Бп с малым падением выходного напряжения – СТАБИЛИЗАТОР С НИЗКИМ ПАДЕНИЕМ НАПРЯЖЕНИЯ

Стабилизатор с малым падением — подавление пульсаций напряжения

Одним из важнейших свойств стабилизаторов питания является наименьшее допускаемое напряжение между выходом и входом стабилизатора при наибольшем нагрузочном токе. Он выдает информацию, при какой наименьшей разности напряжений параметры прибора находятся в нормальном состоянии.

Стабилизатор с малым падением

Одним способом повышения КПД линейной настройки является снижение до наименьшего значения падения напряжения регулировочного элемента. Это особенно важно для миниатюрных регуляторов, на которых каждые вспомогательные 50 милливольт падения преобразуются в несколько сотен милливатт теплоты со сложным рассеиванием в небольшом корпусе устройства.

Поэтому для подключения подобных схем многие фирмы предлагают проектировщикам микросхемы с малым падением до 100 милливольт. Хорошие параметры имеет микросхема ST 1L 08 при токовой нагрузке до 0,8 А наименьшее падение на транзисторе имеется около 70 милливольт.

Из заводских стабилизаторов можно отметить те, у которых при снижении нагрузочного тока до наименьшего значения падение снижается до 0,4 милливольта. Для уменьшения шума такие микросхемы снабжены вспомогательным буферным усилителем с клеммой для подключения наружного фильтра емкостью до 0,01 мкФ. К такому фильтру предъявляются наименьшие требования: величина емкости должна быть от 2,2 до 22 мкФ.

Особое внимание необходимо обратить на микросхему LD CL 015. При хороших свойствах и низком падении напряжения это один из стабилизаторов, работающих без конденсаторного фильтра. Это достигается схемой операционного усилителя с запасом по фазе. Однако для улучшения параметров и уменьшения шума на выходе целесообразно установить на выходе и входе прибора емкости около 0,1 мкФ.

Прибор с падением до 0,05 вольт

При подключении разной аппаратуры от аккумуляторов, чаще всего есть необходимость выравнивать напряжение и расходуемый ток. Например, для образования лазера видеопроигрывателя или фонарика на светодиодах. Для решения такой задачи на производстве уже спроектировано несколько микросхем в виде драйверов. Они представляют собой низковольтный преобразователь напряжения с внутренним стабилизатором. Новой разработкой является микросхема LТ 130 8А.

Не снижая преимущества таких драйверов, нужно заметить, что в большом областном городе нет таких микросхем. Можно заказать по высокой стоимости, около 10 евро. Поэтому есть дешевая простая и эффективная схема прибора из одного радио журнала.

Коэффициент стабилизации такого устройства равен 10000. Напряжение на выходе настраиваем сопротивлением 2,4 килома от 2 до 8 вольт. При величине питания на входе ниже выхода, настроечный транзистор открыт, и снижение питания равно нескольким мВ. Если входное напряжение выше выходного, то на стабилитроне оно равно 0,05 вольт. Это становится возможным для питания лазерных и светодиодов от пальчиковых батареек. Даже, меняя нагрузочный ток в интервале от 0 до 0,5 ампера, выходное напряжение изменится только на 1 мВ.

Для такого простого стабилизатора плату не обязательно травить, а можно вырезать специальным ножом. Оно изготавливается из сломанных полотен по железу, затачивается на шлифовальном круге. Затем ручку обматывают для удобства пользования.

Таким резаком можно процарапать дорожки на медной плате.

Плату чистим шлифшкуркой, лудим, припаиваем детали и все готово.

На фотографиях видно, что нет необходимости в травлении платы и ее сверлении.

Такой способ всегда применяется для производства маленьких простых схем. Нет необходимости оснащать радиатором охлаждения мощный транзистор. Он из-за небольшого падения напряжения не нагревается. При настройке обязательно необходимо подключить слабую нагрузку на выход.

Устройство выравнивания питания с малым падением

Наиболее важным свойством обладает стабилизатор с малым падением питания, так же как и на микросхемах, наименее допустимая разность потенциалов выхода и входа при наибольшей токовой нагрузке. Он определяет, при какой наименьшей разности напряжений между выходом и входом все свойства прибора находятся в норме.

  • У наиболее распространенных стабилизаторов, выполненных на микросхемах серии М78 наименьшее допускаемое напряжение равно 2 вольта при силе тока 1 ампер.
  • Прибор на микросхеме с минимальным напряжением на входе должен выдавать напряжение 7 вольт на выходе. При амплитуде импульсов на выходе прибора доходит до 1 вольта, то величина входного наименьшего напряжения увеличивается до 8 вольт.
  • С учетом нестабильности напряжения сети в интервале 10% увеличивается до 8,8 вольт.

В итоге КПД прибора не превзойдет 57%, при значительном токе на выходе микросхема сильно нагреется.

Применение микросхем с низким падением

Хорошим выходом из ситуации является использование таких сборок, как КР 1158 ЕН, или LМ 10 84.

Работа прибора на микросхеме заключается в следующем:

  • Малых значений напряжения можно достичь, применяя для регулировки мощный полевик.
  • Транзистор работает в положительной линии.
  • Использование стабилизатора с n-каналом предполагается по испытаниям: такие полупроводники не склонны к самовозбуждению.
  • Сопротивление открытой цепи ниже, по сравнению с p-канальным.
  • Транзистором управляет параллельный стабилизатор.
  • Для открытия полевого транзистора, напряжение на затворе доводят на 2,5 вольта выше истока.

Такой вспомогательный источник необходим, если у него напряжение на выходе выше напряжения стока полевого транзистора на это значение.

ostabilizatore.ru

СТАБИЛИЗАТОР С МАЛЫМ ПАДЕНИЕМ НАПРЯЖЕНИЯ

   Регулируемый стабилизатор с низким падением напряжения — зачем он нужен? Конечно запитывая усилитель от мостового выпрямителя и трансформатора, или зарядное устройство для авто, можно смело «пожертвовать» несколькими вольт, или даже десятком. Но в радиосхемах с батареечным питанием, либо тех, что берут питание от USB — будет на счету каждый милливольт. И вот тут очень пригодится новая разработка — микросхема MIC2941.

микросхема MIC2941 - цоколёвка

Область применения

  • Питание схем от аккумуляторной батареи
  • Сотовые телефоны
  • Ноутбуки и карманные компьютеры
  • Сканеры штрих-кода
  • Автомобильная электроника
  • DC-DC модули
  • Опорное напряжение в устройствах
  • Линейные низковольтные блоки питания

Электрическая схема стабилизатора low dropout

Электрическая схема стабилизатора low drop

Второй вариант схемы

Электрическая схема стабилизатора low drop

   Эта схема представляет из себя low drop регулируемый блок питания с очень малым падением напряжения на нём. Конечно существует множество других конструкций для регулируемых источников питания, но микросхема MIC2941 имеет ряд преимуществ.

