на диоде, В
Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.
Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.
падение напряжение на диоде в прямом включении
В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.
Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.
Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.
падение напряжения на диоде Шоттки при прямом включении
При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.
Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.
Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки
график зависимости прямого тока от напряжения
В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В
Диод Шоттки в ВЧ цепях
Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.
Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц
Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя
и будем снимать с них показания
Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.
Но что будет, если мы увеличим частоту до 300 кГц?
Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс
Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.
Обратный ток утечки
Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?
Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.
Он очень мал, но имеет место быть.
Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении
Замеряем ток утечки
обратный ток утечки диода
Как вы видите, его значение составляет 0,1 мкА.
Давайте теперь повторим этот же самый опыт с диодом Шоттки
обратный ток утечки диода Шоттки
Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора
схема пик детектора
В этом случае эти 20 мкА будут весьма значительны.
Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!
зависимость обратного тока утечки от температуры корпуса диода Шоттки
Поэтому, вы не можете использовать Шоттки везде в схемах.
Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В
То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В
Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:
Применение диодов Шоттки
Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.
Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки
Шоттки в солнечных панелях
В компьютерной технике чаще всего можно увидеть два диода в одном корпусе
При написании данной статьи использовался материал с этого видео
Маломощные диоды ШотткиУпаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодных сборок в SOT323 и по 3000 в корпусе SOT23.Диоды Шоттки от 1 Ампера
Быстрые диоды ШотткиУпаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодов Шоттки в SOD123FL.Мосты на диодах ШотткиУпаковка: В блистр-ленте на катушке диаметром 180 мм по 1000 мостов на диодах Шоттки TS140S, TS240S.Диоды Шоттки широко используются в низковольтных цепях вследствие малого падения на переходе структуры метал-полупроводник. Для работы в цепях с высоким напряжением созданы высоковольтные выпрямительные диоды со структурой, состоящей из двух полупроводников. Сборки из четырех диодов полупроводниковых структур позволяют изготавливать диодные мосты для работы в выпрямителях сетевых источников питания. В более высокочастотных преобразователях напряжений применяются импульсные диоды. Для защиты от перенапряжений цепей питания разработаны ограничительные диоды. Двухвыводная полупроводниковая структура способная излучать свет при включение в электрическую цепь получила название светоизлучающий диод, сокращено светодиод . Различают одноцветные светодиоды состоящие из одного полупроводникового кристалла и многоцветные из кристаллов излучающих свет различных цветов. Первые представлены в разделе LED светодиодов 0603 и 1206 вторые в разделе двухцветные и трёхцветные светодиоды. Диоды, работающие на обратном участке ВАХ, имеющие резкую зависимость тока от напряжения используются в качестве источников опорного напряжения и называются полупроводниковые стабилитроны. | Корзина Корзина пуста |
маркировка, обозначение на схеме (УГО), SMD, где можно выпаять
Диод (стабилитрон) – электронный прибор с односторонней проводимостью. Говоря другими словами, ток в нем может протекать только в одну сторону. Статья посвящена одной из разновидностей такого радиоэлемента – диоду шоттки и его маркировке.
Рекомендуем освежить в памяти, что такое диод:
Что такое диод Шоттки
От обычного диодного элемента он отличается маленьким падением напряжения. Помимо полупроводника, в составе имеет металл. Название – в честь немецкого физика Вальтера Шоттки, открывшего так называемый эффект Шоттки.
Читайте также: Описание, виды и особенности маркировки SMD диодов.
На заметку!
В качестве металла для стабилитрона Шоттки может быть карбид вольфрам, карбид кремния, палладий, платина, золото, арсенид галлия и другие.
Отличие от других полупроводников
Достоинство такого стабилитрона в том, что потери напряжения на нем ниже – всего 0,2 – 0, 4 вольта, тогда как, например, у обычных полупроводниковых элементов с кремнием – 0,6–0,7 вольта.
Кроме этого они отличаются более стабильной работой при подаче тока. Внутрь корпуса помещаются специальные кристаллы. Это очень тонкая работа, которую выполняют только запрограммированные роботы.
Читайте также: Схема для плавного включения ламп накаливания 220в.
Наглядно, как отличить стабилитрон Шоттки от остальных с помощью мультиметра:
Обозначение на схеме и маркировка
Обозначение диода Шоттки на схеме отличается от остальных диодов. Вот все виды на одном рисунке – как они помечаются на схеме:
На самом деле редко кто из опытных радиолюбителей не использует Шоттки на практике. При невысокой цене таких радиодеталей они лучше своих аналогов. Наиболее популярные виды диодов Шоттки с маркировкой:
- 1N5817.
- 1N5818.
- 1N5819.
- 1N5822.
- SK12.
- SK13.
- SK14.
Все эти варианты имеют как корпус цилиндрической формы, так и SMD. Surface Mounted Device (SMD) – прибор, монтируемый на поверхность. Если стабилитрон стандартной цилиндрической формы имеет длинные контактные ножки и монтируется через отверстия в электрической плате, то SMD аналоги – прямо на плату или, так как имеют короткие выводы.
Найти данные стабилитроны можно во многой электронике. Смотрите ниже в главе «Применение и где можно выпаять».
Читайте также: Как сделать мигалку из светодиода: инструкции и схемы.
Достоинства и недостатки
Преимуществ таких у таких стабилитронов два, оба связаны с низким падением напряжения:
- Пониженный уровень помех. Потому такие диоды хорошо подходят для аналоговых вторичных источников питания.
- Экономичные. Напряжение теряется в среднем в три раза меньше, чем у других диодов.
Единственный недостаток – быстрей выходит из строя при воздействии обратного тока. Когда схема начинает работать некорректно, и ток протекает в обратную сторону (а диод, напомним, элемент с односторонней проводимостью), Шоттки менее устойчив, чем обычные диодные элементы.
На заметку!
Данное явление называют пробоем диода.