СТАБИЛИЗАТОР С МАЛЫМ ПАДЕНИЕМ НАПРЯЖЕНИЯ

   В зависимости от режима работы падение всего 40 — 400 мВ (сравните с 1, 25 — 2 В на LM317). Это означает, что вы можете использовать более широкий диапазон выходных напряжений (в том числе формирование стандартных для некоторых цифровых схем 3.3 В от столь же низкого 3.7 В напряжения (например, 3-х AA или литий-ионный аккумулятор). Обратите внимание, что микросхемы серии MIC2940 работают с фиксированным напряжением выхода, а MIC2941 можно плавно регулировать.

Таблица напряжений MIC294х

Таблица напряжений MIC2940

Возможности схемы на MIC2941

  • Защита от короткого замыкания и от перегрева.
  • Входной диод для защиты цепи от отрицательного напряжения или переменного тока.
  • Два индикаторных светодиода для высокого и низкого напряжения.
  • Выходной переключатель, чтобы выбрать 3,3 В или 5 В.
  • На плате потенциометр для регулировки напряжения от 1,25 В до максимального входного напряжения (20V max).
  • Высокая точность поддержания выходного напряжения
  • Гарантированный ток выхода 1.25 A.
  • Очень низкий температурный коэффициент
  • Вход микросхемы может выдержать от -20 до +60 В.
  • Логически управляемый электронный выключатель.
  • И, конечно, малое падение напряжения — от 40 мВ.

el-shema.ru

Стабилизатор с малым минимальным падением напряжения

Электропитание

Главная  Радиолюбителю  Электропитание



Один из важных параметров последовательных стабилизаторов напряжения (в том числе и микросхемных) — минимально допустимое напряжение между входом и выходом стабилизатора (ΔUмин) при максимальном токе нагрузки. Он показывает, при какой минимальной разности входного (Uвх) и выходного (Uвых) напряжений все параметры стабилизатора находятся в пределах нормы. К сожалению, не все радиолюбители обращают на него внимание, обычно их интересуют только выходное напряжение и максимальный выходной ток. Между тем этот параметр оказывает существенное влияние как на качество выходного напряжения, так и на КПД стабилизатора.
Например, у широко распространенных микросхемных стабилизаторов серии 1_М78хх (хх — число, равное напряжению стабилизации в вольтах) минимально допустимое напряжение дUмин= 2 В при токе 1 А. На практике это означает, что для стабилизатора на микросхеме LM7805 (Uвых = 5 В) напряжение Uвхмин должно быть не менее 7 В. Если амплитуда пульсаций на выходе выпрямителя достигает 1 В, то значение Uвхмин повышается до 8 В, а с учетом нестабильности сетевого напряжения в пределах ±10 % возрастает до 8,8 В. В результате КПД стабилизатора не превысит 57 %, а при большом выходном токе микросхема будет сильно нагреваться.
Возможный выход из положения — применение так называемых Low Dropout (с низким падением напряжения) микросхемных стабилизаторов, например, серии КР1158ЕНхх (ΔUмин = 0,6 В при токе 0,5 А) или LM1084 (Uмин= 1,3 В при токе 5 А). Но еще меньших значений Uмин можно добиться, если в качестве регулирующего элемента использовать мощный полевой транзистор. Именно о таком устройстве и пойдет речь далее.

Рис. 1


Схема предлагаемого стабилизатора показана на рис. 1. Полевой транзистор VT1 включен в плюсовую линию питания. Применение прибора с п-каналом обусловлено результатами проведенных автором испытаний: оказалось, что такие транзисторы менее склонны к самовозбуждению и к тому же, как правило, сопротивление открытого канала у них меньше, чем у р-канальных. Управляет транзистором VT1 параллельный стабилизатор напряжения DA1. Для того чтобы полевой транзистор открылся, напряжение на его затворе должно быть как минимум на 2,5 В больше, чем на истоке. Поэтому необходим дополнительный источник с выходным напряжением, превышающим напряжение на стоке полевого транзистора именно на эту величину.
Такой источник — повышающий преобразователь напряжения — собран на микросхеме DD1. Логические элементы DD1.1, DD1.2 использованы в генераторе импульсов с частотой следования около 30 кГц, DD1.3, DD1.4 — буферные; диоды VD1, VD2 и конденсаторы СЗ, С4 образуют выпрямитель с удвоением напряжения, резистор R2 и конденсатор С5 — сглаживающий фильтр.

Конденсаторы С6, С7 обеспечивают устойчивую работу устройства. Выходное напряжение (его минимальное значение 2,5 В) устанавливают подстроеч-ным резистором R4.
Лабораторные испытания макета устройства показали, что при токе нагрузки 3 А и снижении входного напряжения с 7 до 5,05 В выходное уменьшается с 5 до 4,95 В. Иными словами, при указанном токе минимальное падение напряжения ΔUмин не превышает 0,1 В. Это позволяет более полно использовать возможности первичного источника питания (выпрямителя) и повысить КПД стабилизатора напряжения.

Рис. 2


Детали устройства монтируют на печатной плате (рис. 2) из односторонне фольгированного стеклотекстолита толщиной 1,5…2 мм. Постоянные резисторы — Р1-4, МЛТ, подстроечный — СПЗ-19а, конденсаторы С2, С6, С7 — керамические К10-17, остальные — оксидные импортные, например, серии ТК фирмы Jamicon. В стабилизаторе с выходным напряжением 3…6 В следует применять полевой транзистор с напряжением открывания не более 2,5 В. У таких транзисторов фирмы International Rectifier в маркировке, как правило, присутствует буква L (см. справочный листок «Мощные полевые переключательные транзисторы фирмы International Rectifier» в «Радио», 2001, № 5, с. 45). При токе нагрузки более 1,5…2 А необходимо использовать транзистор с сопротивлением открытого канала не более 0,02… 0,03 Ом.
Во избежание перегрева полевой транзистор закрепляют на тепло-отводе, к нему же через изолирующую прокладку можно приклеить плату. Внешний вид смонтированной платы показан на рис. 3.

Рис. 3


Выходное напряжение стабилизатора можно повысить, однако не следует забывать, что максимальное напряжение питания микросхемы К561ЛА7- 15 В, а предельное значение напряжения затвор-исток полевого транзистора в большинстве случаев не превышает 20 В.

Рис. 4

Поэтому в подобном случае следует применить повышающий преобразователь, собранный по иной схеме (на элементной базе, допускающей более высокое напряжение питания), и ограничить напряжение на затворе полевого транзистора, подключив параллельно конденсатору С5 стабилитрон с соответствующим напряжением стабилизации. Если стабилизатор предполагается встроить в источник питания с понижающим трансформатором, то преобразователь напряжения (микросхему DD1, диоды VD1, VD2, резистор R1 и конденсаторы С2, СЗ) можно исключить, а «основной» выпрямитель на диодном мосте VD5 (рис. 4) дополнить удвоителем напряжения на диодах VD3, VD4 и конденсаторе С9 (нумерация элементов продолжает начатую на рис. 1).

Автор: И. Нечаев, г. Москва

Дата публикации: 29.09.2009

Мнения читателей
  • Серегй / 06.10.2011 — 08:34
    Какие номиналы нужно изменить, чтоб Uвых стало 9в?
  • Николай / 30.07.2011 — 22:30
    Удачная схема, спасибо. Использовал ее для стабилизации напряжения при токах до 0,5А от источника с сильно просаживающимся напряжением при увеличении тока нагрузки. Стал вопрос о собственном потреблении управляющей части — много жрет :), от 18,6 мА (U вх макс) до 8,7 мА. Поставил R3 = 8,2 кОм (TL431 в номинальном режиме, I > 1мА, хотя типичный минимальный ток 450 мкА) и регулирующий R4 = 50 кОм. потребляемый ток снизился до 2,3 мА — 1,1 мА. При такой модификации можно использовать конденсаторы С3-С5 меньшей емкости, я использовал 10мкФ.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Стабилизаторы напряжения с низким уровнем пульсаций.

РадиоКот >Схемы >Питание >Блоки питания >

Стабилизаторы напряжения с низким уровнем пульсаций.

Для изготовления радиоприемных устройств и различных предварительных усилителей звуковой частоты мне потребовались стабилизаторы на различные выходные напряжения с низким уровнем пульсаций. Взяв за основу схему стабилизатора напряжения из журнала «Радио» №11 1989г. и поэкспериментировав, получил несколько простых и надежных схем.

Выходное напряжение стабилизатора складывается из напряжения стабилизации стабилитрона VD1 и падения напряжения на переходе база-эмиттер транзистора VT4, и примерно равно Uвых =UстVD1+0,6В. Резистор R1 задает рабочий ток стабилитрона VD1, который в данном случае равен 6мА. VT3 выполняет роль стабилизатора тока и выбирается из серии КП103Е(Ж) с малым начальным током стока. VT4- маломощный из серий КТ315, КТ3102. VT1-КП303 с индексами В,Г,Д,Е. VT1 выбирается так, чтобы его нпряжение отсечки было меньше Uвых, а начальный ток стока Iс нач максимален. Максимальное значение Uвх не должно превышать 30В(максимально допустимого напряжения сток-исток VT1). VT2 выбирается исходя из тока потребляемого нагрузкой. Его напряжение коллектор-эмиттер должно быть больше Uвх. Мощность рассеиваемая на коллекторе VT2 случае КЗ на выходе равна произведению Uвх на ток КЗ. IКЗ=Iс начVT1.ВVT2. ВVT2-коээффициент усиления по току транзистора VT2.

Для разных схем стабилизаторов были опробованы в качестве VT2 транзисторы из серий КТ315, КТ503, КТ602(603,608),КТ815,КТ829. Результат-замечательный.
Кстати о пульсациях выходного напряжения. В стабилизаторе +12В, 100мА при полной нагрузке осциллограф С1-67 их не обнаружил даже на пределе чувствительности 10мВ/дел.
Следующая схема для другой полярности выходного напряжения:

Рекомендуемые детали: VT1-КП103М, VT2-КТ502(КТ814), VT3-КП103Е(Ж), VT4-КТ361(КТ3107). Поскольку максимально допустимое напряжение сток-исток у транзисторов серии КП103 не превышает 12В ставим гасящий резистор R2. Он подбирается таким образом, чтобы падение напряжения на VT1 не превышало 10В.
Если использовать в качестве стабилитрона переход база-эмиттер кремниевого транзистора из серий КТ315(316) см. «Радио» №10-1976г, то получается очень экономичная схема для устройств с батарейным питанием.

Подбор деталей как и для первой схемы. Выбирая транзистор VT5 с различными буквенными индексами получаем стабилизатор на выходное напряжение 6…9В.
Желаю вам всегда горячего паяльника.

Вопросы складывать тут.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Небольшой рассказ о том, как выбрать правильный блок питания.

Я очень люблю ковыряться с разными блоками питания, отчасти это увлечение перешедшее в работу, потому пишу я про них много и часто.

Сегодня обзор блока питания на 5 Вольт.

Но просто сделать обзор было бы совсем скучно, поэтому в этот раз я попробую рассказать какие компоненты в блоке питания за что отвечают и на что надо обращать внимание при выборе блока питания.

В обзоре будет много букв и не очень много фотографий. И хоть я буду стараться писать на понятном языке, но могу сорваться и начать выражаться неприличными словами типа — синфазный, насыщение, утечка и т.п. Если вдруг что то непонятно, спрашивайте, объясню 🙂

Блоки питания бывают разные, жидкие и газообразные мощные и не очень, на высокое напряжение и на низкое, с активным охлаждением и пассивным, с корректором и без, но общие принципы выбора особо не меняются, что я и покажу.

Для примера взят БП 5 Вольт 36 Ватт, но могу выложить статьи и по более мощным ‘собратьям’.

Судя по маркировке, блоки питания в таком корпусе изготавливаются на разную мощность и разные напряжения. мне уже попадался как то 12 Вольт блок питания в таком корпусе.

Технические характеристики блока питания, заявленные на наклейке.

Входное напряжение 100-240 Вольт

Частота питающей сети — 50/60Гц.

Выходное напряжение — 5 Вольт

Выходной ток (максимальный) — 7.2 Ампера

Максимальная мощность — 36 Ватт. Написано что общая, что подразумевали под этим в данном случае, не совсем понятно.

Блок питания относительно небольшой, высота примерно соответствует высоте спичечного коробка и составляет 37мм.

Масса блока питания всего 133 грамма (вообще, чем больше этот параметр, тем лучше, хотя и косвенно).

Длина 85мм, ширина 58мм.

Вход, выход и заземление выведено на один клеммник.

Клеммник имеет крышку, полностью она не открывается, не хватает буквально немного, рядом расположен подстроечный резистор для корректировки выходного напряжения и светодиод, показывающий что блок питания включен.

Так как снаружи блока питания ничего интересного нет, разве что блестящий перфорированный кожух, защищающий от удара током и помех, то посмотрим что внутри и как это все работает.

Отвинчиваем пару винтов и добираемся до внутренностей.

Внешне претензий нет. Первым делом о культуре производства говорит монтаж. Если детали стоят ровно, отсутствуют пустые места на плате, а габаритные компоненты закреплены при помощи клея (ну или герметика), то чаще всего это признаки скорее хорошего БП, чем плохого.

Здесь установлено все аккуратно, но пустые места все таки присутствуют, хоть их и немного.

Внешний осмотр закончен, теперь можно перейти к более детальному описанию.

Для начала конструкция, в этом блоке питания применено пассивное охлаждение компонентов.

Часть тепла передается на алюминиевый корпус, выполняющий роль радиатора. Это довольно таки классический принцип охлаждения подобных блоков питания.

Кстати повысить эффективность охлаждения можно закрепив блок питания к чему то теплорассеивающему. Не рекомендуется крепить такой блок питания на теплоизолирующую поверхность, либо делать это только при условии уменьшения нагрузки.

Тепло на корпус передается от двух деталей, это высоковольтный транзистор и выходной диод, о них я расскажу позже. Между компонентами и корпусом был нанесена теплопроводящая паста, а сами компоненты прижаты стальной пластинкой. А теперь рассмотрим отдельные части типичного блока питания и я попробую объяснить какие из них за что отвечают.

1. Клеммник, ну тут все понятно, отвечает за подсоединение входных и выходных проводов. при больших токах используют несколько одноименных клемм, например две плюсовые клеммы и две минусовые. Здесь на этом несколько сэкономили, так как выходной ток до 7.2 Ампера, а клемм всего по одной на полюс. Не скажу что это критично, но лучше когда нагрузку можно распределить.