Применение и где можно выпаять
Встречаются в бытовой технике, в радиоприемниках, телевизорах, блоках питания компьютеров, в современных солнечных батареях. Также в таких редких приборах, как детектор нейтронного излучения, приемник альфа и бета-излучения и даже космические аппараты. Радиолюбители обычно находят их в компьютерах: на старых материнских платах, в блоках питания, в цепях питания процессора.
ДИОД ШОТТКИ
Сегодня тема нашего обзора — диод Шоттки. Тема познавательная и напечатана специально для начинающих радиолюбителей. В современных радиосхемах очень часто встречается термин — Диод «Шоттки», так давайте узнаем, что же он из себя представляет. Диод шоттки — это полупроводниковый диод выполненный на основе контакта металл-полупроводник. Назван в честь Вальтера Шоттки. Схематическое изображение диода шоттки похоже на обычный диод с некоторыми незначительными отличиями.
Вместо п-н перехода, в диодах шоттки в качестве барьера используют металл — полупроводник, в области этого перехода возникает потенциальный барьер — барьер шоттки, изменение высоты которого приводит к изменению протекания тока через прибор. Самая главная особенность диодов Шоттки — это низкий уровень падения прямого напряжения после перехода, отсутствие заряда обратного восстановления. На основе барьера Шоттки изготавливают в частности быстродействующие и ультрабыстрые диоды, они служат главным образом как СВЧ диоды различного назначения.
Структура диода: 1 — полупроводниковая подложка; 2 — эпитаксиальная плёнка; 3 — контакт металл — полупроводник; 4 — металлическая плёнка; 5 — внешний контакт.
Такой диод позволяет получать нужную высоту потенциального барьера, посредством выбора нужного металла, очень низкий уровень высокочастотных шумов, что дает возможность применить диод Шоттки в импульсных блоках питания и в цифровых аппаратурах. Диоды Шоттки применяют также как приемники излучения, модулятор света, нашли широкое применение в солнечных батареях. Среди недостатков данных типов диода стоит отметить чувствительность к обратным значениям тока и напряжения, из — за чего диод может перегреться и выйти из строя.
Работает в температурном диапазоне от — 65 до плюс 160 градусов по цельсию, допустимое обратное напряжение промышленных диодов Шоттки ограничено 250 вольт. Такая деталь сегодня стала незаменимым полупроводниковым прибором. Диоды Шоттки также выпускаются в SMD корпусах. Чаще всего они встречаются в стеклянном, пластмассовом и металлическом корпусе. Автор — АКА.
Форум по теоретическим вопросам
Форум по обсуждению материала ДИОД ШОТТКИ
Обозначение, применение и параметры диодов Шоттки » НАШ САЙТ
К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.
Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.
В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.
На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.
Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.
У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.
К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).
Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.
К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.
К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.
В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.
Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Диоды SK36, SK16Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры.
Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.
Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.
Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.Мощный сдвоенный диод Шоттки
В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.
То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.
Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.
Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию. Однако явные пробои в практике встречаются очень и очень редко.
В основном же, приходится иметь дело с утечками (причем зачастую с тепловыми утечками) диодов Шоттки. А вот утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером в режиме «диод» является в подавляющем большинстве случаев полностью исправным. Гарантированную точность диагностики, на наш взгляд, позволяет дать только такой метод, как замена диода на заведомо исправный аналогичный прибор.
Но все-таки, выявить «подозрительный» диод можно попытаться с помощью методики, заключающейся в измерении сопротивления его обратного перехода. Для этого будем пользоваться не режимом проверки диодов, а обычным омметром.
Внимание! При использовании этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.
Итак, устанавливаем предел измерений на значение [20К] и измеряем обратное сопротивление диода. Как показывает практика, исправные диоды на этом пределе измерений должны показывать бесконечно большое сопротивление.Если же при измерении выявляется некоторое, как правило, небольшое сопротивление (2–10 КОм), то такой диод можно считать «очень подозрительным» и его лучше заменить, или хотя бы проверить методом замены. Если же проводить проверку на пределе измерений [200К], то даже исправные диоды могут показывать в обратном направлении очень небольшое сопротивление (единицы и десятки кОм), поэтому и рекомендуется использовать предел [20К]. Естественно, что на больших пределах измерений (2 Мом, 20 Мом и т. д.) даже абсолютно исправный диод оказывается полностью открытым, т. к. его p-n переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. На пределе [200К] можно проводить проверку сравнительным методом, т. е. брать гарантированно-исправный диод, измерять его обратное сопротивление и сравнивать с сопротивлением проверяемого диода. Значительные отличия в этих измерениях будут указывать на необходимость замены
Предложенную методику можно дополнить еще и проверкой на термическую устойчивость. Суть этой проверки заключается в следующем. В тот момент времени, когда проверяется сопротивление обратного перехода на пределе измерений [20K] (см. предыдущий абзац), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев ее кристалла. Неисправная диодная сборка практически мгновенно начинает «плыть», т. е. ее обратное сопротивление начинает очень быстро уменьшаться, в то время как исправная диодная сборка достаточно долго удерживает обратное сопротивление на бесконечно большом значении. Эта проверка очень важна, т. к. при работе диодная сборка сильно нагревается (не зря же ее размещают на радиаторе) и вследствие нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки к температурным колебаниям, ведь увеличение температуры корпуса до 100 или 125°C увеличивает значение обратного тока утечки в сто раз (см. данные табл. 1).
Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками не стоит злоупотреблять, т. е. не следует проводить проверки на слишком большом пределе измерений сопротивления и слишком сильно разогревать диод, т. к. теоретически, все это может привести к повреждению диода.
Кроме того, из-за возможности отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим и время пайки). Хотя надо отдать должное производителям диодов, так как многие из них добились того, что монтаж сборок можно осуществлять при высокой температуре 250 °C в течение 10 секунд.
Где ещё в электронике используются диоды Шоттки?
Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.
что это такое, как проверить, характеристики
Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.
Конструкция
Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.
Действительно, металл-полупроводник обладает такими параметрами:
- Имеет большое значение тока утечки,
- Невысокое падение напряжения на переходе при прямом включении,
- Восстанавливает заряд очень быстро, так как имеет низкое его значение.
Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний, намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.