2. Входной фильтр.

3. Диодный мост, выпрямляет сетевое напряжение, иногда устанавливается на радиатор (если выполнен в виде отдельного компонента), но в маломощных это не надо.

4. Конденсатор входного выпрямителя

5. Высоковольтный транзистор

6. Трансформатор

7. Выходной выпрямительный диод.

8. Выходной фильтр питания

9. Узел стабилизации и регулировки выходного напряжения.

Дальше я покажу и опишу вышеуказанные узлы более расширенно.

Входной фильтр питания. На самом деле больше необходим для фильтрации помех, которые проникают от блока питания в сеть. Если у вас фонит радиоприемник при включении импульсного блока питания, то сначала проверьте, а есть ли в нем такой фильтр.

В полном варианте включает в себя дроссель с двумя обмотками, два конденсатора х типа (на фото желтый), два конденсатора Y типа (обычно небольшие голубого цвета). Также в фильтр помех входит конденсатор, соединяющий первичную и вторичную стороны БП, и соединяющий минус выходных клемм с корпусом, но они больше влияют на гашение помех по выходу.

Из-за этих Y1 конденсаторов незаземленный блок питания обычно ‘кусается’.

С дросселем и Х конденсаторами все просто, чем больше индуктивность и емкость, тем лучше, иногда даже применяют двухступенчатые фильтры (два дросселя).

В некоторых случаях фильтр упрощают, оставляя только дроссель, один конденсатор Х типа и один или два Y1 типа (между первичной и вторичной стороной БП и между минусом БП и корпусом). Это также вполне нормальное решение, но иногда вместо дросселя ставят ‘специально обученные перемычки’, либо убирают фильтр совсем, вот так делать нельзя, помехи гарантированы.

В данном случае мы видим ‘эконом вариант’, но вполне работоспособный, его можно было бы не дорабатывать, но производитель вместо правильных Y1 конденсаторов установил обычные высоковольтные (2.2нФ 2КВ). Это небезопасно, так как при пробое таких конденсаторов выход БП окажется соединенным со входом и может ударить током. пробить его может от всплеска напряжения вызванного например мощным разрядом молнии недалеко от линии электропередач.

Вывод, фильтр вполне жизнеспособен, но для безопасной эксплуатации лучше заменить конденсаторы голубого цвета обозначенные на плате как CY на правильные Y1 конденсаторы, либо заземлить корпус БП.

К сожалению подобным грешат наверное 90% недорогих БП.

Также, перед фильтром питания, в импульсных блоках питания устанавливается специальный терморезистор, который ограничивает бросок тока при включении. Здесь его нет, вернее его роль частично выполняет дроссель, это не очень хорошо, но в данном случае терпимо, при большой мощности БП (и соответственно конденсаторах большой емкости) он обязателен, а в особо тяжелых случаях даже стоит специальная схема, которая после включения его замыкает.

Работает он так: пока терморезистор холодный, его сопротивление велико и он ограничивает ток, после включения он нагревается и его сопротивление падает, и он не вносит больших потерь. Но если выключить блок питания, а затем включить не дождавшись остывания терморезистора, то бросок тока почти не будет ограничен.

После входного фильтра установлен диодный мост, который выпрямляет переменный ток, дальше уже постоянный ток поступает на электролитический конденсатор.

Диодный мост бывает также разным, либо из отдельных диодов, либо в виде отдельного компонента, иногда его даже устанавливают на радиатор. В данном случае применено 4 отдельных диода. Диоды самые классические, 1N4007, вполне достаточно для такого блока питания. В дешевых блоках питания применяют вообще один диод, это очень плохо, так как входной конденсатор работает неэффективно.

Входной электролитический конденсатор. Ну тут все просто, чем больше емкость (в разумных пределах), тем лучше.

Для блока питания рассчитанного только под 230 (+/- 10%) необходимо конденсатор емкостью равной мощности БП. Т.е. если блок питания на 90 Ватт, то конденсатор ставят 100мкФ.

Для блоков питания рассчитанных под расширенный диапазон 100-240 Вольт емкость этого конденсатора должна быть больше в 2-3 раза.

В данном случае применен конденсатор емкостью 47мкФ на напряжение 450 Вольт (это очень хорошо, обычно применяют конденсаторы на 400 Вольт). Для входного напряжения 230 Вольт его емкость более чем достаточна (при мощности блока питания в 36 Ватт), но для работы при напряжении 100-150 Вольт он мал.

Емкость конденсатора влияет на следующие характеристики.

1. Диапазон входного напряжения при котором блок питания нормально работает.

2. Срок жизни конденсатора, из-за больших пульсаций конденсатор меньшей емкости состарится раньше, чем больше емкость, тем дольше будет жить.

3. Увеличение емкости положительно влияет на КПД блока питания, хоть и слабо.

Высоковольтный транзистор. Ну тут особо сказать нечего.

Разве что тут не проходит правило — чем больше, тем лучше. Параметры транзистора должны быть оптимальны для примененной микросхемы ШИМ контроллера.

Может влиять максимальное напряжение, у этого транзистора оно равняется 600 Вольт, для данной схемы это вполне нормально, я встречал иногда на 800 Вольт, но это очень большая редкость.

Влияет еще вариант корпуса. Бывают в полностью пластмассовом корпусе, а бывают с металлической частью, тогда транзистор крепится к радиатору/корпусу через изолирующую прокладку. Вариант с полностью изолированным корпусом мне лично нравится больше.

Силовой трансформатор.

Если сильно упростить, то здесь действует правило — чем больше, тем лучше.

В данном БП применена схемотехника ‘обратноходового преобразователя’, т.е. сначала открывается транзистор, ‘накачивает’ трансформатор (на самом деле не совсем именно трансформатор, но это не важно), потом транзистор закрывается и энергия от трансформатора ‘перекачивается’ в нагрузку через выходной диод.

Почему я написал насчет упрощения, дело в том, что размеры трансформатора зависят не только от мощности, а и от частоты работы блока питания. Чем частота выше, тем меньше можно применить трансформатор, но большинство ширпотребных блоков питания работают в диапазоне 60-130КГц, потому правило все таки действует.

Существуют более высокочастотные контроллеры, но высокая частота требует очень качественных материалов для трансформатора, потому цена такого БП будет гораздо выше.

Я встречал в дешевых АТХ блоках питания мощностью 250-300 Ватт трансформаторы размеров с пол спичечного коробка, но это была не работа на очень высокой частоте, а просто дикая экономия 🙁

Иногда спрашивают, а можно перестроить БП с 5 Вольт на 9, или с 19 на 12 ?

Чаще всего нельзя, так как трансформатор имеет определенное соотношение витков в первичной и вторичной обмотке, и перестроенный БП будет работать в не оптимальном режиме. или вообще не будет, так как у трансформатора есть еще одна обмотка, от которой питается микросхема ШИМ контроллера и напряжение на этой обмотке также зависит от напряжения на других обмотках.

В данном блоке питания трансформатор вполне соответствует заявленной мощности.

Выходной выпрямительный диод.

От этого диода довольно сильно зависит надежность работы блока питания, одно из правил, диод должен быть рассчитан на ток в 2.5-3 раза больше, чем максимальный выходной ток блока питания. В нашем случае это 7.2х3=21.6

В данном блоке питания применена диодная сборка, состоящая из двух диодов. Согласно документации диод рассчитан на 20 Ампер (2х10) и напряжение 100 Вольт.

По току соответствует необходимым параметрам, а по напряжению значительно превышает требуемые.

Обычно для БП 5 Вольт достаточно чтобы диод был рассчитан на 45-60, для БП 12 Вольт на 100 Вольт, для 24 Вольта надо уже 150 Вольт.

Но на самом деле, слишком хорошо это тоже плохо. Объясню почему.

Диоды Шоттки вещь очень хорошая, имеют маленькое падение, быстрое переключение, что положительно сказывается на КПД блока питания и его нагреве.

Но в отличии от обычных диодов у них более выражена разница в зависимости падения на нем от максимального напряжения, на которое рассчитан диод. Т.е. диод на 45 Вольт запросто имеет падение в 1.5 раза меньше чем диод на 100 Вольт. Т.е в данном БП лучше смотрелся бы диод на 30-40 Ампер и 60 Вольт, КПД был бы выше, а цена практически той же.

Т.е. по факту в этом БП применен хороший диод с большим запасом по напряжению, это надежно, думаю что если и сгорит он, то одним из последних, но он просто не совсем оптимален.

Выходной фильтр и узел стабилизации.

Для начала здесь также существуют свои правила, например суммарная емкость конденсаторов желательна из расчете 1000мкФ на каждый 1 Ампер выходного тока, но на самом деле БП вполне нормально работает и при в 2 раза уменьшенной емкости. Не менее важно максимальное напряжение на которое рассчитаны конденсаторы и их тип.

Выходное напряжение обычно желательно:

Для 5 вольт БП — 16, в крайнем случае 10 Вольт, ни в коем случае не 6.3

Для 12 Вольт — 25, в крайнем случае 16.

Для 24 Вольта, 35, ни в коем случае не 25.

Конденсаторы должны быть с низким внутренним сопротивлением (LowESR) и рассчитаны на 105 градусов, тогда будет работать долго.

В этом БП конденсаторы имеют емкость 1000мкФ, что дает в сумме 2000мкФ, исходя из этого максимальный длительный ток не желателен выше 4-5 Ампер. кратковременно можно снимать и больше, но сократится срок службы конденсаторов.

Кстати в этом блоке питания есть место для установки нормальных конденсаторов с диаметром 10мм, хотя сейчас установлены небольшие, диаметром 7мм.

Выходной дроссель, ну тут точно, чем больше, тем лучше. но следует учитывать, что важен не только размер, а и ток, на который рассчитан дроссель. Если дроссель намотан тонким проводом, то он будет греться. А если феррит, на котором намотан дроссель, перегревается, то его характеристики резко ухудшаются (при превышении определенной температуры). примерно на таком принципе работают индукционные паяльники, то там зло обратили во благо, но это уже тему другого обзора.

Здесь применен не очень мощный дроссель, позже при тестах мы к нему еще вернемся.

Схема стабилизации выходного напряжения. О ней я напишу чуть позже, так как она расположена снизу печатной платы, сверху расположен только подстроечный резистор для точной установки выходного напряжения и светодиод, показывающий что блок питания включен и работает (иногда это не одно и то же :).

Постепенно мы дошли до более ‘тонкой’ электроники. В данном БП основная часть компонентов расположена снизу, со стороны дорожек из-за того, что применены безвыводные (SMD) компоненты. В блоке питания могут быть применены и обычные детали, особого значения то не имеет, потому по большому счету на это не стоит особо обращать внимания.

А вот на монтаж платы внимание обращать стоит. Плата должна быть изготовлена качественно, выводы припаяны и обкушены. а не торчать в разные стороны как попало. Желательно чтобы флюс был смыт, как минимум основная его часть.

К данному БП особых претензий нет, вполне заслуженные 4 балла. Не скажу что идеально, скорее нормально.

Я вообще имею привычку покрывать плату лаком после монтажа и промывки, но такое встречается только у брендов верхнего уровня и то чаще в промышленных устройствах.

Немного расстроило отсутствие защитного прореза под оптроном, разделяющим высоковольтную часть и низковольтную. Желательно чтобы были прорезы между близким расположением проводников разных сторон блока питания, это повышает безопасность.

По печатной плате я начертил принципиальную схему. По большому счету я взял схему одного из обозреваемых ранее БП и внес необходимые дополнения и коррективы так как большинство таких блоков питания построено по похожей (если не сказать одинаковой) схемотехнике. Первичная сторона блока питания поближе.

Отчетливо виден ШИМ контроллер со своей ‘обвязкой’, шунт из нескольких SMD резисторов, а также резисторы, которые входят в состав ‘снаббера’.

Кстати насчет ‘снаббера’, это такой узел, который гасит паразитные выбросы возникающие на высоковольтной обмотке трансформатора, выполняется в нескольких вариациях:

1. Диод + резистор + конденсатор (так сделано в этом БП), на схеме это R3, C3, DB1.

2. Диод + супрессор (аналог очень мощного стабилитрона — ограничителя).

3. Комбинация 1 и 2 пунктов, обычно применяется на больших мощностях.

4. Китайское ноу хау, не ставить его вообще. Так делают обычно в самых дешевых БП, типа зарядных для электронных сигарет и сотовых телефонов, которые продаются по три копейки.

Данный узел влияет на надежность БП

Шунт из нескольких SMD резисторов под номерами 9, 19, 21, 22, 23 предназначен для измерения тока через высоковольтный транзистор, это необходимо для защиты блока питания от перегрузки и короткого замыкания. При выходе блока питания чаще всего уходит в другой мир вместе с высоковольтным транзистором, ШИМ контроллером и резистором, который стоит между транзистором и контролером.

Пайка аккуратная, мало того, компоненты приклеены, это уже одна из ‘примет’ более-менее нормальных блоков питания.

В этом БП применен ШИМ контроллер неизвестного происхождения, но он полностью совпадает по выводам с контроллером 63D39, который в свою очередь является аналогом FAN6862.

В небольших блоках питания применяется три вида схемных решений

1. Микросхема ШИМ контроллера + высоковольтный полевой транзистор.

2. Микросхема мощного ШИМ контроллера у которой внутри находится и полевой транзистор и шунт (иногда вместо шунта измеряется падение на полевом транзисторе в открытом состоянии)

примеры — TOP Powerintegrations, Viper и т.п.

3. Автогенератор, микросхем нет, иногда нет и защиты от превышения тока.

Первые два типа по сути аналогичны, третий гораздо хуже, если вы увидели небольшую микросхему, значит 99% у вас первый тип БП. Если на плате есть высоковольтный транзистор и рядом с ним еще 1-2 транзистора, но меньших размеров, то это на 99% автогенератор.

Здесь применено правильное решение, замечаний нет.

Вторичная сторона, отвечает за выпрямление и стабилизацию выходного напряжения.