На принципиальной схеме диод Шоттки обозначается таким образом:
Но иногда можно увидеть и такое обозначение:
Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.
youtube.com/embed/kl1E0QuBX2o» frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Диодные сборки с барьером Шоттки выпускаются трех типов:
1 тип – с общим катодом,
2 тип – с общим анодом,
3 тип – по схеме удвоения.
Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.
Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.
Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.
Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.
Вольтамперная характеристика светодиода (ВАХ)
ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.
Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.
Миниатюризация
С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.
Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.
Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.
Использование на практике
Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.
Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.
Тестирование и взаимозаменяемость
Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.
Проверка диода Шоттки мультиметром
Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.
Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.
Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.
SS14 Распиновка диода Шоттки, спецификации, характеристики и альтернативы
SS14 Силовой диод Шоттки
SS14 Силовой диод Шоттки
SS14 Силовой диод Шоттки
Распиновка диода SS14
Нажмите, чтобы увеличить
SS14 — выпрямитель Шоттки высокой мощности для поверхностного монтажа с низким падением напряжения 0. 5В и высокий прямой ток 1А. Диод имеет высокий КПД и выдерживает высокий импульсный ток 30А. Он обычно используется в высокочастотных инверторах, устройствах защиты полярности и т. Д.
Конфигурация распиновки SS14№ пина | Имя контакта | Описание |
1 | Анод | Ток всегда проходит через анод |
2 | Катод | Ток всегда выходит через катод |
- SMA выпрямитель с барьером Шоттки
- ток в прямом направлении (IF): 1A
- Максимальное прямое напряжение (VF): 0.5 В (@ 1 А)
- Обратный ток (ИК): 0,5 мА
- Максимальное напряжение блокировки постоянного тока: 40 В
- Маркировка диода: S4
- Доступен в корпусах SMA DO-214AC, SOD126 и 403D
Примечание: полные технические данные можно найти в таблице данных SS14 , приведенной в конце этой страницы.
Альтернатива SS14: 1N5819, SS12, SS13, SS15, SS16
Другие диоды Шоттки: 1N4148, 1N4733A,
Краткое описание диода SS14
Катодный вывод можно идентифицировать по цветной полосе.Детали маркировки на реальном диоде показаны ниже
.В нашем случае поверх диода будет написано SS14. По сравнению с обычными диодами диод Шоттки также имеет относительно более высокую скорость переключения и, следовательно, может использоваться в высокочастотных схемах переключения. Он также имеет низкое прямое падение напряжения, падение напряжения на диоде SS14 составляет 0,5 В. Диод SS14 имеет структуру защитного кольца на переходе металл-полупроводник для защиты от напряжений.
Как показано на графике, диод SS14 имеет минимальное падение напряжения около 0.2 В на нем, когда через него проходит 0,1 А, по мере увеличения тока падение напряжения на диоде также увеличивается. Максимальный ток через диод составляет 1А при падении напряжения всего 0,5 В. Максимальное обратное напряжение составляет 40 В. Он также может выдерживать максимальный импульс 30 А. Полную информацию о диоде можно найти в таблице данных ниже.
Применение диода- Может использоваться для предотвращения проблем с обратной полярностью
- Высокочастотные преобразователи
- Используется как устройство защиты
- Регуляторы тока
- Приложения защиты полярности
Этот диод выпускается в корпусе DO-214AC.Размеры упаковки указаны ниже
Характеристики диода ШотткиSS310, техническое описание, аналоги и технические характеристики
SS310 Диод Шоттки (SMD)
SS310 Диод Шоттки
SS310 Диод Шоттки
Распиновка диода Шоттки SS310
Нажмите, чтобы увеличить
SS310 — это диод Шоттки для поверхностного монтажа с низкими потерями мощности, высокой эффективностью и высокой стойкостью к импульсным токам. Он обычно используется в высокочастотных инверторах, устройствах защиты полярности и т. Д.
Конфигурация контактов№ пина | Имя контакта | Описание |
1 | Анод | Ток всегда проходит через анод |
2 | Катод | Ток всегда выходит через катод |
- SMD выпрямитель с барьером Шоттки
- прямой ток (IF): 3A
- Максимальное прямое напряжение (VF): 0.85 В (при 3 А)
- обратный ток (ИК): 20 мкА
- Максимальное напряжение блокировки постоянного тока: 100 В
- Маркировка диода: «30LW»
- Доступен в упаковке SOD-123W
Примечание: Полные технические подробности можно найти в таблице данных SS310 , приведенной в конце этой страницы.
Альтернатива для SS310: SS54, SS14, SS34
Другие диоды Шоттки: bat85, 1N4148, 1N4733A, стабилитрон
Обзор диода SS310
Диод — это устройство, пропускающее ток только в одном направлении.То есть ток всегда должен течь от анода к катоду. Катодный вывод можно идентифицировать по цветной полосе. Детали маркировки на реальном диоде показаны ниже
.По сравнению с обычными диодами диод Шоттки также имеет относительно более высокую скорость переключения и, следовательно, может использоваться в высокочастотных схемах переключения. Он также имеет низкое прямое падение напряжения, падение напряжения на диоде SS310 составляет 0,85 В.
Как показано на графике, минимальное падение напряжения на диоде равно 0.4 В через него, когда через него проходит 0,1 А, по мере увеличения тока падение напряжения на диоде также увеличивается. Максимальный ток через диод составляет 3 А, а максимальное обратное напряжение — 100 В. Он также может выдерживать максимальный импульсный ток 80 А. Полную информацию о диоде можно найти в таблице данных ниже.
Применение диода- Может использоваться для предотвращения проблем с обратной полярностью
- Высокочастотные преобразователи
- Используется как устройство защиты
- Регуляторы тока
- Приложения защиты полярности
Этот диод выпускается в корпусе SOD-123W.Размеры упаковки указаны ниже
Как определить выводы диодов Шоттки?
Диод Шоттки должен быть установлен правильно. Неправильная установка диода Шоттки не только разрушает сам себя, но также может повредить многие другие части схемы.