Некоторые люди заблуждаются, считая что за стабильность выходного напряжения отвечает первичная сторона (хотя есть и такие варианты БП). За точность стабилизации выходного напряжения отвечает именно вторичная сторона, так как она контролирует поведение первичной.

Отвечает за стабилизацию небольшая микросхемка под названием TL431, на этом фото она в очень маленьком корпусе с тремя выводами под названием V3. Эта микросхема — управляемый стабилитрон, при подаче напряжения с выхода блока питания на эту микросхему она управляет включением оптрона (на фото сверху платы, он между трансформатором и транзистором), который передает команду на ШИМ контроллер и он уже управляет мощностью БП, подстраивая ее так, чтобы на выходе было стабильное напряжение.

Напряжение на микросхему подается через делитель, иногда через просто два резистора, а иногда еще добавлен подстроечный резистор, при помощи которого можно изменить выходное напряжение в небольших пределах.

Существует еще одно заблуждение, что при выходе блока питания из строя, обычно страдает и то, что подключено. Скажу так, такое возможно, теоретически, но реально бывает ОЧЕНЬ редко. Также при выходе БП из строя вторичная сторона страдает реже всего, чаще всего все неприятности происходят на первичной (высоковольтной) стороне.

Иногда некоторые производители не делают стабилизацию выходного напряжения при помощи специальной микросхемы и оптрона, но это не очень хорошо. Мало того, у меня даже есть обзор блока питания, где есть оптрон, но он никуда не подключен.

Бывает даже влияет то, как разведены дорожки через которые измеряется выходное напряжение, это критично, особенно при больших токах.

В общем если есть оптрон и маленькая трехногая микросхема недалеко от выхода БП, то данный БП скорее всего с правильной стабилизацией.

Для большего понимания, что такое первичная (она же ‘горячая’;) сторона и вторичная (она же ‘холодная’;) я разделил на схеме стороны двумя цветами, черным цветом обозначены компоненты, которые относятся к двум сторонам одновременно. Для начала первое включение (надо же было его когда нибудь включить). все заработало и ничего не сгорело :).

При включении БП показал напряжение на выходе равное 5,12 Вольта.

Проверяем диапазон регулировки, он составляет 4.98-5.19 Вольта, вполне нормально.

После этого выставляем на выходе заявленные 5 Вольт.

Для проверки блока питания я использую ‘стенд’, состоящий из:

Электронной нагрузки

Мультиметра

Осциллографа

Бесконтактного термометра.

Ручки и листика бумаги

Как и в прошлые разы я провожу ступенчатые тесты по 20 минут каждый, поднимая ток нагрузки после успешного прохождения теста. Щуп осциллографа стоит в положении 1:1.

Первый тест проводим без нагрузки, напряжение 5 Вольт, пульсации почти отсутствуют.

2. Нагрузка 2 Ампера, напряжение 5 Вольт, пульсации на уровне 30-40мВ, отлично.

1. Нагрузка 4 Ампера, напряжение 5 Вольт, пульсации около 40мВ, отлично.

2. Нагрузка 6 Ампер, напряжение чуть просело до 4.99 Вольта, пульсации практически неизменны и составляют около 40мВ, отлично.

1. Ток нагрузки 7.2 ампера, напряжение 4.99 Вольта, а вот пульсации очень выросли. Это плохо.

Рост пульсаций обусловлен не только током нагрузки, а скорее нагревом дросселя (вернее его перегревом). Выше я писал, что сердечник дросселя (и трансформатора) меняет свои характеристики при нагреве выше определенной температуры. В данном случае дроссель начинает работать как просто кусок проволоки почти ничего не фильтруя. Если так перегреется трансформатор, то это закончится походом за другим БП. Именно из измерения температур я делаю выводы от том, в каком режиме работает БП и какая его максимальная мощность.

Дроссель в этом БП намотан тонким проводом, потому он имеет большое сопротивление и сильно греется.

Ради эксперимента я охладил дроссель и измерил пульсации под нагрузкой еще раз. на всякий случай я сделал фото экрана осциллографа ‘ в режиме реального времени’, а не в режиме удержания показаний.

2. Тока нагрузки 7.2 Ампера, дроссель охлажден до 88 градусов (правда я невольно немного охладил и весь БП, но в основном охлаждал дроссель), пульсации составляют максимум 50мВ.

Согласно результатам тестирования, была составлена небольшая табличка температур основных элементов данного блока питания.

Немного о температурах.

Пускай вас не пугают температуры под 100 градусов у транзисторов и диодов, при таких температурах они себя вполне нормально чувствуют.

Гораздо более критична температура трансформатора и дросселя, а также электролитических конденсаторов. В данном БП после 1час 40 минут тестирования (последняя колонка + 20 минут под максимальным током) выходные конденсаторы разогрелись до 104.2 градуса, это очень плохо, но судя по температуре дросселя в 142 градуса я думаю что основной ‘вклад’ в этот результат дал именно он и если его заменить, то температура конденсаторов значительно снизится.

Вообще диоды и транзисторы нормально могут работать и при 130-140 градусов, но я считаю это большой температурой. Раньше в наших справочниках писали — запрещается эксплуатация компонентов при превышении более чем одного из параметров, я стараюсь не превышать вообще никакие параметры.

В данном БП самым греющимся компонентом является выходной дроссель, температуры остальных компонентов даже под максимальным током и после длительного прогрева находятся на безопасном уровне, я был даже удивлен что диод так мало нагрелся.

При измерении температур измерялась температура именно компонента, а не радиатора, на котором он установлен, это дает более точное понимание процесса.

Резюме.

Плюсы

БП отлично держит выходное напряжение, пока это самый лучший результат среди протестированных мною БП.

Уровень пульсаций можно было бы считать очень хорошим, если бы не перегрев дросселя на максимальном токе и последующий рост пульсаций.

Общий нагрев БП находится в пределах допустимого.

Неплохое общее качество изготовления БП.

Входной конденсатор на 450 Вольт

Минусы

Дроссель ‘несоразмерен’ выходному току БП, перегрев.

Выходные конденсаторы установлены заниженной емкости.

Применены не правильные Y, а обычные высоковольтные.

Мое мнение. Данный блок питания можно вполне безопасно эксплуатировать при токе нагрузки до 5-6 Ампер, но если заменить выходной дроссель и конденсаторы, то можно спокойно длительно работать и при токе 7 Ампер. При тесте я кратковременно нагружал его током 7.5 Ампер, работал абсолютно без проблем. т.е. запас по мощности у этого БП есть.

Очень жаль, что опять сэкономили на конденсаторах, соединяющих первичную и вторичную стороны БП и поставили обычные высоковольтные, но судя по моей практике разбора недорогих БП, так делается очень часто 🙁

Обрадовала точность стабилизации выходного напряжения, при изменении тока нагрузки от холостого хода до 7.5 ампер выходное напряжение снизилось всего на 10мВ, это просто отлично, честно, я не ожидал.

В общем такой себе БП-конструктор с хорошим потенциалом, но буквально ‘просящий’ доработки.

На этом пока все. Надеюсь что немного помог тем, кто испытывает затруднения при выборе блоков питания. Частично обзор является ответом на многие вопросы, которые мне иногда задают, но в планах продолжение (скорее дополнение) данного обзора-объяснения, но уже с другим блоком питания, заметно мощнее.

И все же, что должно быть в нормальном БП

А если кратко по пунктам, то:

Клеммник, при большом токе лучше когда выходных клемм больше одной пары.

Терморезистор (покажу в другом обзоре), в маломощном БП желателен, в мощном обязателен.

Входной дроссель, обязателен если не хотите помех на радиоприемники. да и просто в сеть.

Входной электролитический конденсатор, минимум 400 Вольт, если 450, то вообще отлично, емкость минимум равняется мощности БП в Ваттах.

Высоковольтный транзистор, тут все проще, меньше чем на 600 Вольт еще не встречал (в с такой схемотехникой).

Трансформатор, если грубо, то чем больше, тем лучше. при работе проверить нагрев, если греется более 95-100 градусов — плохо.

Выходной диод, данные есть в тексте, ток не менее 2.5-3 раза от выходного, напряжение не менее 100 Вольт для 12 Вольт БП и не менее 45-60 для 5 Вольт БП

Выходные конденсаторы — Емкость чем больше (но в разумных пределах), тем лучше, но не менее чем 470мкФ на 1 Ампер, лучше 1000мкФ на 1 Ампер. Конденсаторы должны быть LowESR 105 градусов и напряжение не менее 10 Вольт для 5В БП и 25В для 12В БП.

Выходной дроссель, чем больше. тем лучше. Но с максимальным током, соответствующим выходному току БП.

Наличие регулировки выходного напряжения, необязательно, но приветствуется.

Обязательно наличие стабилизации на вторичной стороне.

Обязательно наличие ШИМ контроллера, а не транзисторной схемы.

Все элементы должны быть хорошо прижаты к радиатору/корпусу.

Предохранитель ДОЛЖЕН БЫТЬ.

Обязательно наличие правильных конденсаторов Y типа между сторонами БП (присутствие надписи Y1 на конденсаторе)

Общая аккуратность сборки говорит о контроле со стороны производителя, если БП изначально собран ‘криво’, то от него уже тяжело ждать хороших результатов.

Именно по этим критериям я оцениваю качество блока питания

3dtoday.ru

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

Схема регулируемого стабилизатора

Схема регулируемого стабилизатора

Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и  припаял его к плате с помощью проводков.

IRLZ24/32/44

Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

Сглаживающие конденсаторы C1,C2

Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

Схема для плавной регулировки напряжения постоянного тока

Мощность, которую сможет рассеять такой стабилизатор напряжения не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

Плата плавной регулировки напряжения постоянного тока

Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

Фото подстрочного резистора типа WH06-1, WH06-2

Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

на плату припаять две колодки

Печатная плата для дискретных элементов и переменного резистора типа СП5-2 (3296).

плата для дискретных элементов схемы

Стабильность неплоха и напряжение изменяется только на доли вольта на протяжении длительного времени. Готовая платка получилась компактна и удобна. Так как я планирую длительное время использовать это устройство для защиты дорожек окрасил всё дно платы зеленым цапонлаком. Автор материала — Егор.

   Форум по БП

   Обсудить статью СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ


radioskot.ru

Как устроен блок питания, часть 5

В качестве самой просто схемы я покажу вариант с одним диодом и конденсатором. Такая схема используется в обратноходовых блоках питания, которые составляют сейчас подавляющее большинство.

В готовом блоке питания она выглядит так, как показано на этом фото.
Такие блоки питания чаще всего идут в комплекте с недорогой техникой.

Следующим шагом идет двухполупериодный выпрямитель. Эта схема использовал раньше весьма часто, но в последнее время вытеснена другой, которую я покажу позже.
Такая схемотехника чаще всего встречается в мощных блоках питания, особенно она удобна в нерегулируемых блоках на базе драйвера IR2151-2153, о которых я рассказывал в прошлой части.

Как я тогда сказал, она хорошо подходит для построения первичных источников питания, которые не являются стабилизированными, но которые имеют хороший КПД и могут использовать для питания других устройств, например как этот блок питания лабораторного источника питания.

Особое преимущество данной схемы в том, что ее очень легко переделать в двухполярную и использовать для питания усилителей мощности. В таком варианте добавляется всего пара диодов и конденсатор.

Когда мощности обратноходовой схемотехники не хватает, то используют ее прямоходовый вариант. Здесь энергия при одном такте сначала накапливается в дросселе, а потом через нижний диод поступает в нагрузку. Данная схемотехника очень похожа на схему классического StepDown преобразователя.

Заметить что блок питания собран по такой схемотехнике очень просто, на плате будет большой дроссель. В качестве фильтрующих дроссели с таким габаритом используют крайне редко, потому ошибиться сложно.

Но есть альтернативный вариант этой схемы. Он применяется чаще всего в компьютерных блоках питания и ведет свои истоки от первых БП формата АТ.

Здесь присутствует накопительный дроссель, а первичная обмотка силового трансформатора связана с одной из обмоток трансформатора управления. Если изъять дроссель из этой схемы, то блок питания при нагрузке выше определенной выйдет из строя.
То же самое касается и предыдущей схемы.

Отличить блоки питания последних двух типов очень легко, слева БП построенный по аналогии блока питания АТ формата, у него сразу заметен трансформатор около транзисторов, справа однотактный прямоходовый, трансформатора здесь нет.
Дроссели имеют разные размеры, но это следствие разной рабочей частоты и иногда экономии производителя. Меньший дроссель в работе скорее всего будет перегреваться, да и схема можно работать не очень надежно при максимальной мощности.

Чаще всего в качестве выходных диодов импульсных блоков питания используются диоды Шоттки. Они имеют два важных преимущества перед обычными:
1. Падение напряжения на них в 1.5-2 раза меньше
2. Они быстрее, чем обычные диоды, потому имеют меньше потер при переключении.

В блоках питания рассчитанных на высокое выходное напряжение применяют чаще всего обычные диоды, так как прямое падение у высоковольтных обычных и Шоттки примерно одинаково. Но из-за того что Шоттки быстрее, можно получить уменьшенные потери на снаббере, потому я советую применять их и здесь.

Так как после выпрямления на конденсаторе будут присутствовать заметные пульсации, то после него ставят LC фильтр или говоря простым языком — дроссель и конденсатор

Для примера "народный" блок питания где явно виден как дроссель, так и два конденсатора.

Дроссель необязательно будет большим, а вполне может быть совсем миниатюрным. Работать правда он будет хуже, но это лучше чем ничего.

Иногда дроссель вообще не ставят, хотя место под него есть. Это банальная экономия "на спичках", я всегда рекомендую установить на это место дроссель.

Для примера уровень пульсаций без дросселя и с дросселем. Но стоит учитывать, что после установки дросселя пульсации на первом конденсаторе вырастут, так как на него будет приходится "ударный" ток. Обычно именно он выходит из строя первым.

Улучшить ситуацию можно установив параллельно электролитическим конденсаторам керамические. Данная мера можно существенно облегчить режим работы электролитов. Но стоит иметь в виду, что эффективно они работают только при относительно небольших мощностях БП, а точнее при относительно небольших токах. Можно конечно поставить много таких конденсаторов, но это дорого и габаритно.