Материал P-типа является анодом полюсной трубки, а «анод» означает конец, который поглощает электроны. Материал N-типа является катодом полюсной трубки, а «катод» относится к концу, на котором находятся электроны. вышел.Примечание. Электронный поток идет от катода к аноду.
Упакованные материалы — это пластик, стекло, металл, керамика или их комбинация. Используемых размеров и форм не так много. Вообще говоря, чем больше последний, тем больше кольца на стороне катодного вывода, и корпус DO-41 на рисунке 8-24 использует этот метод. Некоторые старые пакеты используют рампу или знак + для обозначения катодного конца.
Чтобы идентифицировать контакты, есть несколько напечатанных символов диода Шоттки.Хотя метка не видна, пакет 194-05 на рис. 8-24 использует этот метод. Корпус TO-220AC имеет два катодных контакта с металлической деталью, которая соединяет два анода. Как контакты, так и металл можно использовать в качестве диодов Шоттки и схемных соединений. TO-220AB имеет два анодных контакта. Поскольку внутри находятся два диода Шоттки, анод имеет разные концы, но два внутренних катода соединены.
Производители часто предоставляют схемы нормальной полярности диодов Шоттки и схемы обратной полярности.Например, на рисунках 8-24 конец с болтом корпуса 257-01 используется в качестве анода в схеме обратной полярности. Имя компонента, за которым следует «R» Проблема такая же, как и в устройстве. Другими словами, не всегда возможно идентифицировать компоненты и их контакты, просто наблюдая за контуром компонента. Вы должны использовать схемы или другие доступные материалы.
Поскольку корпус диода Шоттки легко сбить с толку, технические специалисты обычно используют трехметровый цифровой мультиметр для обнаружения диода Шоттки и его контактов.Цифровые измерители сейчас очень популярны, и цифровой измеритель удобно использовать для измерения диодов Шоттки. При использовании функции диода Шоттки цифрового измерителя положительный полюс измерителя (красная ручка) является положительным полюсом внутреннего источника питания, а отрицательный полюс (черная ручка) является отрицательным полюсом внутреннего источника питания. Рис. 8 Измеритель показывает, что диод Шоттки имеет обратное смещение, то есть конец красной ручки является отрицательным полюсом диода Шоттки. Рисунок 8-25 (b), цифровой индикатор показывает 0.540 В, что указывает на то, что полюсная трубка смещена в прямом направлении, ее напряжение включения составляет 0,54 В, а левая сторона является положительным полюсом. Диод Шоттки измеряется как в прямом, так и в обратном направлении. Если да, то измерение на Рисунке 8-25 показывает, что трубка представляет собой кремниевый диод. Если это германиевый диод, показание прямого напряжения должно быть менее 0,3 В.Полярность — learn.sparkfun.com
Добавлено в избранное Любимый 43Полярность диодов и светодиодов
Примечание: Мы будем иметь в виду поток тока относительно положительных зарядов (т.е.е. условный ток) в цепи.Диоды позволяют току течь только в одном направлении, и они всегда поляризованы . У диода два вывода. Положительная сторона называется анодом , а отрицательная — катодом .
Обозначение диодной цепи с маркировкой анода и катода.
Ток через диод может течь только от анода к катоду, что объясняет, почему важно, чтобы диод был подключен в правильном направлении.Физически каждый диод должен иметь какую-то индикацию анода или катода. Обычно диод имеет линию рядом с катодным выводом , которая соответствует вертикальной линии в символе цепи диода.
Ниже приведены несколько примеров диодов. Верхний диод, выпрямитель 1N4001, имеет серое кольцо возле катода. Ниже на сигнальном диоде 1N4148 используется черное кольцо для маркировки катода. Внизу находится пара диодов для поверхностного монтажа, каждый из которых использует линию, чтобы отметить, какой вывод является катодом.
Обратите внимание на линии на каждом устройстве, обозначающие сторону катода, которые соответствуют линии на изображении выше.
Светодиоды
LED означает светоизлучающий диод , что означает, что, как и их диодные собратья, они поляризованы. Есть несколько идентификаторов для поиска положительных и отрицательных контактов на светодиодах. Вы можете попробовать найти более длинную ногу , которая должна указывать на положительный анодный штифт.
Или, если кто-то подрезал ножки, попробуйте найти плоский край на внешнем корпусе светодиода.Штифт, ближайший к плоскому краю , будет отрицательным катодным штифтом.
Могут быть и другие индикаторы. У SMD-диодов есть ряд идентификаторов анодов / катодов. Иногда проще всего проверить полярность с помощью мультиметра. Установите мультиметр в положение диода (обычно обозначается символом диода) и прикоснитесь каждым щупом к одной из клемм светодиода. Если светодиод горит, положительный зонд касается анода, а отрицательный зонд касается катода.Если он не загорается, попробуйте поменять местами зонды.
Полярность крошечного желтого светодиода для поверхностного монтажа проверяется мультиметром. Если положительный вывод касается анода, а отрицательный — катода, светодиод должен загореться.
Диоды, конечно же, не единственный поляризованный компонент. Есть масса деталей, которые не будут работать при неправильном подключении. Далее мы обсудим некоторые другие распространенные поляризованные компоненты, начиная с интегральных схем.
← Предыдущая страница
Что такое полярность?
% PDF-1.3 % 1 0 obj > эндобдж 8 0 объект > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 6 0 obj > транслировать конечный поток эндобдж 7 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект 0 эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект [136 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R 142 0 R 143 0 R 144 0 R 145 0 R 146 0 R 147 0 R 148 0 R 149 0 R 150 0 R 151 0 R] эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 obj > эндобдж 41 0 объект > эндобдж 42 0 объект > эндобдж 43 0 объект > эндобдж 44 0 объект > эндобдж 45 0 объект > эндобдж 46 0 объект > эндобдж 47 0 объект > эндобдж 48 0 объект > эндобдж 49 0 объект > эндобдж 50 0 объект > эндобдж 51 0 объект > эндобдж 52 0 объект > эндобдж 53 0 объект > эндобдж 54 0 объект > эндобдж 55 0 объект > эндобдж 56 0 объект > эндобдж 57 0 объект > эндобдж 58 0 объект > эндобдж 59 0 объект > эндобдж 60 0 obj > эндобдж 61 0 объект > эндобдж 62 0 объект > эндобдж 63 0 объект > эндобдж 64 0 объект > эндобдж 65 0 объект > эндобдж 66 0 объект > эндобдж 67 0 объект > эндобдж 68 0 объект > эндобдж 69 0 объект > эндобдж 70 0 объект > эндобдж 71 0 объект > эндобдж 72 0 объект > эндобдж 73 0 объект > эндобдж 74 0 объект > эндобдж 75 0 объект > эндобдж 76 0 объект > эндобдж 77 0 объект > эндобдж 78 0 объект > эндобдж 79 0 объект > эндобдж 80 0 объект > эндобдж 81 0 объект > эндобдж 82 0 объект > эндобдж 83 0 объект > эндобдж 84 0 объект > эндобдж 85 0 объект > эндобдж 86 0 объект > эндобдж 87 0 объект > эндобдж 88 0 объект > эндобдж 89 0 объект > эндобдж 90 0 объект > эндобдж 91 0 объект > эндобдж 92 0 объект > эндобдж 93 0 объект > эндобдж 94 0 объект > эндобдж 95 0 объект > эндобдж 96 0 объект > эндобдж 97 0 объект > эндобдж 98 0 объект > эндобдж 99 0 объект > эндобдж 100 0 объект > эндобдж 101 0 объект > эндобдж 102 0 объект > эндобдж 103 0 объект > эндобдж 104 0 объект > эндобдж 105 0 объект > эндобдж 106 0 объект > эндобдж 107 0 объект > эндобдж 108 0 объект > эндобдж 109 0 объект > эндобдж 110 0 объект > эндобдж 111 0 объект > эндобдж 112 0 объект > эндобдж 113 0 объект > эндобдж 114 0 объект > эндобдж 115 0 объект [159 0 R 160 0 R 161 0 R 162 0 R 163 0 R 164 0 R 165 0 R 166 0 R 167 0 R] эндобдж 116 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект [172 0 R 173 0 R 174 0 R 175 0 R 176 0 R 177 0 R 178 0 R 179 0 R 180 0 R] эндобдж 119 0 объект > эндобдж 120 0 объект [185 0 R 186 0 R 187 0 R 188 0 R 189 0 R 190 0 R 191 0 R 192 0 R 193 0 R] эндобдж 121 0 объект > эндобдж 122 0 объект [198 0 R 199 0 R 200 0 R 201 0 R 202 0 R 203 0 R 204 0 R 205 0 R 206 0 R] эндобдж 123 0 объект > эндобдж 124 0 объект [211 0 R 212 0 R 213 0 R 214 0 R 215 0 R 216 0 R 217 0 R 218 0 R 219 0 R] эндобдж 125 0 объект > эндобдж 126 0 объект [224 0 R 225 0 R 226 0 R 227 0 R 228 0 R 229 0 R 230 0 R 231 0 R 232 0 R] эндобдж 127 0 объект > эндобдж 128 0 объект [237 0 R 238 0 R 239 0 R 240 0 R 241 0 R 242 0 R 243 0 R 244 0 R 245 0 R] эндобдж 129 0 объект > эндобдж 130 0 объект [250 0 R 251 0 R 252 0 R 253 0 R 254 0 R 255 0 R 256 0 R 257 0 R 258 0 R] эндобдж 131 0 объект > эндобдж 132 0 объект [263 0 R 264 0 R 265 0 R 266 0 R 267 0 R 268 0 R 269 0 R 270 0 R 271 0 R] эндобдж 133 0 объект > эндобдж 134 0 объект [276 0 R 277 0 R 278 0 R 279 0 R 280 0 R 281 0 R 282 0 R 283 0 R 284 0 R] эндобдж 135 0 объект > эндобдж 136 0 объект > транслировать q конечный поток эндобдж 137 0 объект > транслировать q конечный поток эндобдж 138 0 объект > транслировать q конечный поток эндобдж 139 0 объект > транслировать HW [o [F_ + q ~ yaE8 @> u)) Wff! Ũwvgg͜g / Y- ~ N] og ^ \ UC * jv5 {oYek, 6 = vV͜C6y? 5XjZX = 9Χ; J 蚆 V ʴQPmc @ gc {l ۡ @ *> | qH! 74!] OjI! ٱ a! $? $ R-! Hb`pg + Je2 YRcw @ e: Ԑ3 ,. t + ‘] HHCKY ؛ ͼR! eoLZ0ĜEliU: 2 (m Զ $ Ib # S! [= ڡ E8.d (> Y! C.LC @ ~ T62S @ Q «-2I- ϺUxC, ܒ) = (tnӕұ Q] 2 ܄ b @ &! &) Yb = nOy 2QSvKR5pCkmH @ QlAI9tpMu 銤 U3 = 8% 7 & 3% vCf¬CY (A «ZoѨ.ȂD = (H% $$ & 9Fdipq65d
2SA1084 : Малый сигнал общего назначения. изменение названий, упомянутых в документе, таких как Hitachi Electric и Hitachi XX, на Renesas Technology Corp. 1 апреля 2003 года производство полупроводников Mitsubishi Electric и Hitachi было передано Renesas Technology Corporation.Эти операции включают микрокомпьютер, логику, аналоговые и дискретные устройства и микросхемы памяти. BDX66C : Доступны параметры фильтрации = ;; Полярность = PNP ;; Пакет = TO3 (TO204AA) ;; Vceo = 120 В ;; IC (продолжение) = 16А ;; HFE (мин) = 1000 ;; HFE (макс.) = — ;; @ Vce / ic = 3V / 10A ;; FT = 7 МГц ;; PD = 150Вт. DSEI30 : эпитаксиальный диод быстрого восстановления (fred). Условия испытаний TVJ = TVJM = 85 ° C; прямоугольная, <10 мс; респ. номинал, ширина импульса ограничена TVJM TVJ мс (50 Гц), синус мс (60 Гц), синус TVJ мс (50 Гц), синус мс (60 Гц), синус I2t TVJ мс (50 Гц), синус мс (60 Гц) ), синус Пакет международных стандартов JEDEC TO-247 AD Планарные пассивированные микросхемы Очень короткое время восстановления Чрезвычайно низкие потери переключения Низкие значения IRM. DSP8-12AC :. * Патент заявлен. Символ IFRMS IF (AV) M Условия испытаний IFSM TVJ = TVJM Tcase 100C; 180 синус TVJ мс (50 Гц), синус (60 Гц), синус (50 Гц), синус (60 Гц), синус (50 Гц), синус (60 Гц), синус (50 Гц), синус (60 Гц) , синус Максимальные номинальные характеристики 2 с C Кремниевый чип на подложке с прямым медным соединением — Высокая рассеиваемая мощность — Изолированная монтажная поверхность — Электрооборудование 2500 В. GP401LSS18 : N-канальный модуль Powerline с одним переключателем и низким уровнем потерь Igbt. Предварительная информация. MRF894 : Силовой транзистор RF NPN Silicon. . разработан для 24-вольтных УВЧ-усилителей большого сигнала с общей базой в промышленном и коммерческом FM-оборудовании, работающем в диапазоне 960 МГц. Технические характеристики: 24 В, 900 МГц. Выходная мощность = 30 Вт. Коэффициент усиления 7,0 дБ Мин. КПД = 55% Минимум. Эквивалентная характеристика большого сигнала серии, допускающая рассогласование нагрузки КСВН 30: 1 при номинальном значении. NTE5440 : выпрямитель с кремниевым управлением (SCR). ISOlated Tab.Повторяющееся пиковое напряжение VRRM = 800 В. Среднеквадратичный ток в открытом состоянии it = 9A .. 0201ZD222JAT4A : КОНДЕНСАТОР, КЕРАМИЧЕСКИЙ, МНОГОСЛОЙНЫЙ, 10 В, X5R, 0,0022 мкФ, КРЕПЛЕНИЕ НА ПОВЕРХНОСТИ, 0201. s: Конфигурация / форм-фактор: Чип-конденсатор; Технология: Многослойная; Приложения: общего назначения; Конденсаторы электростатические: керамический состав; Соответствие RoHS: Да; Диапазон емкости: 0,0022 мкФ; Допуск емкости: 5 (+/-%); WVDC: 10 вольт; Тип установки :. ALS34A102D2C160 : КОНДЕНСАТОР, АЛЮМИНИЕВЫЙ ЭЛЕКТРОЛИТИЧЕСКИЙ, НЕ ТВЕРДЫЙ, ПОЛЯРИЗОВАННЫЙ, 160 В, 1000 мкФ, КРЕПЛЕНИЕ ШАССИ.s: Соответствует RoHS: Да; : Поляризованный; Диапазон емкости: 1000 мкФ; Допуск емкости: 30 (+/-%); WVDC: 160 вольт; Ток утечки: 960 мкА; СОЭ: 149 миллиом; Тип установки: КРЕПЛЕНИЕ ШАССИ; Рабочая температура: от -40 до 85 C (от -40 до 185 F). AP0603GH : 72 А, 30 В, 0,006 Ом, N-КАНАЛ, Si, ПИТАНИЕ, МОП-транзистор, TO-252. s: Полярность: N-канал; Режим работы полевого МОП-транзистора: Улучшение; V (BR) DSS: 30 вольт; rDS (вкл.): 0,0060 Ом; Тип упаковки: ПАКЕТ, СООТВЕТСТВУЮЩИЙ ROHS-3; Количество блоков в IC: 1. BAV99 / E8 : 0,15 А, 70 В, 2 ЭЛЕМЕНТА, КРЕМНИЙ, СИГНАЛЬНЫЙ ДИОД, TO-236AB. s: Тип диода: общего назначения; IF: 150 мА; Соответствует RoHS: RoHS; Пакет: ПАКЕТ ПЛАСТИКОВЫЙ-3; Количество контактов: 3; Количество диодов: 2. CTLT3410-M621TR : 1000 мА, 25 В, NPN, Si, МАЛЫЙ СИГНАЛЬНЫЙ ТРАНЗИСТОР. s: Полярность: NPN; Тип упаковки: 1 X 2 мм, СООТВЕТСТВУЮЩИЙ ROHS, БЕСПРОВОДНОЙ, КОРПУС TML621, 6-КОНТАКТ. DRA9A14E : 80 мА, 50 В, PNP, Si, МАЛЫЙ СИГНАЛЬНЫЙ ТРАНЗИСТОР.s: Полярность: PNP; Тип упаковки: БЕЗ ГАЛОГЕНОВ И СООТВЕТСТВУЕТ ROHS, SSMINI3-F3-B, 3 PIN. KTC9015B : 150 мА, 50 В, PNP, Si, МАЛЫЙ СИГНАЛЬНЫЙ ТРАНЗИСТОР, TO-92. s: Полярность: PNP; Тип упаковки: ТО-92, ТО-92, 3 контакта. MIMMF2X100J040D : ВЫПРЯМИТЕЛЬНЫЙ ДИОД. s: Тип диода: ВЫПРЯМИТЕЛЬНЫЙ ДИОД; Применение диодов: выпрямитель. SK75GAL12T4 : 80 А, 1200 В, N-КАНАЛЬНЫЙ IGBT. s: Полярность: N-канал; Тип упаковки: CASE T18, 7 контактов; Количество блоков в IC: 1. ST33-75T1KIE3 : КОНДЕНСАТОР, ТАНТАЛ, НЕ ТВЕРДЫЙ, ПОЛЯРИЗОВАННЫЙ, 75 В, 33 мкФ, КРЕПЛЕНИЕ ДЛЯ ПРОХОДНОГО ОТВЕРСТИЯ. s: Конфигурация / Форм-фактор: Конденсатор с выводами; Приложения: общего назначения; Электролитические конденсаторы: танталовые; Соответствие RoHS: Да; : Поляризованный; Диапазон емкости: 33 мкФ; Допуск емкости: 20 (+/-%); WVDC: 75 вольт; Тип установки: сквозное отверстие; Операционная. V60100C-M3 / 4W : 30 А, 100 В, КРЕМНИЙ, ВЫПРЯМИТЕЛЬНЫЙ ДИОД, TO-220AB. s: Аранжировка: Common Catode; Тип диода: ВЫПРЯМИТЕЛЬНЫЙ ДИОД; Применение диодов: выпрямитель, КПД; IF: 30000 мА; Упаковка: БЕЗ ГАЛОГЕНОВ И СООТВЕТСТВУЮЩИМ ROHS, ПЛАСТИК, TMBS, 3 КОНТАКТА; Количество контактов: 3; Количество диодов: 2. 12105G : КОНДЕНСАТОР, КЕРАМИЧЕСКИЙ, МНОГОСЛОЙНЫЙ, 50 В, КРЕПЛЕНИЕ НА ПОВЕРХНОСТИ, 1210. s: Конфигурация / форм-фактор: Чип-конденсатор; Технология: Многослойная; Приложения: общего назначения; Конденсаторы электростатические: керамический состав; Тип монтажа: технология поверхностного монтажа; Рабочая температура: от -30 до 85 C (от -22 до 185 F). 3N170-TO-72 : 30 мА, 25 В, N-КАНАЛ, Si, МАЛЫЙ СИГНАЛ, МОП-транзистор, TO-72. s: Полярность: N-канал; Режим работы полевого МОП-транзистора: Улучшение; V (BR) DSS: 25 вольт; rDS (вкл.): 200 Ом; Тип упаковки: ТО-72, 4 контакта; Количество блоков в IC: 1. |
Основы: Введение в стабилитроны
Стабилитроны— это особый тип полупроводниковых диодов — устройств, которые позволяют току течь только в одном направлении, а также позволяют току течь в противоположном направлении, но только при достаточном напряжении. И хотя это звучит немного эзотерически, на самом деле они являются одними из самых удобных компонентов, которые когда-либо встречались на рабочем месте инженера, обеспечивая отличные решения для ряда общих потребностей в схемотехнике.
Далее мы покажем вам, как (и когда) использовать стабилитрон для приложений, включая простые опорные напряжения, ограничение сигналов до определенных диапазонов напряжения и ослабление нагрузки на стабилизатор напряжения.
Справочная информация: Полупроводниковые диоды, настоящие и идеальные
Чтобы понять, чем стабилитроны отличаются от других диодов, давайте сначала рассмотрим свойства обычных диодов. И хотя существует много различных типов диодов — см. Здесь длинный список — мы собираемся сосредоточиться на так называемых «нормальных» полупроводниковых диодах, чаще всего построенных с кремниевым p-n переходом.
Диоды обычно поставляются в стеклянных или пластиковых цилиндрических корпусах, маркированных полосой с одной стороны для обозначения полярности. В идеальном диоде ток течет только в одном направлении, от анода (положительная сторона) к катоду (отрицательная сторона), отмеченному полосой. Схематический символ представляет собой треугольник, указывающий на полосу, где ток течет в том же направлении, к концу с перемычкой (полосой). Версии диодов для поверхностного монтажа, как правило, следуют тому же соглашению о маркировке, где конец катода маркируется широкой полосой.
Если мы подключим диод в простую схему с источником переменного напряжения и токоограничивающим резистором, мы сможем измерить ток I через диод, когда к нему приложено заданное напряжение В . В идеальном диоде ток вообще не проходит, когда напряжение меньше нуля: диод полностью предотвращает обратный ток. Для небольшого положительного напряжения («прямое смещение» или иногда «прямое напряжение») может протекать крошечный ток, а очень большой ток будет течь выше заданного порога.Величина протекающего тока фактически экспоненциальна с увеличением напряжения.
Пороговое значение, при котором протекает значительный ток, обычно составляет около 0,7 В для простых полупроводниковых диодов, но может быть от 0,15 В для диодов Шоттки или до 4 В для некоторых типов светодиодов.
Конечно, ни один диод не идеален. В реальных диодах, когда напряжение меняется на противоположное, может течь очень небольшой ток (утечка). И, что более важно, каждый диод рассчитан на определенную максимальную величину обратного напряжения.Если вы подадите напряжение более отрицательное, чем этот предел, диод подвергнется «обратному пробою» и начнет проводить значительный ток, но на назад на от нормального направления тока диода. Для обычного диода мы бы сказали, что диод вышел из строя , если он начинает проводить ток в этом направлении.
Помимо: Фактическая физика того, что происходит при пробое, довольно интересна; два отдельных эффекта, эффект Зенера и лавинный пробой, оба способствуют такому поведению.
Стабилитроны
Стабилитроны— это полупроводниковые диоды, которые были изготовлены так, чтобы их обратный пробой происходил при определенном, четко определенном напряжении (его «напряжение стабилитрона»), и которые спроектированы таким образом, что они могут работать непрерывно в этом режиме пробоя. Обычно доступные стабилитроны доступны с пробивным напряжением («стабилитроны») от 1,8 до 200 В.
Схематический символ стабилитрона показан выше — он очень похож на обычный диод, но с загнутыми краями на полосе.Стабилитрон по-прежнему проводит электричество в прямом направлении, как любой другой диод, но также проводит в обратном направлении, если приложенное напряжение обратное и больше, чем напряжение пробоя стабилитрона.
Типичное применение может быть таким, как указано выше: стабилитрон 10 В (тип 1N4740) включен последовательно с резистором и фиксированным источником питания 12 В. Номинал резистора выбирается таким образом, чтобы через него и через стабилитрон протекало несколько мА, удерживая его в области пробоя. В приведенной выше схеме напряжение на стабилитроне составляет 10 В, а на резисторе — 2 В. При 2 В на резисторе 400 Ом ток через этот резистор (и диод последовательно) составляет 5 мА.
Опорные напряжения стабилитрона
Фиксированный свойство напряжения стабилитронов делает их чрезвычайно удобно в качестве ссылок быстрого напряжения. Базовая схема выглядит так:
Необходимо учесть несколько требований. Во-первых, входное напряжение должно быть выше напряжения стабилитрона.Во-вторых, номинал резистора должен быть выбран таким, чтобы через стабилитрон всегда протекал ток.
Некоторые предостережения: Это не обязательно хороший источник питания для всех целей — резистор ограничивает величину потребляемого тока. Это также не обязательно является прецизионным опорным напряжением ; напряжение будет зависеть от величины потребляемого тока. (То есть, чтобы напряжение было стабильным, нагрузка, управляемая этим опорным напряжением, должна быть постоянной. ) Напряжение также зависит от температуры.Стабилитроны в диапазоне 5-6 В обладают наилучшей температурной стабильностью, и есть высокоточные стабилитроны (например, LM399), которые включают собственную термостабилизированную печь, чтобы в дальнейшем поддерживать температуру диода как можно более стабильной.
Развивая эту идею немного дальше, вы можете создать полноценный многорельсовый источник питания, используя только набор стабилитронов для генерации всех необходимых напряжений, при условии, что текущие требования к разным напряжениям питания невысоки. .Схема выше является частью работающего лабораторного прибора.
Клещи напряжения: ограничение сигналов с помощью стабилитронов
Изменяющийся аналоговый сигнал может быть ограничен довольно узким диапазоном напряжений с помощью одного стабилитрона. Если у вас есть напряжение, которое колеблется между + 7 В и -7 В, вы можете использовать один стабилитрон 4 В, подключенный к земле, чтобы гарантировать, что сигнал не превышает 4 В или опускается ниже -0,7 В (где диод проводит вперед на землю).
Если вы хотите ограничить сигнал, чтобы он никогда не становился отрицательным — например, для входа в аналого-цифровой преобразователь, который принимает сигналы в диапазоне 0-5 В, вы можете подключить анод стабилитрона к шине питания на 1 В вместо земли. Тогда диапазон выходного сигнала будет ограничен диапазоном 0,3 В — 5 В.
Еще один изящный трюк — использовать последовательно два противоположно ориентированных стабилитрона. Это может обеспечить, например, симметричный предел отклонения сигнала от земли.Это также обычная конфигурация для использования стабилитронов в качестве подавителя переходных процессов.
Преобразование напряжения: снижение нагрузки на регулятор
Вот что-то не работает. У нас есть TL750L05, который представляет собой тип линейного регулятора с выходным напряжением 5 В, который может выдавать выходной ток до 150 мА, а его нагрузка будет переменной. Нам нужно запитать его от источника 36 В. К сожалению, максимальное входное напряжение TL750L05 составляет 26 В.
Давайте попробуем добавить резистор последовательно, чтобы снизить напряжение:
Наша выходная нагрузка может составлять от 125 мА до 10 мА.Итак, резистор какого номинала у нас подойдет?
Предположим, что мы предполагаем нагрузку 125 мА. Затем снять (скажем) 20 В на резисторе, 20 В / .125 А = 160 Ом. Если мы используем 160 Ом, то при нагрузке 10 мА оно упадет только на 160 Ом × 0,01 А = 1,6 В, а 36 В — 1,6 В все еще больше, чем 26 В. Чтобы быть безопасным для нагрузки 10 мА, мы должны выбрать резистор, который дает нам падение как минимум 11 В при входном напряжении регулятора 25 В. Таким образом, 11 В / 0,01 А = 1100 Ом будет безопасным для нагрузки 10 мА. Но если нагрузка увеличится до 125 мА, падение на 1100 Ом будет V = 0.125 А × 1100 Ом = 137 В, что означает, что на входе регулятора будет ниже 5 В, и он перестанет работать.
Очевидно, что вы не можете выбрать номинал резистора, который действительно работал бы как для случая низкого, так и для высокого тока.
В сторону: Мы пропустили пару незначительных деталей о регуляторах напряжения, которые часто заслуживают внимания. Во-первых, линейный регулятор всегда требует немного больше напряжения на входе, чем на выходе.Эта разница напряжений называется «падением напряжения» и может достигать 0,6 В для TL750L05, так называемого стабилизатора с «малым падением напряжения». Это означает, что при выводе 5 В при 150 мА входная клемма регулятора должна быть на 5,6 В или выше. Мы можем спокойно игнорировать это здесь, потому что 36 В — 137 В все еще ниже 5,6 В.
Вторая небольшая деталь заключается в том, что линейный регулятор на самом деле потребляет немного больше тока на своем входе, чем на выходе. Причина этого в том, что часть тока, протекающего на вход регулятора, течет на землю через его третью клемму заземления, а не на выходную клемму.Этот «ток покоя» может достигать 12 мА для TL750L05. Это означает, что когда 125 мА выходит из выходной клеммы регулятора, на входную клемму может поступать до 137 мА. В приведенном выше примере это означает, что максимальное падение напряжения на резисторе 1100 Ом было бы более точно оценить как V = 0,137 A × 1100 Ом = 151 В. Опять же, это не меняет нашего анализа.
Давайте попробуем еще раз, на этот раз с нашим другом, стабилитроном.
Наконец, давайте попробуем использовать один жирный стабилитрон на 20 В (тип 1N5357BRLG), чтобы сбросить часть нагрузки.Тогда выход на аноде стабилитрона составляет всего 16 В, что находится в пределах безопасного входного диапазона регулятора. 1N5357BRLG рассчитан на максимум 5 Вт.
Когда регулятор работает на выходе 125 мА, его входной ток может достигать 137 мА, включая ток покоя, поэтому мощность, рассеиваемая стабилитроном, может достигать 20 В × 0,137 А = 2,74 Вт. Он будет нагреваться, но мы находимся в безопасных условиях эксплуатации стабилитрона, и теперь схема заработает.
Обновлено в апреле 2020 года и включает примечания о падении напряжения линейного регулятора и тока покоя.