При доработке конденсаторы можно напаивать прямо на выводы электролитических конденсаторов.
Я применяю конденсаторы с емкостью 0.1-0.47мкФ.

Чтобы еще немного улучшить качество работы, следует внимательнее отнестись к разводке печатной платы. Если страссировать плату по типу того как я показал на схеме, то пульсации могут еще немного уменьшиться, тем более что это бесплатно.

Ну и последний шаг, установка синфазного дросселя на выходе блока питания. Такое применяется чаще всего в фирменных блоках питания, которым требуется проходить сертификацию на уровень помех излучаемых в эфир. В дешевых практически никогда не встречается.

Теперь об выходных конденсаторах.
Если вы пользуетесь дешевыми блоками питания, то скорее всего на выходе увидите либо вообще безымянные модели.

Либо подделку под фирменные. Например в народном блоке питания применяют подделки под Sanyo или Nichicon, проверить очень просто, по маркировке. Скорее всего вы либо вообще не найдете конденсаторов такой серии, либо в этой серии не будет такого номинала с таким габаритом как у вас, либо внешне они будут отличаться цветом, как в данном случае.
Такие подделки на самом деле не самый худший вариант, но лучше применять фирменные.
Кстати в двухтактных БП конденсаторы обычно живут дольше и требования к их качеству меньше чем у обратноходовых однотактных.

Но все равно, лучше применять именно фирменные конденсаторы, а не суррогаты с их именем. На фото блок питания фирмы Менвелл.

Для облегчения работы конденсаторов есть способ, когда вместо одного двух емких устанавливают много менее емких конденсаторов. В таком варианте нагрузка лучше распределяется и конденсаторы живут дольше.

Схема стабилизации.
Самый простой вариант — стабилизировать напряжение по обратной связи со вспомогательной обмотки трансформатора, правда такое решение и самое плохое в плане стабильности, так как влияет магнитная связь между обмотками и их активное сопротивление, зато дешево.

Следующий вариант сложнее, здесь в качестве порогового элемента применен стабилитрон. В таком варианте выходное напряжение Бп будет равно падению на стабилитроне + напряжению на светодиоде оптрона. Характеристики схемы так себе, но вполне приемлемы для некритичных нагрузок.

Например блок питания с такой стабилизацией. Сверху около оптрона ничего нет.

Снизу расположен стабилитрон и несколько резисторов

Но куда лучшие характеристики показывает схема с регулируемым стабилитроном TL431. Она имеет куда выше качество работы и точность поддержания в том числе лучше держит параметры при изменении температуры.

На плате она обычно выглядит так, как показано на фото.

Выглядит он примерно как обычный транзистор в корпусе ТО-92, отличие только в маркировке. Данный вариант встречается чаще всего. Альтернативный вариант, который вы можете встретить, SMD корпус SOT-23.

Расположение выводов в разных вариантах корпуса.

Например в "народном" блоке питания применен SMD вариант корпуса. На фото видны резисторы делителя обратной связи и вспомогательные, например "подтяжки" к питанию чтобы сформировать минимальный рабочий ток для стабилитрона.

Еще пара фото, сверху платы ничего нет, а стабилитрон TL431 находится снизу.

Иногда в цепи обратной связи ставят подстроечный резистор. Но сначала я скажу пару слов о том, как рассчитывается делитель.
Если применяется стандартный делитель из двух резисторов, то его номиналы подбираются таким образом чтобы при требуемом выходном напряжении в точке соединения было 2.5 Вольта, именно на это напряжение и рассчитана TL431, но стоит учитывать, что есть и более низковольтный вариант этой микросхемы, на 1.25 Вольта, хотя встречается он гораздо реже.
Теперь к подстроечному резистору. Для большего удобства на плате может располагаться подстроечный резистор, позволяющий менять выходное напряжение в небольших пределах, чаще всего +/- 10-20%, больший диапазон не рекомендуется, так как Бп может вести себя нестабильно.
Подстроечный резистор всегда должен стоять последовательно с нижним резистором делителя, тогда в случае выхода его из строя вы получите на выходе Бп минимальное напряжение, а не максимальное, как если бы подстроечный резистор стоял сверху.
Кроме того подстроечные резисторы часто имеют низкую надежность, и если вам не нужна эта функция, то лучше заменить его на постоянный, предварительно подобрав его номинал.

Полностью на плате весь этот узел выглядит следующим образом.

Пару слов о выходном нагрузочном резисторе.
Импульсный блок питания плохо работает без нагрузки, потому параллельно выходу обычно ставят нагрузочный резистор, обеспечивающий минимально необходимую нагрузку при которой БП работает стабильно.
Есть и минус у данного решения, резистор обычно греется, причем иногда заметно. Кроме того этот резистор может греть конденсаторы если они стоят рядом, как на этом фото.

Иногда они греются так, что на плате становятся видны следы перегрева. Но кроме того этот нагрев может плохо сказываться на стабильности БП если он подогревает резисторы делителя обратной связи и они при этом применены обычного типа, а не точные/термостабильные.
Резисторы греются, параметры начинают меняться и меняется выходное напряжение БП, потому рекомендуется располагать резисторы делителя так, чтобы они не были подвержены нагреву, а кроме того лучше применять точные резисторы, на которые нагрев влияет существенно меньше.

Иногда производители неправильно выбирают номинал нагрузочного резистора и он начинает греться сильнее чем допустимо. Например в 24 Вольте версии "народного" блока питания как раз была такая ситуация, пришлось поменять его потом на резистор в два раза большего номинала.

Чтобы ваши блоки питания работали надежно, следует внимательно отнесись к подбору компонентов.
Диоды выбираются из расчета двухкратного запаса для двухтактной схемы и трехкратного для однотактной, например БП 5-7 Ампер, значит диод ставим на 15-20.
Напряжение должно быть не менее чем в четыре раза больше чем выходное у блока питания, если БП на 12 Вольт, то диод на 60, если на 24, то на 100.
Все эти параметры есть в даташите на диоды

Также они указаны на самих диодах.

Конденсаторы следует выбирать низкоимпедансные или LowESR, это также обычно отражено в даташите на компонент.
Емкость выбираем из расчета 0.5-1 тысяч мкФ на 1 Ампер выходного тока. Напряжение — для двухтактной схемы 1.5-2 раза выше чем выходное, для обратноходовой однотактной — не менее чем 2х от выходного.

По фирмам смотрим чтобы были известные бренды, но это я писал и в статье про входной фильтр, здесь рекомендации аналогичны.




С выходным дросселем все гораздо проще, номинальный ток дросселя не менее чем максимальный выходной ток блока питания. Лучше применить дроссель на больший ток, тогда его нагрев будет существенно меньше. Индуктивность 4.7-22мкГн, зависит от выходного тока, так как дроссель на большой ток и индуктивность будет весьма большим.

Обычно дроссели выполняются либо в виде "гантельки", либо в "броневом" исполнении, вторые чаще предназначены для поверхностного монтажа.

В общих чертах на этом все, и конечно видеоверсия данной статьи. Как всегда буду рад вопросам и пожеланиям.

www.kirich.blog

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *