Автоматический выключатель назначение: Назначение автоматических выключателей

Автоматический выключатель назначение, конструкция классификация

В данной статье узнаете что такое автоматический выключатель, его назначение, конструкция, характеристики и классификации.

Автоматический выключатель — это переключающее устройство, которое прерывает ненормальный ток или ток повреждения. Это механическое устройство, которое нарушает поток тока большой величины (неисправности) и, кроме того, выполняет функцию выключателя. Автоматический выключатель в основном предназначен для замыкания или размыкания электрической цепи, что защищает электрическую систему от повреждений.

Содержание

Для чего нужен автоматический выключатель

Есть два основных назначения.

  • Во-первых, чтобы предотвратить огонь. Разрыв предохранителей и автоматических выключателей срабатывает при превышении их номинального тока. Без них избыточный ток, протекающий в цепи (из-за перегрузки или неисправности), может привести к нагреву кабелей и, в конечном итоге, к перегоранию.
  • Во-вторых, для защиты от поражения электрическим током. Если в приборе возникает неисправность, вследствие которой проводник под напряжением должен был войти в контакт с металлическим корпусом, конструкция электрической цепи (в большинстве установок, но не во всех) такова, что это приведет к сильному току, протекающему от проводника под напряжением к земле. Разрыв предохранителей или срабатывание автоматического выключателя, отключение питания и обеспечение безопасности оператора такого оборудования.

Принцип работы выключателя

Автоматический выключатель состоит из неподвижных и подвижных контактов. Эти контакты касаются друг друга и проводят ток в нормальных условиях, когда цепь замкнута. Когда автоматический выключатель замкнут, токонесущие контакты, называемые электродами, зацепляются друг с другом под давлением пружины.

В нормальном рабочем состоянии плечи выключателя могут быть открыты или закрыты для переключения и технического обслуживания системы. Для размыкания выключателя требуется только давление на триггер.

Всякий раз, когда происходит сбой в какой-либо части системы, катушка отключения выключателя получает питание, и подвижные контакты разъединяются каким-либо механизмом, тем самым размыкая цепь.

Конструкция автоматического выключателя

Картинка с Конструкциией автоматического выключателяКартинка с Конструкциией автоматического выключателя

Основной автоматический выключатель состоит из простого выключателя, подключенного либо к биметаллической полосе, либо к электромагниту. Диаграмма выше показывает типичную конструкцию электромагнита.

Горячий провод в цепи соединяется с двумя концами выключателя. Когда переключатель находится в положении «включено», электричество может течь от нижней клеммы, через электромагнит, до подвижного контакта, через стационарный контакт и наружу к верхней клемме.

Электричество намагничивает электромагнит. Увеличение тока повышает магнитную силу электромагнита, а уменьшение тока снижает магнетизм. Когда ток переходит на небезопасный уровень, электромагнит достаточно силен, чтобы опустить металлический рычаг, соединенный с тягой переключателя. Вся связь смещается, отклоняя движущийся контакт от неподвижного контакта, чтобы разорвать цепь. Электричество отключается.

Характеристики

1) Номинальное рабочее напряжение (Ue)

Объяснение: рабочее напряжение, на которое рассчитан автоматический выключатель. Один выключатель может быть рассчитан на несколько напряжений или может быть совместим как с переменным, так и с постоянным напряжением.

2) Номинальное напряжение изоляции (Ui)

Это напряжение, при котором выключатель испытывается в лабораторных условиях. В целях безопасности это значение всегда выше номинального напряжения.

3) Номинальное импульсно-выдерживаемое напряжение (Uimp)

Максимальное пиковое напряжение, которое может выдержать автоматический выключатель без повреждений. Уимп часто имеет значение в несколько тысяч вольт.

4) Номинальный ток (в)

Максимальный ток, который допускает автоматический выключатель без отключения. Все, что выше этого значения, в конечном итоге приведет к отключению. Низкие уровни максимального тока отключают тепловую защиту в течение нескольких минут, а резкие пики тока (неисправность линии, короткое замыкание) вызывают мгновенное отключение.

5) Сервисная разрывная мощность (Ics)

Это самый большой ток короткого замыкания, который автоматический выключатель может прервать, не понеся повреждений.

6) Максимальная разрывная мощность (Icu)

Максимальный ток повреждения, который может прервать автоматический выключатель. Тем не менее, устройство постоянно повреждено при всех токах повреждения выше отключающей способности.

7) Механическая жизнь

Среднее количество раз, когда ручка выключателя может работать вручную до отказа.

8) Электрическая жизнь

Среднее количество раз, когда выключатель может отключиться до отказа.

Классификация

Существует несколько методов классификации выключателей. По типу тока их можно классифицировать как автоматические выключатели переменного тока и автоматические выключатели постоянного тока.

Выключатели переменного тока могут быть классифицированы на основе номинальных напряжений. Автоматические выключатели ниже номинального напряжения 1000 В называются низковольтными автоматическими выключателями, а свыше 1000 В называются высоковольтными выключателями. Тем не менее, наиболее общий способ классификации автоматических выключателей основан на затухании дуги, например, автоматических выключателях / миниатюрных автоматических выключателях, масляных автоматических выключателях (типа бака или наливного масла), минимальных масляных автоматических выключателей, воздуха, автоматические выключатели, выключатели на основе гексафторида серы и вакуумные выключатели. Все высоковольтные автоматические выключатели можно классифицировать по двум основным категориям: масляные автоматические выключатели и безмасляные автоматические выключатели.

В масляных выключателях используется диэлектрическое масло (трансформаторное масло) для гашения дуги. Масляные автоматические выключатели могут быть далее разделены на два класса: автоматические автоматические выключатели и автоматические выключатели с низким содержанием масла или минимальные масляные автоматические выключатели.

В маслобойных автоматических выключателях трансформаторное масло, которым они заправлены, используется для гашения дуги при размыкании контактов выключателя. Масло также служит изолятором для токопроводящих частей друг от друга и от заземленной емкости. Рейтинги варьируются от 25 МВА при 2,5 кВ до 5000 МВА при 230 кВ.

Различные типы устройств доступны как для внутренних, так и для наружных работ при различных уровнях напряжения. В автоматических выключателях с низким содержанием масла или минимальным содержанием масла масло используется для гашения дуги под воздействием взрыва и используется главным образом для этой функции, а не для изоляции токоведущих частей от земли. В таких выключателях камера, заполненная масляной дугой, расположена внутри полости фарфорового изолятора, который изолирует токоведущие части выключателя от земли.

Эти автоматические выключатели могут использоваться для диапазона напряжений от 33 кВ до 220 кВ и отключающей способности от 1500 МВА до 7500 МВА. Другой тип масляного выключателя — масляный импульсный выключатель. В этом выключателе дугогасящая масляная струя создается поршневым насосом, который получает внешнее питание с помощью пружины или сжатого воздуха.

Струя масла направлена ​​на зазор, образованный между разделительными контактами выключателя, чтобы погасить дугу. Масляно-импульсный выключатель имеет много характеристик и характеристик, аналогичных характеристикам воздушных выключателей.

Основные типы безмасляных автоматических выключателей:

1. Водяные автоматические выключатели, в которых вода используется для гашения дуги.

2. Воздушные автоматические выключатели, в которых дуга инициируется и гасится в статическом воздухе, в котором движется дуга. Такие выключатели используются для низких напряжений, как правило, до напряжений 15 кВ и разрывных мощностей до 500 МВА.

3. Воздушные автоматические выключатели, в которых воздушный поток используется для выдувания дуги. В современных воздушно-струйных автоматических выключателях сжатый воздух накапливается в резервуаре и выпускается через сопло для создания высокоскоростной струи, что используется для гашения дуги. Воздушные воздушные выключатели используются для внутренних работ в области среднего высокого напряжения и для средней разрывной мощности — как правило, до напряжений 15 кВ и мощностей до 2500 МВА. Воздушные автоматические выключатели в настоящее время используются в высоковольтных цепях на внешних распределительных устройствах для линий 220 кВ.

4. Автоматические выключатели с гексафторидом серы, в которых SF 6 под давлением используется для гашения дуги. Газ SF 6 обладает превосходными диэлектрическими, дугогасящими, химическими и другими физическими свойствами и доказал свое превосходство над другими дугогасящими средами, такими как масло или воздух.

5. Вакуумные выключатели, в которых неподвижные и движущиеся контакты размещены внутри герметичного вакуумного прерывателя. Дуга гасится, поскольку контакты разделены в высоком вакууме. Вакуумные автоматические выключатели являются более эффективными, менее громоздкими, более дешевыми по стоимости, незначительным обслуживанием и более длительным сроком службы.

1. Масляные автоматические выключатели :

Это самый старый тип автоматических выключателей. Разделительные контакты выключателей выполнены с возможностью разделения внутри изоляционного масла, которое обладает лучшими изоляционными свойствами, чем воздух. При возникновении неисправности, когда контакты прерывателя размыкаются под маслом, между ними возникает дуга, и тепло дуги испаряет окружающее масло и диссоциирует ее на значительный объем газообразного водорода (газообразный водород вместе с небольшим процентом метана, этилена и ацетилен) при высоком давлении.

На повышение давления и расход газов влияют конструкция устройства управления дугой, скорость перемещения контакта, энергия, выделяемая дугой и т. Д. Масло отталкивается от дуги, а расширяющийся пузырь водородного газа окружает дугу и соседнюю часть контактов.

Затухание дуги облегчается главным образом двумя процессами:

Во-первых, газообразный водород обладает высокой теплопроводностью и охлаждает дугу.

Во-вторых, газ создает турбулентность в масле и нагнетает ее в пространство между контактами после окончательного прерывания дуги при нулевом токе. В результате дуга гаснет, а ток цепи прерывается.

Масляные выключатели обладают достоинствами надежности, простоты и относительной дешевизны.

Масляные выключатели можно разделить на:

1. Масляные автоматические выключатели, использующие большое количество масла, также называемого типом мертвого резервуара, поскольку резервуар удерживается на потенциале земли. Такие выключатели доступны во всех классификациях напряжения и номинальных напряжений для внутреннего и наружного применения.

2. Автоматические выключатели с низким содержанием масла, которые работают с минимальным количеством масла, поэтому иногда их называют минимальными масляными выключателями или выключателями с небольшим количеством масла. Эти автоматические выключатели также иногда называют автоматическими выключателями в баке, потому что масляный бак изолирован от земли.

Масло может быть перемещено в зону дуги после того, как ток достигнет нуля, с помощью следующих действий:

(i) Из-за давления, вызванного естественным напором масла,

(ii) давлением, создаваемым действием самой дуги,

(iii) давлением, вызванным внешними средствами.

Таким образом, масляные автоматические выключатели могут быть классифицированы как:

(i) Автоматические масляные выключатели.

(ii) Самовзрывные или самогенерируемые масляные автоматические выключатели

(iii) Внешние масляные автоматические выключатели под давлением или масляные автоматические выключатели с принудительной струей или импульсные масляные автоматические выключатели.

Масло как дугогасящая среда имеет следующие преимущества и недостатки:

Преимущества:

(i) Энергия дуги поглощается при разложении масла.

(ii) Образующийся газ, который в основном представляет собой водород, имеет высокую скорость диффузии и высокое поглощение тепла при переходе из двухатомного в монотомное состояние и, таким образом, обеспечивает хорошие охлаждающие свойства.

(iii) Масло обладает высокой диэлектрической прочностью и обеспечивает изоляцию между контактами после того, как дуга будет окончательно погашена, и было время, чтобы масло просочилось в зазор между контактами.

(iv) Охлаждающее масло представляет охлаждающую поверхность в непосредственной близости от дуги.

(v) Используемое масло (такое как трансформаторное масло) является очень хорошим изолятором и обеспечивает меньший зазор между проводниками линии и компонентами заземления.

Недостатки:

(i) Масло является легковоспламеняющимся и может привести к пожару, если неисправный масляный выключатель выйдет из строя под давлением и станет причиной взрыва.

(ii) Существует риск образования взрывоопасной смеси с воздухом.

(iii) Из-за разложения масла в дуге масло загрязняется частицами углерода, что снижает его электрическую прочность. Следовательно, требуется периодическое обслуживание и замена.

Техническое обслуживание масляных выключателей:

После того как автоматический выключатель несколько раз прервал токи короткого замыкания или несколько раз токи нагрузки, контакты могут сгореть из-за искрения. Кроме того, диэлектрическое масло обугливается вблизи контактов, тем самым теряя часть своей диэлектрической прочности. Это приводит к снижению отключающей способности выключателя.

Поэтому для технического обслуживания масляного выключателя требуется проверка и замена контактов и масла. Рекомендуется проверять автоматический выключатель с регулярными интервалами в 3 или 6 месяцев. Согласно ISS 335-1963 масло в хорошем состоянии должно выдерживать 40 кВ в течение одной минуты в стандартной чашке для испытания масла с зазором 4 мм между сферическими электродами.

При проверке масляного выключателя рекомендуется проверить следующее:

1. Все токоведущие части должны быть проверены, и дуговые контакты должны быть проверены в случае необходимости.

2. Необходимо проверить диэлектрическую прочность, состояние и уровень масла. Если диэлектрическая прочность низкая или масло сильно обесцвечено, замените его.

3. Осмотрите изоляцию на предмет возможных повреждений. Очистите поверхность и удалите отложения углерода. Никогда не используйте свободные хлопковые отходы для этой цели.

4. Проверьте механизм закрытия, отключения и блокировки.

5. Проверьте сигнальные устройства и лампы.

6. Перед закрытием резервуара убедитесь, что не осталось никаких инструментов, что накладки и ограждения резервуара находятся на своем месте и надежно закреплены, а прокладка резервуара находится в хорошем состоянии.

2. Воздушные автоматические выключатели:

Прерывание дуги в нефти связано с образованием газообразного водорода вследствие разложения нефти. Этот факт привел к изучению прерывания дуги в воздухе. Без сомнения, дугообразные свойства водорода намного превосходят воздух, но воздух имеет несколько преимуществ по сравнению с нефтью в качестве охлаждающей среды.

Это:

1. Устранение риска возгорания и технического обслуживания, связанных с использованием масла.

2. Отсутствие механических напряжений, которые создаются давлением газа и движением масла.

3. Устранение затрат на регулярную замену масла, возникающую из-за износа масла при последовательной операции разрыва.

Относительно худшие дугогасящие свойства воздуха можно компенсировать с помощью различных принципов управления дугой и работы воздуха при высоких давлениях.

В воздушном выключателе разъединение контактов и гашение дуги происходит на воздухе при атмосферном давлении. В таких автоматических выключателях используется принцип высокого сопротивления. Дуга быстро удлиняется с помощью направляющих и дугогасительных камер, а сопротивление дуге увеличивается за счет охлаждения, удлинения и расщепления.дуга Сопротивление дуги увеличивается до такой степени, что падение напряжения на дуге становится больше, чем системное напряжение, и дуга гаснет при нулевом токе переменного тока.

Воздушные автоматические выключатели используются в цепях постоянного тока и цепях переменного тока до 12 000 вольт. Такие выключатели обычно бывают внутреннего типа и устанавливаются на вертикальных панелях или в распределительном устройстве в помещении. Автоматические выключатели переменного тока широко используются в распределительных устройствах среднего и низкого напряжения внутри помещений.

3. Воздушные выключатели:

Недостатками масляных автоматических выключателей являются опасность пожара из-за воспламеняющегося масла, ухудшения качества масла, необходимости периодической замены и сложности контакта с контактами в целях технического обслуживания. Это привело к разработке автоматических выключателей, использующих сжатый воздух или газ в качестве прерывистой среды. Хотя газы, такие как азот, углекислый газ, водород или фреон, могут быть использованы в качестве среды для прерывания дуги, но сжатый воздух является приемлемой средой для прерывания цепи газовых выключателей.

Причины приведены ниже:

Азот обладает свойствами размыкания цепи, подобными сжатому воздуху, и его использование не дает дополнительных преимуществ. Недостаток диоксида углерода заключается в том, что его трудно контролировать из-за замерзания на клапанах и других ограниченных проходах. Без сомнения, водород увеличил разрывную способность, но он более дорогой и нуждается во вспомогательном оборудовании. Фреон обладает высокой диэлектрической прочностью и хорошими дугогасящими свойствами, но он дорог и разлагается дугой на кислотообразующие элементы. 

4. Серные гексафторидные (SF 6 ) выключатели:

В автоматических выключателях (масляных автоматических выключателях, автоматических выключателях и пневматических выключателях) сила тушения возрастает относительно медленно после момента разъединения контакта, и, следовательно, дуга обычно гаснет после того, как прошло несколько полупериодов тока нуль. Для предотвращения повторного зажигания дуги требуется высокая диэлектрическая прочность пути дуги и быстрое восстановление после нулевого тока.

В случае высоковольтных автоматических выключателей эти свойства особенно необходимы для быстрого затухания дуги и меньшего времени для быстрого восстановления напряжения восстановления. Вакуумные выключатели и SF 6выключатели обладают лучшими свойствами в этом отношении по сравнению с обычной объемной нефтью, минимальной нефтью, а также автоматическими выключателями воздушных взрыва. Поэтому современная тенденция заключается в использовании вакуумных выключателей и SF 6 выключателей в системах высокого напряжения.

Нефть, очевидно легковоспламеняющееся вещество для гашения горячей дуги, является хорошо зарекомендовавшей себя средой, поскольку она выделяет водород, который благодаря своей низкой массе и высокой скорости является отличной охлаждающей средой. Но современные автоматические выключатели используют тяжелый газ SF 6 в качестве среды для гашения дуги.

Газ SF 6 благодаря своим превосходным диэлектрическим, дугогасящим, химическим и другим физическим свойствам доказал свое превосходство над другими средами, такими как масло или воздух, для использования в автоматических выключателях. Несколько типов выключателей SF 6 были разработаны различными производителями в течение последних двух десятилетий для номинальных напряжений от 3,6 до 760 кВ.

До 1970-х годов в диапазоне средних и высоких напряжений использовались выключатели с воздушным, объемным, минимальным маслом и воздушным взрывом. В течение 1970-х годов были внедрены вакуумные выключатели для применений до номинального напряжения 36 кВ. Введены однофазные выключатели SF 6 с номинальным напряжением от 3,3 до 760 кВ. Уровни неисправностей и номинальные напряжения в энергосистеме увеличились. Масляные выключатели, автоматические выключатели с минимальным количеством масла, воздушно-струйные выключатели в настоящее время устаревают.

5. Автоматические выключатели постоянного тока:

Легкие выключатели постоянного тока используются с давних пор. Однако для систем HVDC отсутствуют подходящие автоматические выключатели. В настоящее время большинство систем HVDC имеют две клеммы, а в двухполюсной системе HVDC автоматические выключатели HVDC не требуются, поскольку ток короткого замыкания можно контролировать или устранять путем управления углом включения преобразователей. В многоконтактных системах HVDC возникнет необходимость в автоматических выключателях HVDC.

Проблемы прерывания постоянного тока:

Автоматический выключатель переменного тока легко прерывает дугу при нулевом собственном токе в волне переменного тока. При нулевом токе энергия (½Li 2 ), которая должна быть прервана, также равна нулю. Контактный зазор должен охлаждать и восстанавливать диэлектрическую прочность, чтобы выдерживать естественное переходное напряжение восстановления. С автоматическими выключателями постоянного тока проблема является более сложной, поскольку форма сигнала постоянного тока не имеет нулей собственного тока. Принудительное прерывание дуги приведет к высокому переходному напряжению восстановления и повторному пуску без прерывания дуги и окончательного разрушения контактов выключателя.

При проектировании автоматических выключателей постоянного тока необходимо решить три основные проблемы.

Это:

(i) Создание искусственного тока ноль

(ii) Предотвращение повторных ударов и

(iii) Рассеяние накопленной энергии.

Принцип искусственного нулевого тока используется в автоматических выключателях постоянного тока для гашения дуги. Вводя параллельную цепь LC, токи дуги подвергаются колебаниям. Эти колебания являются серьезными и имеют несколько искусственных токовых нулей. Выключатель гасит дугу в одном из нулей искусственного тока. Пиковые токи колебаний должны быть больше, чем постоянный ток, который должен быть прерван.

Картинка с Конструкциией автоматического выключателяКартинка с Конструкциией автоматического выключателя

Последовательный резонансный контур с L и C подключен через главные контакты M обычного выключателя переменного тока через вспомогательные контакты S 1, а резистор R подключен через контакты. При нормальных условиях работы главный контакт M и зарядные контакты St остаются замкнутыми, и конденсатор C заряжается до линейного напряжения через высокое сопротивление R. Контакты S 1 разомкнуты и имеют линейное напряжение на них.

Для прерывания тока I d главной цепи рабочий механизм размыкает контакты S 2 и замыкает контакты S 1. Это инициирует разряд конденсатора C через индуктивность L, главные контакты M и вспомогательные контакты S, создавая колебательный ток, показанный на рис. 10.20 (b). Таким образом создаются нули искусственного тока, и главные контакты M выключателя размыкаются при нулевом токе Z. После этого контакты S 1 размыкаются, а контакты S 2 замыкаются.

Картинка с Конструкциией автоматического выключателяКартинка с Конструкциией автоматического выключателя

Другим способом прерывания постоянного тока основной цепи является его отвод на конденсатор, так что величина тока, который прерывается автоматическим выключателем, становится меньше. Это показано на рис. 10.21. Конденсатор С изначально не заряжен. Когда главные контакты М размыкаются, ток главной цепи отводится на конденсатор С. Таким образом, ток, который должен прерываться основными контактами М, становится меньше. Скорость нарастания восстановительного напряжения на М равна dV c / dt = I d / C. Нелинейный резистор R поглощает энергию без значительного увеличения напряжения на главных контактах М.

Проблема предотвращения повторных пусков является более острой в автоматических выключателях с постоянным током, где время прерывания тока очень мало (порядка 100 мкс). Таким образом, возникает резкий скачок перенапрягающего напряжения на клеммах выключателя, и автоматический выключатель должен выдерживать это напряжение.

Для создания хорошей деионизирующей дуги пространство между двумя стенками желоба может быть сужено для ограничения дуги, и одновременно оно может быть разделено на несколько более мелких дуг путем вставки решетки из вертикальных металлических пластин.

Большое количество энергии, сохраняемой в индуктивности цепи в начале прерывания и подаваемой выпрямителем в течение времени прерывания, должно рассеиваться, в противном случае она будет передаваться на емкость системы и устанавливать перенапряжения.

Защитный искровой разрядник может быть подключен через автоматический выключатель, чтобы уменьшить размер коммутирующего конденсатора. Это также будет поддерживать ненормальное напряжение, вызванное в момент переключения, на желаемом уровне. С помощью высокочастотных токов искровой разрядник действует как устройство рассеивания энергии. Альтернативно, через разрядник может быть подключен разрядник Zno, который будет ограничивать переходное восстановительное напряжение и поглощать связанную энергию.

Назначение и устройство автоматических выключателей Автоматические выключатели предназначены для установки в силовых распределительных щитках. Основное их назначение – компенсирование перепадов напряжения, а также отключение определенного участка электрической сети. Автоматы, или сокращенно ВА, предназначены для установки в начале электрической цепи, на входе здания, квартиры, дома.

Схема автоматического выключателя

В настоящее время на рынке представлено достаточно большое разнообразие автоматических выключателей, которые предназначены не только для отсечки токов высокого номинала при скачках напряжения, но и от перегрузки участка электрической цепи, а также от пониженных нагрузок сети. По своему виду все автоматические выключатели делят на:

  • селективные;
  • нормативные;
  • быстродействующие.

Стандартное время отсекания у селективных и нормативных автоматов — в пределах 0,02-0,1 сек. А вот у быстродействующих на порядок выше, и достигает значения — в 0,05 сек.

На всех автоматах имеются крепежные элементы, позволяющие их монтировать в электрические коробки, щитки и т.д., которые оборудованы специальной крепежной планкой в задней части.

Монтаж автоматических выключателей в коробку не сложен. Для этого вам необходимо его прижать задней частью к монтажной планке коробки и немного прижать до характерного щелчка. Если вам необходимо будет автомат снять, то вам необходимо будет потянуть ушко, расположенное сверху автомата.

Как отличить подделку автоматичекого выключателя

Принцип работы автоматического выключателя

Механизм автомата и находится внутри пластикового корпуса. Кроме того здесь находятся ещё и предохранительные устройства или

расцепители, которых может быть два – электромагнитный и тепловой. Они предназначены для отсечки электрической цепи.

Тепловой расцепитель – это биметаллическая пластинка, которая, в случае прохождения токов высокого значения, выпрямляется, размыкая электрическую цепь. Это достаточно медленный прерыватель.

Электромагнитный расцепитель представляет собой специальную катушку, которая рассчитана на токи определенного порогового значения. В том случае, если данное значение превысило норму – катушка разрывает электрическую цепь. Благодаря этому свойству – автомат с электромагнитным расцепителем имеет значительно короткое время отсечки.

Уровень чувствительности автоматов

В современных автоматах имеется возможность отключения напряжения в двух вариантах. Первый из них – быстрый. Благодаря электромагнитному расцепителю автомат срабатывает при превышении напряжения более чем на 140% (это пороговое значение для стандартных автоматов). Если превышение напряжения не достигает заданного уровня, то со временем, от перегрева, сработает тепловой расцепитель.

В зависимости от тепловых характеристик самого расцепителя, напряжения, а также температуры окружающей среды – процесс отсечки может длиться и несколько часов.

Полярность автоматических выключателей

Все современные автоматы также делятся и в зависимости от полюсов. Это значит, что автомат может иметь несколько электрических линий, которые будут независимы одна от другой, но объединенные одним отключающим механизмом. В настоящее время автоматы могут иметь 1,2,3,4 полюса.

Пороговая сила тока автоматического выключателя

Автоматические выключатели также делятся и по определенной пороговой чувствительности. Это позволяет отсечь от сети напряжение соответствующей силы тока. Автоматы с номинальным значением изготавливаются и настраиваются на заводе-изготовителе. Значение этого показателя прописывается на самом автомате.

В частном строительстве и быту используют автоматические выключатели с такими значениями силы тока: 3А, 6А, 10А, 16А, 25А, 32А, 40А, 63А, 100А, 160А. Кроме того существуют и автоматические выключатели с повышенными показателями – это 1000А, 2600А, которые не используют в частном строительстве. Это значение показывает нам общую мощность потребителей электрической цепи, которые будут находиться под контролем заданного автомата. Помимо общей мощности приборов также необходимо учитывать и электропроводку электроцепи, розетки, выключатели и т.д.

Типы современных автоматических выключателей

В настоящее время все автоматы делятся производителями на несколько типов, обозначаемых определенными буквами:

А – предназначен для работы в цепях, имеющих полупроводниковые приборы, а также довольно большой протяженности;
В – ставятся в цепи системы освещения общего назначения;
С – устанавливаются в цепях систем освещения, а также и в электроустановках, имеющих умеренные пусковые токи. К таким установкам относят двигатели, трансформаторы.

D – устанавливаются в цепи активно-индуктивной нагрузки. Кроме того эти автоматы можно ставить и на электродвигатели, имеющие большие пусковые токи.
К – автоматы, предназначенные для установки в сетях с индуктивными нагрузками.
Z – обеспечивают защиту электронных приборов.

Электрический автомат

Школа ремонта

Автоматические выключатели, типы, расцепители и принцип действия ВА

Выключателями называют обширный класс коммутационных аппаратов, способных соединять, разъединять и служить проводниками в электрических цепях в условиях протекания рабочих и аварийных токов.

Именно способность коммутировать повышенные токи, возникающие при отклонениях условий работы электрических сетей от нормального режима, отличает выключатели от других коммутирующих устройств, среди которых:

  • разъединители, предназначенные для коммутации только токов холостого хода;
  • выключатели нагрузки, способные разрывать номинальный рабочий ток электроустановки.

Назначение

Таким образом, технические свойства, которыми обладают автоматические выключатели (краткое обозначение ВА), позволяют использовать их в следующих целях:

  • коммутирование электрических цепей;
  • защита электроустановок путём их автоматического отключения при возникновении аварийного значения тока.

ВА используются в электрических сетях и электроустановках всех уровней напряжения, однако, общепринятый термин «автоматические выключатели» подразумевает низковольтные аппараты, работающие в условиях до 1000 вольт.

Популярные автоматы

Часто встречаемые производители: ABB, IEK, Schneider-Electric, Legrand.


Те автоматы, что функционируют в сетях более высокого напряжения, называть «автоматическими» не принято что, конечно же, не вполне логично. Уровень автоматизации работы оборудования высокого напряжения обычно выше, чем низковольтного. Но главное не путаться в терминологии, чтобы понимать, о чём идёт речь.

Размеры в мм Размеры в мм

Габариты на примере ABB (мм) в зависимости от числа полюсов. Размеры могут отличаться от других производителей, например, высота бывает 80, 88, 90, 104 мм.

Устройство и принцип работы

Одним из основных узлов автомата являются его силовые контакты. Включение ВА обычно осуществляется вручную — путём нажатия кнопки включения или поднятием вверх рукоятки управления. При этом производится взвод пружинного механизма, а элементы контактной группы прижимаются друг к другу с определённым усилием. Сохранение взведённого состояния пружинного механизма обеспечивается благодаря фиксирующей защёлке, удерживающей механический привод во включенном положении.

Устройство Устройство

В разрезе, типовой примерный вид.

Отключение может быть произведено как вручную, так и автоматически, при срабатывании органа защиты выключателя. В простейшем случае, защитные функции выполняются двумя компонентами — электромагнитным и тепловым расцепителями.

Электромагнитный расцепитель

ЭР представляет собой токовую катушку (соленоид) с подвижным электромагнитным сердечником — бойком. Через катушку постоянно проходит ток питаемой электроустановки. Срабатывание соленоида происходит при определённом значении тока, протекающего через контакты автомата. Обычно это величина тока, в несколько раз, а то и на порядки превышающая номинальное значение. При возникновении в защищаемой цепи короткого замыкания, под воздействием аварийных значений, стержень соленоида выдвигается и давит на защёлку механического привода расцепителя. В результате ее освобождения, привод выключателя под действием силы пружины разрывает контакт.

Тепловой расцепитель

Тепловой расцепитель обычно состоит из биметаллической пластины, по которой протекает ток. На самом деле, ток может протекать не по самой пластине, а по намотанному на неё высокоомному проводнику, нагреваемому током и передающему тепло пластине. Биметаллическая пластина — это спаянные между собой тонкие полоски двух металлических сплавов. Материалы подбираются таким образом, чтобы коэффициент их теплового расширения имел большое различие. Необходимо это для того, чтобы при нагревании биметалла пластина изогнулась — ведь один из её слоёв расширяется гораздо более активно.

Далее, при достижении некоторого критического изгиба пластина воздействует на фиксатор защёлки, отключая выключатель. СтабЭксперт.ру напоминает, что параметры системы подобраны таким образом, чтобы разогрев пластины начинался при протекании по ней тока, превышающего номинальное значение на величину порядка 20%. При этом, чем больше значение тока, тем активнее происходит нагрев, следовательно, быстрее достигается критический изгиб и инициируется отключение автомата.

Разница расцепителей

Резюмируя описание работы этих двух механизмов, можно отметить, что расцепитель электромагнитного типа представляет собой токовую защиту без выдержки времени, которую называют токовой отсечкой. Токовая отсечка реагирует на сверхтоки, возникающие при коротких замыканиях в защищаемой сети.

Тепловой расцепитель позволяет реализовать интегральную зависимость времени срабатывания защиты от величины тока. Тепловая защита обеспечивает отключение оборудования при его перегрузке, когда потребляемый ток больше номинального на 20% и более. В этих условиях отсечка ещё не срабатывает, но длительное функционирование оборудования в таком режиме недопустимо.

Читайте еще: что такое и зачем нужен автомат диф?

Отличие от прочих коммутационных устройств

Может возникнуть вопрос, в чём заключается отличие автоматического выключателя от других коммутационных аппаратов, не способных коммутировать значительные токи. Дело в том, что коммутация токовых нагрузок, а именно их отключение, сопровождается возникновением электрической дуги. Причём, чем больше значение тока, тем сильнее дуговой разряд при отключении контактов. Горение дуги происходит в ионизированном воздушном пространстве, то есть, воздух становится электропроводящим. В зависимости от разрываемого тока и напряжения сети, дуговой разряд в промежутке определённой величины может вообще не погаснуть после отключения контактов.

Примером может служить дуговая электрическая сварка, где установив между электродом и деталью требуемый зазор, дугу можно поддерживать постоянно. Кроме этого, горящая в разрыве контактов электрическая дуга ионизирует окружающее пространство и вызывает междуфазное короткое замыкание в случае многополюсных коммутационных аппаратов.

Но это относится только к разъединителям. Автоматический выключатель оборудован специальными дугогасительными камерами, типовая конструкция которых содержит ряд параллельно расположенных пластин, они разделяют дугу на отдельные участки, где та и затухает. Также предусмотрен путь отвода образующихся при горении дуги газов. Персональной дугогасительной камерой оборудован каждый полюс автомата, что препятствует распространению ЭД на контакты соседних фаз.

Типы ВА (полюса и четыре группы)

Классифицировать типы автоматических выключателей можно по нескольким признакам, остановимся на некоторых из них.

Число полюсов: 1p, 2p, 3p и 4p

Данная характеристика показывает, какое количество независимых электрических цепей может коммутировать автомат. По этому параметру ВА делятся на однополюсные (обозначение 1p), двухполюсные (2p), трёхполюсные (3p) и четырёхполюсные (4p).

Каждый из полюсов представляет собой обособленный механический контакт, имеющий два вывода для подключения внешних электрических цепей. Иногда полюса называют главными цепями, т.е. это цепи контактов, предназначенных для коммутации токов защищаемой нагрузки.

Полюса Полюса

Количество полюсов (1п, 2п, 3п, 4п) каждого выключателя можно определить без труда.

Понятие главных полюсов или цепей было введено, т.к. некоторые разновидности автоматов имеют до нескольких вспомогательных контактов. Эти контакты не предназначены для коммутации силовой электрической нагрузки и не оборудованы устройствами дугогашения. Есть еще вспомогательные контакты (называемые также блок-контактами), они работают в цепях сигнализации и блокировки.

Время-токовая характеристика

В зависимости от особенностей электрической цепи, автоматический выключатель должен обладать соответствующими свойствами защит. Значение токов короткого замыкания является характеристикой питающей сети, а не подключаемой нагрузки. Нагрузку одной и той же номинальной мощности и напряжения можно подключить к мощным шинам подстанции, либо к длинной линии электропередачи, на большом удалении от источника питания. СтабЭксперт.ру напоминает, что в первом случае ток короткого замыкания будет иметь максимальное значение, во втором, из-за влияния сопротивления линии электропередачи может быть значительно снижен. Таким образом, при выборе подходящего автоматического выключателя недостаточно учитывать только характеристики нагрузки, нужно иметь расчётные значения токов короткого замыкания в месте предполагаемой установки.

Читайте еще: наглядная схема и поключение УЗО?

Деление на группы A, B, C, D

Для работы в различных сетях выпускаются автоматические выключатели, обладающие различными время–токовыми характеристиками. По этому признаку, в соответствии с ГОСТ Р 50345-99, все автоматы делятся на четыре группы — «A», «B», «C» и «D». К аппаратам каждой из этих групп предъявляются свои требования в части защитных характеристик. Рассмотрим их подробнее.

К расцепителям автоматов с характеристикой типа «A» предъявляется одно требование: при протекании токов, превышающих номинальное значение в 5 раз, его отключение должно происходить за время, меньшее 0,1 с.

Например, выключатель рассчитан на номинальный ток 25 ампер, то есть, Iном = 25А. При токе 5*Iном= 125А, время срабатывания расцепителя должно быть меньше 0,1 с.

Что касается автоматов с характеристиками «B», «C» и «D», существуют как общие для всех трёх групп, так и индивидуальные требования. Они нормируют время отключения при различных уровнях превышения номинального тока:

  • при токе 1,13 Iном, то есть, превышающем номинальное значение на 13%, автоматы с номиналом до 63 ампер должны работать до отключения не менее одного часа, выключатели на ток свыше 63 ампер, соответственно не менее двух часов;
  • ток 1,45 Iном должен приводить к отключению автоматов с номиналом до 63 ампер менее, чем за один час, автоматов свыше 63 ампер – менее, чем за два часа;
  • при превышении номинального тока на 155% (2,55 Iном), автоматические выключатели до 32 ампер отключаются в течение времени от 1 до 60 секунд, автоматы более 32 ампер — от 1 до 120 с.

Характеристики отключения каждой из групп, выглядят следующим образом:

  • тип «B» отключается более, чем за 0,1 секунду при троекратном превышении номинального тока и менее, чем за 0,1 сек. при десятикратном;
  • отключение выключателей типа «C» — более 0,1 сек. при 5*Iном, менее 0,1 сек. при 50 Iном;
  • автомат типа «D» не должен срабатывать ранее 0,1 сек. при десятикратном увеличении номинального тока.

Выключатели с выдержкой времени

Автоматические выключатели, оснащённые механизмом установки времени срабатывания вне зависимости от значения тока, называются селективными. Соответственно аппараты, не обладающие этим качеством относятся к неселективным. Рассмотрим, что такое селективность и зачем она нужна.

Селективность — это одно из основных качеств, которым должна обладать защита. Селективность заключается в необходимом и достаточном объёме защитных отключений повреждённого участка сети. Это означает, что в случае повреждения оборудования (например, короткого замыкания), защита должна отработать так, чтобы отключенным оказался только повреждённый сегмент схемы. Всё остальное оборудование должно при этом по возможности оставаться в работе. Какое отношение к этому имеет выдержка времени выключателя, покажем на примере.

Предположим, на вводе питания секции 0,4 кВ установлен выключатель «1». От этой секции питаются несколько отходящих линий через линейные выключатели. Пусть на одной из отходящих линий установлен выключатель «2».

Теперь предположим, что в самом начале этой линии произошло короткое замыкание. Какой выключатель должен быть отключен защитами, чтобы выделить только повреждённый участок? Конечно же, «2». Но ведь ток короткого замыкания в этой ситуации протекает через два выключателя – «1» и «2» (короткое замыкание подпитывается от источника через выключатель ввода «1»). Каким же образом обеспечить отключение только выключателя «2», ведь значение тока, протекающего через эти выключатели практически одинаково. Вот здесь и приходит на помощь возможность установления искусственной задержки времени отключения на автомате ввода «1». При этом защита просто не успевает сработать, так как линейный выключатель «2» отключит ток короткого замыкания без выдержки времени.

Далее:

Устройство, назначение и принцип действия автоматического выключателя

Автоматические выключатели – это устройства, которые предназначаются для защитного отключения цепей постоянного и переменного тока в случаях короткого замыкания, токовой перегрузки, снижения напряжения или его исчезновения. В отличии от плавких предохранителей автоматические выключатели имеют более точный ток отключения, могут многократно использоваться, а также при трехфазном исполнении при срабатывании предохранителя какая – то из фаз (одна либо две) могут остаться под напряжением, что является тоже аварийным режимом работы (особенно при питании трехфазных электродвигателей).

Автоматические выключатели классифицируют по выполняемым функциям, таким как:

  • Автоматы минимального и максимального тока;
  • Автоматы минимального напряжения;
  • Обратной мощности;

Принцип действия автоматического выключателя

Мы рассмотрим принцип действия автоматического выключателя на примере автомата максимального тока. Его схема показана ниже:

Принцип действия автоматического выключателя

Где: 1 – электромагнит, 2 – якорь, 3, 7 – пружины, 4 – ось, по которой движется якорь, 5 – защелка, 6 – рычаг, 8 – силовой контакт.

При протекании  номинального тока система работает нормально. Как только ток превысит допустимое значение уставки, последовательно включенный в цепь электромагнит 1, преодолеет усилие сдерживающей пружины 3 и втянет якорь 2, и провернувшись через ось 4 защелка 5 освободит рычаг 6. Тогда отключающая пружина 7 разомкнет силовые контакты 8. Такой автомат включается вручную.

В настоящее время созданы автоматы, которые имеют время отключения от 0,02 – 0,007 с на токи отключения 3000 – 5000 А.

Конструкции автоматических выключателей

Существует довольно много различных конструкций автоматических выключателей как цепей переменного, так и цепей постоянного тока. В последнее время очень широкое распространение получили автоматы малогабаритные, которые предназначаются для защиты от КЗ и токовых перегрузок сетей бытовых и производственных в установках на токи до 50 А и напряжением до 380 В.

Современные автоматические выключатели

Главным защитным средством в таких выключателях являются биметаллические или электромагнитные элементы, срабатывающие с определенной выдержкой времени при нагревании. Автоматы, в которых присутствует электромагнит, обладают довольно большим быстродействием, и этот фактор очень важен при коротких замыканиях.

Ниже показан пробочный автомат на ток 6 А и напряжением не превышающим 250 В:

Пробочный автомат

Где: 1 – электромагнит, 2 –пластина биметаллическая, 3, 4 – кнопки включения и  выключения соответственно, 5 – расцепитель.

Биметаллическую пластину, как и электромагнит, включают в цепь последовательно. Если через автоматический выключатель протекает ток выше номинального,  пластина начинает нагреваться. При длительном протекании превышающего тока пластина 2 деформируется в следствии нагрева, и воздействует на механизм расцепителя 5. При возникновении в цепи короткого замыкания электромагнит 1, мгновенно втянет сердечник и этим тоже воздействует на расцепитель, который разомкнет цепь. Также данный тип автомата отключается вручную путем нажатия кнопки 4, а включение только ручное путем нажатия кнопки 3. Механизм расцепления выполняется в виде ломающегося рычага или защелки. Принципиальная электрическая схема автомата показана ниже:

Принципиальная схема автоматического выключателя

Где: 1 – электромагнит, 2 – биметаллическая пластина.

Принцип действия трехфазных автоматических выключателей практически ничем не отличается от однофазных. Трехфазные выключатели снабжаются специальными дугогасительными камерами или катушками, в зависимости от мощности устройств.

Ниже приведено видео подробно описывающее работу автоматического выключателя:

Принцип работы автоматического выключателя

Автоматические выключатели

Автоматические выключатели – это устройства, которые предназначаются для защитного отключения цепей постоянного и переменного тока в случаях короткого замыкания, токовой перегрузки, снижения напряжения или его исчезновения.

В отличии от плавких предохранителей автоматические выключатели имеют более точный ток отключения, могут многократно использоваться, а также при трехфазном исполнении при срабатывании предохранителя какая – то из фаз (одна либо две) могут остаться под напряжением, что является тоже аварийным режимом работы (особенно при питании трехфазных электродвигателей).

Автоматические выключатели классифицируют по выполняемым функциям, таким как:

  • Автоматы минимального и максимального тока;
  • Автоматы минимального напряжения;
  • Обратной мощности;

Принцип действия автоматического выключателя

Мы рассмотрим принцип действия автоматического выключателя на примере автомата максимального тока.

Его схема показана ниже:

 1 – электромагнит, 2 – якорь, 3, 7 – пружины, 4 – ось, по которой движется якорь, 5 – защелка, 6 – рычаг, 8 – силовой контакт.

При протекании  номинального тока система работает нормально. Как только ток превысит допустимое значение уставки, последовательно включенный в цепь электромагнит 1, преодолеет усилие сдерживающей пружины 3 и втянет якорь 2, и провернувшись через ось 4 защелка 5 освободит рычаг 6. Тогда отключающая пружина 7 разомкнет силовые контакты 8. Такой автомат включается вручную.

В настоящее время созданы автоматы, которые имеют время отключения от 0,02 – 0,007 с на токи отключения 3000 – 5000 А.

Конструкции автоматических выключателей

Существует довольно много различных конструкций автоматических выключателей как цепей переменного, так и цепей постоянного тока.

В последнее время очень широкое распространение получили автоматы малогабаритные, которые предназначаются для защиты от КЗ и токовых перегрузок сетей бытовых и производственных в установках на токи до 50 А и напряжением до 380 В.

Главным защитным средством в таких выключателях являются биметаллические или электромагнитные элементы, срабатывающие с определенной выдержкой времени при нагревании. Автоматы, в которых присутствует электромагнит, обладают довольно большим быстродействием, и этот фактор очень важен при коротких замыканиях.

Ниже показан пробочный автомат на ток 6 А и напряжением не превышающим 250 В:

 1 – электромагнит, 2 –пластина биметаллическая, 3, 4 – кнопки включения и  выключения соответственно, 5 – расцепитель.

Биметаллическую пластину, как и электромагнит, включают в цепь последовательно. Если через автоматический выключатель протекает ток выше номинального,  пластина начинает нагреваться. При длительном протекании превышающего тока пластина 2 деформируется в следствии нагрева, и воздействует на механизм расцепителя 5. При возникновении в цепи короткого замыкания электромагнит 1, мгновенно втянет сердечник и этим тоже воздействует на расцепитель, который разомкнет цепь. Также данный тип автомата отключается вручную путем нажатия кнопки 4, а включение только ручное путем нажатия кнопки 3. Механизм расцепления выполняется в виде ломающегося рычага или защелки.

Принципиальная электрическая схема автомата показана ниже:

1 – электромагнит, 2 – биметаллическая пластина.

Принцип действия трехфазных автоматических выключателей практически ничем не отличается от однофазных. Трехфазные выключатели снабжаются специальными дугогасительными камерами или катушками, в зависимости от мощности устройств.

Ниже приведено видео, подробно описывающее работу автоматического выключателя.

//www.youtube.com/embed/LlYO0svMiVs?wmode=transparent&modestbranding=1&autohide=1&showinfo=0&rel=0

Модульные автоматические выключатели

Типы автоматических выключателей

Существуют такие типы:

  • 2-полюсный: предназначен для однофазной линии, состоящей из одного разъема под напряжением и одного нейтрального провода.
  • 4-полюсный: он рассчитан на трехфазную линию, состоящую из 4 слотов, где могут быть подключены три фазовых провода и нейтральный провод.

Следовательно, он обеспечивает устройство защиты в режиме реального времени для основных цепей, используемых в промышленности и других высоковольтных коммерческих местах, где из-за этого всегда существует риск поражения электрическим током и несчастного случая.

Штатный режим работы

В штатном режиме через автоматический выключатель течет ток, который меньше номинального или равен ему.

При этом напряжение питания поступает на верхнюю клемму, которая соединена с неподвижным контактом.

С последнего ток идет к подвижному контакту, затем по гибкому медному проводнику на соленоид.

Далее ток с соленоида поступает на расцепитель (тепловое реле) и после на клемму, расположенную снизу. Именно она соединяется с потребителями электроэнергии.

Аварийные режимы работы

Принцип работы автоматического выключателя переменного тока таков, что при аварийной ситуации (перегрузка или короткое замыкание) происходит отключение защищаемой цепи.

Начинает работать механизм свободного расцепления, он приводится в действие специальным расцепителем (обычно электромагнитные или тепловые используются в конструкциях). 

Режим перегрузки

Режим перегрузки – это когда ток, потребляемый подключенной к автомату нагрузкой, становится выше, нежели номинальное значение прибора. При этом ток, который проходит через расцепитель, вызывает нагрев пластины из биметалла, что приводит к увеличению ее изгиба. Это приводит к тому, что срабатывает расцепительный механизм. В этот момент выключается автомат, и цепь размыкается.

Тепловая защита срабатывает не мгновенно, так как для нагрева пластины нужно некоторое время. И оно варьируется в зависимости от того, насколько превышено номинальное значение силы тока. Промежуток времени может колебаться от пары секунд до часа. Задержка позволит избавиться от отключения питания при непродолжительном и случайном повышении тока. Часто такие превышения можно наблюдать при запуске электродвигателя.

Ток срабатывания

Минимальное значение силы тока, при котором обязан срабатывать тепловой расцепитель, регулируется специальным винтом на заводе-изготовителе.

Значение примерно в полтора раза выше, нежели номинал, который указывается на корпусе выключателя. Как видите, принцип работы расцепителя автоматического выключателя не очень сложен. Но на силу тока, при котором происходит срабатывание тепловой защиты, огромное влияние оказывает и то, какая у окружающей среды температура.

Если в помещении жарко, то прогрев и выгибание биметаллической пластины начнут происходить при малом значении тока.

А если в помещении холодно, то тепловой расцепитель начнет работать при более высоком токе.

Поэтому один и тот же автоматический выключатель с биметаллической пластиной будет работать по-разному зимой и летом.

Это к автоматам с электромагнитными расцепителями не относится.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Автоматический выключатель: устройство, принцип действия, назначение На сегодняшний день при монтаже электропроводки невозможно обойтись без защитных аппаратов. В любом распределительном щите обязательно устанавливают вводной автомат и несколько дополнительных на освещение, розетки и другие группы проводов. Далее мы рассмотрим устройство, назначение и принцип действия автоматического выключателя.

Назначение

Прежде всего, разберемся с тем, что такое автоматический выключатель (АВ). Автомат представляет собой защитный аппарат, отключающий электроэнергию на определенном участке проводки по следующим причинам:

Помимо этого данное устройство может использоваться для того, чтобы «снять» напряжение на определенном участке электропроводки путем оперативного отключения (мероприятие проводиться крайне редко). Простыми словами, назначение автоматического выключателя заключается в защите электроприборов при выходе проводки из строя.

Что касается области применения автоматов, она возможна как в бытовых условиях (защита домов и квартир), так и на промышленных предприятиях. Автоматические выключатели применяются во всех сферах электроэнергетики.

К вашему вниманию видео урок, в котором находиться полное объяснение того, что такое автоматический выключатель и какой у него принцип действия:

Обзор существующих изделий

Конструкция

На сегодняшний день существует множество различных изделий для отключения тока в сети. Каждый из аппаратов имеет свою специфическую конструкцию, поэтому в данной статье мы рассмотрим пример с модульным автоматом.

Итак, устройство автоматического выключателя состоит из четырех основных частей:

  • Система контактов (подвижный и неподвижный). Подвижный контакт соединен с рычагом управления, а неподвижный установлен в самом корпусе. Отключение электроэнергии происходит путем выталкивания подвижного контакта пружиной, после чего размыкается сеть.
  • Тепловой (электромагнитный) расцепитель. Элемент, с помощью которого и размыкаются контакты. Тепловой расцепитель – это биметаллическая пластина, которая изгибаясь, размыкает контакты. Изгибание происходит вследствие нагревания током (если его значение превышает номинальное). Такое расцепление происходит при повышенных нагрузках на линию электропередач. Действие магнитного расцепителя является мгновенным, вследствие возникновения короткого замыкания. Сверхток провоцирует движение сердечника соленоида, который приводит в действие механизм расцепления контактов.
  • Система дугогашения. Данная часть автомата представлена двумя пластинами из металла, которые нейтрализуют электрическую дугу. Последняя возникает тогда, когда осуществляется разрыв цепи.
  • Механизм управления. Для ручного отключения используется специальный механический рычаг либо кнопка (в других типах АВ).

Также предоставляем к Вашему вниманию более подробную конструкцию автоматического выключателя:

Конструкция электрического автомата

В данном видео примере наглядно предоставлена конструкция и принцип действия автомата:

Подробный принцип действия

Продолжая разговор о конструкции, хотелось бы рассказать про автоматы EKF. Устройства в линейке Averes оснащены окном реального состояния контактов, механизмом мгновенной коммутации (когда коммутация происходит еще до полного взведения рычага) и защитными шторками на клеммах. Гарантия на автоматы – 10 лет. В линейке PROxima у автоматов есть индикаторы состояния контактов и панель для пломбировки клемм. Гарантия – 7 лет. Надежный конструктив и литая лицевая панель делают корпуса этих автоматических выключателей более прочными. Подробнее об автоматах EKF можете узнать, перейдя по ссылке: https://ekfgroup.com/catalog/avtomaticheskie-vykljuchateli-modulnye-i-dop-ustrojstva.

Технические характеристики

Любой автоматический выключатель имеет свои индивидуальные характеристики, по которым мы и осуществляем выбор подходящей модели.

Маркировка автоматов

 

Основными техническими характеристиками автоматического выключателя являются:

  • Номинальное напряжение (Uн). Данная величина устанавливается производителем и указывается на передней панели аппарата.
  • Номинальный ток (Iн). Также устанавливается заводом и представляет собой максимальное значение тока, при котором защита не будет срабатывать.
  • Номинальный рабочий ток расцепителя (Ipн). При увеличении тока в сети до значений 1,05*Iрн либо 1,2*Iрн некоторое время срабатывание не будет происходить. Данная величина обязательно должна быть ниже номинального тока.
  • Время срабатывания при коротком замыкании (КЗ). При возникновении КЗ автомат выключается после определенного времени прохождения данного тока через аппарат (время срабатывания). Также устанавливается заводом изготовителем.
  • Предельная коммутационная способность автоматического выключателя. Значение проходящих токов короткого замыкания, при которых устройство еще может нормально функционировать.
  • Уставка по току срабатывания. При превышении данного значения аппарат моментально срабатывает и разъединяет цепь. Тут изделия делятся на 3 типа: B, C, D. Первый тип используется при монтаже длинной линии электропередач, диапазон срабатывания 3-5 номинальный рабочих токов расцепителя (Iрн). Устройство типа С работает в диапазоне 5-10 значений и используется в осветительных цепях. Тип D применяют для защиты трансформаторов и электродвигателей. Его диапазон работы составляет от 10 до 20 Iрн.

Общая классификация

Также хотелось бы предоставить Вам наиболее обобщенную классификацию автоматических выключателей для дома. На сегодняшний день изделия принято разделять по следующим признакам:

  • Число полюсов: один, два, три либо четыре. Однополюсные и двухполюсные автоматические выключатели принято использовать в однофазной электропроводке. Последние два варианта применяются для трехфазной электросети.
  • Тип привода. Аппаратом можно управлять вручную (ручной привод) либо на определенном расстоянии (электрический привод).
  • Присутствие/отсутствие токоограничителя. В первом случае разрыв цепи при КЗ происходит быстрее, т.к. токоограничитель защищает проводку от предельных значений тока короткого замыкания.
  • Вид расцепителя. Назначение и виды данных элементов конструкции автоматических выключателей мы рассмотрели выше. Еще раз повторимся, что электромагнитный расцепитель служит для защиты от токов КЗ, а тепловой – от токов перегрузки.
  • Селективность/неселективность изделия. Данная функция позволяет регулировать время срабатывания АВ.
  • Способ крепления. Обычно крепление представлено выдвижным либо стационарным фиксатором. В первом случае АВ устанавливается на известную всем электрикам DIN-рейку (как показано на фото), во втором случае монтаж осуществляется в раму электрического щита.

Использование DIN-рейки

Также изделия могут классифицироваться по степени защиты IP, амперажу, предельному току КЗ и способу подключения проводов.

Вот и все, что вы должны знать об устройстве, принципе действия и назначении автоматических выключателей. Надеемся, что информация стала для вас полезной и теперь вы знаете, как работает автомат, из чего состоит и для чего нужен.

Также читают:

Автоматический выключатель. Внутреннее устройство, характеристики

Пожароопасные последствия разрушения электропроводки легче и дешевле предупредить, чем горько сетовать о непринятых мерах. Профилактика возгорания электросети заключается в установке средств защиты. В прошлом веке функция защиты от коротких замыканий и от опасности перегрузки была доверена фарфоровым предохранителям со сменными плавкими вставками, затем автоматическим пробкам. Однако из-за существенного роста нагрузки на силовые магистрали ситуация изменилась. Пришло время менять устаревшие устройства на надежный и хорошо зарекомендовавший себя автоматический выключатель. Чтобы выбор автоматического выключателя завершился приобретением аппарата с надлежащими характеристиками, необходимы сведения о ряде электротехнических нюансов.  

Общие сведения.

Автоматический выключатель, или, говоря проще, автомат – это электротехническое устройство, знакомое практически всем. Все знают, что автомат отключает сеть при возникновении в ней каких-то проблем. Если не мудрить, то эти проблемы – слишком большой электрический ток. Чрезмерный электрический ток опасен выходом всех проводников и бытовой электротехники из строя, возможным перегревом, возгоранием и, соответственно, пожаром. Поэтому защита от высоких токов – это классика электрических схем, и существовала она еще на заре электрификации.

У любого аппарата максимально-токовой защиты есть две важных задачи:

1) вовремя и безошибочно распознать слишком высокий ток
2) разорвать цепь до того, как этот ток сможет нанести какие-либо повреждения

При этом высокие токи можно поделить на две категории:

1) большие токи, вызванные перегрузкой сети (например, включением большого количества бытовых электроприборов, или неисправностью некоторых из них)
2) сверхтоки короткого замыкания, когда нулевой и фазный проводник напрямую замыкаются между собой, минуя нагрузку

Кому-то, может быть, это покажется странным, но именно со сверхтоками короткого замыкания все обстоит предельно просто. Современные электромагнитные расцепители без труда и совершенно безошибочно определяют КЗ и отключают нагрузку за доли секунды, не допуская даже малейшего повреждения проводников и аппаратуры.

С токами перегрузки все сложнее. Такой ток ненамного отличается от номинального, в течение какого-то времени он может протекать по цепи совершенно без последствий. Поэтому нет необходимости отключать такой ток мгновенно, тем более что он мог и возникнуть очень кратковременно. Ситуация отягощается тем, что каждая сеть имеет свой предельный ток перегрузки. И даже не один.

Есть целый ряд токов, для каждого из которых теоретически можно определить свое максимальное время отключения сети, составляющее от нескольких секунд до десятков минут. Но и ложные срабатывания тоже необходимо исключить: если ток для сети безвреден, то отключение не должно происходить ни через минуту, ни через час – вообще никогда.

Получается, что уставку срабатывания защиты от перегрузок необходимо регулировать под конкретную нагрузку, изменять ее диапазоны. И, разумеется, перед установкой аппарата защиты от перегрузок его необходимо прогружать и проверять.     

Зачем нужен автоматический выключатель?

Автоматический выключатель – аппарат, предназначенный для защиты силового кабеля, точнее, его изоляции от оплавления и нарушения целостности. Автоматы не защищают владельцев техники от ударов и не оберегают само оборудование. Для этих целей электросеть оснащают УЗО. Задача автоматов предотвратить перегрев, сопровождающий поступление сверхтоков на вверенный участок цепи. Благодаря их использованию не будет оплавлена и повреждена изоляция, значит, проводка будет действовать в нормальном режиме без угроз возгорания.

Работа автоматических выключателей заключается в размыкании электрической цепи в случае:

  • появления ТКЗ (в дальнейшем токов короткого замыкания)
  • перегрузки, т.е. прохождения по защищаемому участку сети токов, сила которых превышает допустимое эксплуатационное значение, но не является ТКЗ
  • ощутимого снижения или полного исчезновения напряжения

Автоматический выключатель охраняет следующий за ними участок цепи. Проще говоря, устанавливается на вводе. Несколько автоматов в сборе, оберегают линии освещения и розеток, магистрали подключения бытового оборудования и электродвигателей в частных домах. Линии эти прокладываются кабелем различного сечения, ведь питается от них техника разной мощности. Следовательно, для защиты участков сети с неравнозначными параметрами нужны устройства защиты с неравнозначными возможностями.

Казалось бы, можно без лишней мороки приобрести самые мощный автоматический выключатель для установки на каждую из линий. Шаг в корне неверный! А результат его проложит прямую «тропинку» к пожару. Защита от причуд электротока – дело тонкое. Потому лучше узнать, как выбрать автоматический выключатель, и установить аппарат, разрывающий цепь, когда в этом возникает реальная потребность.

Внимание. Автоматический выключатель с завышенными характеристиками будет пропускать токи, критические для проводки. Он своевременно не отключит защищаемый участок цепи, из-за чего будет плавиться или гореть изоляция кабеля.

Автоматы с заниженными характеристиками тоже преподнесут немало сюрпризов. Будут бесконечно разрывать линию при запуске техники и в итоге сломаются из-за многократного воздействия на них слишком больших токов. Контакты спаяются, что называется «залипнут».

Конструкция и принцип работы автомата

Сложно будет определиться с выбором, не разобравшись с устройством автоматического выключателя. Давайте посмотрим, что скрыто в миниатюрной коробочке из тугоплавкого диэлектрического пластика.

Расцепители: их типы и назначение.

Основные рабочие органы автоматических выключателей – расцепители, осуществляющие разрыв цепи в случае превышения нормативных эксплуатационных параметров. Расцепители различаются по специфике действия и по диапазону токов, на поступление которых они обязаны реагировать. В их рядах числятся:

  • механический – для ручного включения и выключения
  • электромагнитные расцепители, практически моментально реагирующие на возникновение ТКЗ и «отсекающие» защищаемый участок сети в сотые или тысячные доли секунды. Состоят они из катушки с пружиной и сердечником, который втягивается от воздействия сверхтоков. Втягиваясь, сердечник напрягает пружину, а она заставляет работать расцепляющее устройство
  • тепловые биметаллические расцепители, выполняющие роль барьера от перегрузок. На ТКЗ они вне сомнений тоже реагируют, но обязаны выполнять несколько другую функцию. Задача тепловых собратьев заключается в разрыве сети в случае прохождения по ней токов, превышающих предельные рабочие параметры кабеля. Например, если по проводке, предназначенной для транспортировки 16А, пойдет ток 35А, состоящая из двух металлов пластина изогнется и заставит автомат отключиться. Причем 19А она мужественно «держать» будет больше часа. А вот 23А «терпеть» целый час не сможет, сработает раньше
  • полупроводниковые расцепители в бытовых автоматах редко употребляются. Однако могут служить рабочим органом защитного выключателя на вводе в частный дом или на линии мощного электродвигателя. Измерение и фиксацию аномального тока в них осуществляют трансформаторы, если аппарат устанавливается на сеть переменного тока, или дроссельные усилители, если устройство включают в линию постоянного тока. Расцепление производится блоком полупроводниковых реле

Есть еще нулевые или минимальные расцепители, применяемые чаще всего в качестве дополнения. Они разъединяют сеть при снижении напряжения до какого-либо предельного значения, указанного в техпаспорте. Неплохой опцией бывают дистанционные расцепители, позволяющие отключать и включать автомат, не открывая шкаф управления, и замки, фиксирующие позицию «выкл». Стоит учесть, что оснащение данными полезными дополнениями, ощутимо отражается на цене аппарата.

Применяемые в быту автоматы чаще всего оснащаются слаженно работающей комбинацией электромагнитного и теплового расцепителя. Значительно реже встречаются и используются аппараты с одним из данных устройств. Все же автоматические выключатели комбинированного типа практичней: два в одном во всех смыслах выгоднее.

Крайне важные дополнения

В конструкции автоматического выключателя нет бесполезных составляющих. Все компоненты старательно трудятся во имя общего предохранительного дела, это:

  • дугогасительное устройство, монтируемое на каждый полюс автомата, коих бывает от одного до четырех штук. Оно представляет собой камеру, в которой по определению гасится электрическая дуга, возникающая при вынужденном размыкании силовых контактов. В камере параллельно расположены омедненные стальные пластины, делящие дугу на мелкие части. Раздробленная угроза плавким деталям автомата в дугогасительной системе остывает и напрочь исчезает. Продукты горения выводятся через газоотводные каналы. Дополнением бывает искрогаситель
  • система контактов, подразделяющихся на неподвижные, вмонтированные в корпус, и подвижные, шарнирно прикрепленные к полуосям рычагов размыкающих механизмов
  • калибровочный винт, с помощью которого в заводских условиях производится юстировка теплового расцепителя
  • механизм с традиционной надписью «вкл/выкл» с соответствующей функцией и с предназначенной для осуществления рукояткой
  • клеммы подключения и прочие приспособления для подсоединения и установки

Слегка задержимся на силовых контактах. Неподвижная разновидность напаивается электромеханическим серебром, оптимизирующим электрическую износостойкость выключателя. При применении недобросовестным производителем дешевого серебряного сплава вес изделия уменьшается. Иногда используется латунь с серебряным напылением. «Заменители» легче нормативного металла, потому качественный прибор авторитетной марки весит несколько больше, чем «левый» аналог. Важно заметить, что при замене серебра напайки неподвижных контактов на дешевые сплавы сокращается ресурс автомата. Циклов отключения и последующего включения он выдержит меньше.

Определимся с количеством полюсов.

Уже упоминалось, что полюсов у данного прибора защиты может быть от 1 до 4 шт. Выбрать количество полюсов автомата проще простого, т.к. все зависит от его цели применения:

  • однополюсный автомат превосходно справится с защитой линий освещения и розеток. Монтируется только на фазу, никаких нолей!
  • двухполюсный выключатель защитит кабель, питающий электроплиты, стиральные машины и водонагреватели. Если мощной бытовой техники в доме нет, его ставят на линию от щитка до ввода в квартиру
  • трехполюсный прибор необходим для оборудования трехфазной проводки. Это уже полупромышленные масштабы. В быту может быть линия мастерской или скважинного насоса. Трехполюсный аппарат нельзя подключать к заземляющему проводу. Он всегда должен быть в полной боеготовности
  • четырехполюсные автоматические выключатели применяются для предохранения от возгорания четырехпроводной проводки

Если запланировано защитить проводку квартиры, бани, дома с помощью двухполюсных и однополюсных автоматических выключателей, сначала устанавливается двухполюсной аппарат, затем однополюсной с максимальным номиналом, далее по убыванию. Принцип «ранжира»: от более мощного компонента к слабому, но чувствительному.

Маркировка автоматических выключателей

   Автоматический выключатель легранд, маркировка

Разобрались с устройством и принципом действия автоматов. Узнали, что зачем. Теперь смело приступим к разбору маркировки, проставленной на каждом автоматическом выключателе независимо от логотипа и страны происхождения.

Номинал автоматических выключателей

Т.к. цель приобретения и установки автомата заключается в предохранении проводки, то в первую очередь ориентироваться нужно на ее характеристики. Ток, текущий по проводам нагревает кабель пропорционально сопротивлению его токоведущей жилы. Короче говоря, чем толще жила, тем большего значения ток может пройти по ней, не расплавляя изоляцию. В соответствии с максимальным значением силы тока, транспортируемого кабелем, подбирается номинал прибора автоматического отключения. Рассчитывать ничего не нужно, взаимозависимые значения электроустановочных устройств и проводки заботливыми электриками давно сведены в таблице:

Таблица выбора сечения кабеля:

 Проложенные открытоПроложенные в трубе
Сеч.МедьАлюминийМедьАлюминий
каб.,ТокW, кВтТокW, кВтТокW, кВтТокW, кВт
мм2А220в380вА220в380вА220в380вА220в380в
0,5112,4          
0,75153,3          
1,0173,76,4   143,05,3   
1,5235,08,7   153,35,7   
2,0265,79,8214,67,9194,17,214,03,05,3
2,5306,611,0245,29,1214,67,916,03,56,0
4,0419,015,0327,012,0275,910,021,04,67,9
6,05011,019,0398,514,0347,412,026,05,79,8
10,08017,030,06013,022,05011,019,038,08,314,0
16,010022,038,07516,028,08017,030,055,012,020,0
25,014030,053,010523,039,010022,038,065,014,024,0
35,017037,064,013028,049,013529,051,075,016,028,0

   

Табличные сведения следует несколько корректировать согласно отечественным реалиям. Преобладающее количество бытовых розеток рассчитано на подключение провода с жилою 2,5 мм², что предполагает согласно таблице возможность установки автомата с номиналом 25А (выделено в таблице красным цветом). Реальный номинал самой розетки всего лишь 16А, значит купить нужно автоматический выключатель с номиналом, равным номиналу розетки. Аналогичную корректировку следует провести, если есть сомнения в качестве имеющейся проводки. Если есть подозрения в том, что сечение кабеля могло не соответствовать указанному производителем размеру, лучше перестраховаться и взять автомат, номинал которого на позицию меньше табличного показателя. Например: по таблице для защиты кабеля подходит автомат на 18А, а возьмем мы на 16А, потому что провод покупали у Васи на рынке.

Автоматический выключатель, выбор по мощности и виду подключения

Вид подключения ОднофазноеОднофазное вводныйТрехфазное треугольникомТрехфазное звездой
Полюсность автоматаОднополюсный автоматДвухполюсный автоматТрехполюсный автоматЧетырехполюсный автомат
Напряжение питания220 Вольт220 Вольт380 Вольт220 Вольт
Автомат  VVVV
Автомат 1А 0.2 кВт0.2 кВт1.1 кВт0.7 кВт
Автомат 2А 0.4 кВт0.4 кВт2.3 кВт1.3 кВт
Автомат 3А 0.7 кВт0.7 кВт3.4 кВт2.0 кВт
Автомат 6А 1.3 кВт1.3 кВт6.8 кВт4.0 кВт
Автомат 10А 2.2 кВт2.2 кВт11.4 кВт6.6 кВт
Автомат 16А 3.5 кВт3.5 кВт18.2 кВт10.6 кВт
Автомат 20А 4.4 кВт4.4 кВт22.8 кВт13.2 кВт
Автомат 25А 5.5 кВт5.5 кВт28.5 кВт16.5 кВт
Автомат 32А 7.0 кВт7.0 кВт36.5 кВт21.1 кВт
Автомат 40А 8.8 кВт8.8 кВт45.6 кВт26.4 кВт
Автомат 50А 11 кВт11 кВт57 кВт33 кВт
Автомат 63А 13.9 кВт13.9 кВт71.8 кВт41.6 кВт

 

Калибруемая характеристика номинала аппарата

Эта характеристика – рабочие параметры теплового расцепителя или его полупроводникового аналога. Представляет собой коэффициент, умножая на который мы получаем силу тока при перегрузке, которую прибор может держать или не держать в течение определенного периода времени. Устанавливается значение калибруемой характеристики в процессе производства, корректировки в домашних условиях не подлежит. Подбирают ее из стандартного ряда.

Калибруемая характеристика указывает на то, как долго и перегрузку какого силы сможет выдержать автомат, не отключая участок цепи от питания. Обычно это две цифры:

  • наименьшее значение повествует о том, что автомат будет пропускать ток с превышающими стандарт параметрами более часа. Например: автомат на 25А будет более часа пропускать ток силой в 33А, не отключая защищаемый отрезок проводки
  • наибольшее значение – лимит, за пределами которого отключение произойдет меньше, чем через час. Указанный в примере прибор быстро отключится при токе 37 и более Ампер

Если проводка проходит в штробе, сформированной в стене с внушительной изоляцией, кабель при перегрузе и сопровождающем его перегреве охлаждаться практически не будет. Значит, за час проводка может изрядно пострадать. Может, сразу результат превышения никто и не заметит, но сроки службы проводов существенно сократятся. Следовательно, для скрытой проводки будем искать выключатель с минимальными калибровочными характеристиками. Для открытого варианта можно особо не зацикливаться на данной величине.

Уставка – показатель моментального срабатывания

Значение величины силы тока, при котором срабатывает защита, называется Уставка.

Данная цифра на корпусе — характеристика работы электромагнитного расцепителя. Она обозначает предельную величину аномальной силы тока, которая при многократных отключениях не повлияет на работоспособность прибора. Нормируется она в единицах тока, а указывается цифрами или латинскими литерами. С цифрами все предельно просто: это номинал. А вот скрытый смысл буквенных обозначений стоит выяснить.

Буквы проставляются на автоматах, выполненных по DIN-стандартам. Обозначают они кратность максимального тока, возникающего при включении оборудования. Тока, который в разы превышает рабочие характеристики цепи, но не становится причиной отключения и не приводит в непригодность прибор. Проще, во сколько раз ток включения оборудования может превысить номинал аппарата и кабеля без угрожающих последствий.

Характеристики модульных автоматических выключателей

Ниже перечислим характеристики модульных автоматических выключателей, расскажем о том, чем они отличаются друг от друга и для чего предназначены автоматы, имеющие их. Все характеристики представляют собой зависимости между током нагрузки и временем отключения на этом токе.

1) Характеристика MA

Отсутствие теплового расцепителя.

На самом деле, он действительно не всегда бывает нужен. Например, защиту электродвигателей часто осуществляют при помощи максимально-токовых реле, а автомат в подобном случае нужен лишь для защиты от токов короткого замыкания.

2) Характеристика А

Тепловой расцепитель автомата этой характеристики может сработать уже при токе, составляющем 1,3 от номинального. При этом время отключения составит около часа. При токе, превышающем номинальный в два раза, в действие может вступить электромагнитный расцепитель, срабатывающий примерно за 0,05 секунды. Но если при двукратном превышении тока соленоид еще не сработает, то тепловой расцепитель по-прежнему остается «в игре», отключая нагрузку примерно через 20-30 секунд. При токе, превышающем номинальный в три раза, гарантированно срабатывает электромагнитный расцепитель за сотые доли секунды.

Автоматические выключатели характеристики А устанавливаются в тех цепях, где кратковременные перегрузки не могут возникнуть в нормальном рабочем режиме. Примером могут служить цепи, содержащие устройства с полупроводниковыми элементами, способными выйти из строя при небольшом превышении тока.

3) Характеристика В

Характеристика этих автоматов отличается от характеристики А тем, что электромагнитный расцепитель может сработать только при токе, превышающем номинальный не в два, а в три и более раз. Время срабатывания соленоида составляет всего 0,015 секунды. Тепловой расцепитель при трехкратной перегрузке автомата В сработает через 4-5 секунд. Гарантированное срабатывание автомата происходит при пятикратной перегрузке для переменного тока и при нагрузке, превышающей номинальную в 7,5 раз в цепях постоянного тока.

Автоматические выключатели характеристики В применяются в осветительных сетях, а также прочих сетях, в которых пусковое повышение тока либо невелико, либо отсутствует вовсе.

4) Характеристика С

Это самая известная характеристика для большинства электриков. Автоматы С отличаются еще большей перегрузочной способностью по сравнению с автоматами В и А. Так, минимальный ток срабатывания электромагнитного расцепителя автомата характеристики С составляет пятикратный номинальный ток. При этом же токе тепловой расцепитель срабатывает через 1,5 секунд, а гарантированное срабатывание электромагнитного расцепителя наступает при десятикратной перегрузке для переменного тока и при 15-тикратной перегрузке для цепей тока постоянного.

Автоматические выключатели С рекомендуются к установке в сетях со смешанной нагрузкой, предполагающей умеренные пусковые токи, благодаря чему бытовые электрощиты содержат в своем составе именно автоматы этого типа.

5) Характеристика D

Отличается очень большой перегрузочной способностью. Минимальный ток срабатывания электромагнитного соленоида этого автомата составляет десять номинальных токов, а тепловой расцепитель при этом может сработать за 0,4 секунды. Гарантированное срабатывание обеспечено при двадцатикратной перегрузке по току.

Автоматические выключатели характеристики D предназначены, прежде всего, для подключения электродвигателей, имеющих большие пусковые токи.

6) Характеристика K 

Отличается большим разбросом между максимальным током срабатывания соленоида в цепях переменного и постоянного тока. Минимальный ток перегрузки, при котором может сработать электромагнитный расцепитель, для этих автоматов составляет восемь номинальных токов, а гарантированный ток срабатывания той же защиты составляет 12 номинальных токов в цепи переменного тока и 18 номинальных токов в цепи постоянного тока. Время срабатывания электромагнитного расцепителя составляет до 0,02 секунды. Тепловой расцепитель автомата К может сработать при токе, превышающем номинальный всего в 1,05 раз.

Из-за таких особенностей характеристики K эти автоматы применяют для подключения чисто индуктивной нагрузки.

7) Характеристика Z 

Также имеет различия в токах гарантированного срабатывания электромагнитного расцепителя в цепях переменного и постоянного тока. Минимальный возможный ток срабатывания соленоида для этих автоматов составляет два номинальных, а гарантированный ток срабатывания электромагнитного расцепителя составляет три номинальных тока для цепей переменного тока и 4,5 номинальных тока для цепи постоянного тока. Тепловой расцепитель автоматов Z, как и у автоматов K, может срабатывать при токе в 1,05 от номинального.

Автоматический выключатель Z, применяется только для подключения электронных устройств.

Класс токоограничения и его значение.

Об этом кратко, ведь большинство предложенных торговлей приборов относится к 3-му классу токоограничения. Изредка встречается 2-ой. Это показатель скорости действия аппарата. Чем он выше, тем быстрее отреагирует прибор на ТКЗ. 

Информации много, но без нее будет сложно правильно выбрать автоматический выключатель и защитить имущество от нежелательных возгораний. Нужны сведения и тем, кто будет заказывать установку приборов защиты. Ведь не каждому электрику, позиционирующему себя в качестве великого специалиста, стоит безоговорочно доверять.

 

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Назначение миниатюрных автоматических выключателей (MCB) Using Miniature Circuit Breaker (MCB) Using Miniature Circuit Breaker (MCB) Использование миниатюрных автоматических выключателей (MCB) — (на фото: Acti 9, новый миниатюрный автоматический выключатель на DIN-рейке (MCB) от Schneider Electric)

Принцип действия и дизайн

Миниатюрные автоматические выключатели (MCB) в первую очередь предназначены для защиты кабелей и линий от перегрузки , ( тепловой ) и короткого замыкания ( электромагнитной ). Таким образом, они заботятся о защите этого электрооборудования от чрезмерного повышения температуры и разрушения в случае короткого замыкания.

Они удовлетворяют требованиям для различных применений с помощью различных конструкций и с помощью широкого ассортимента принадлежностей (, например, вспомогательные и сигнальные контакты и т. Д. ).

Конструктивная форма всех защитных выключателей линий одинакова. Определенные размеры определяются стандартами установки (в некоторых случаях национальными). Основные различия заключаются в ширине (, например, 12,5 и 17,5 мм, ) или глубине (, например, 68 и 92).5 мм ().

Разрывная способность является одним из факторов, определяющих размер.


Стандарты, характеристики срабатывания и номинальная коммутационная способность

MCB соответствуют международным и национальным нормам. Требования к конструкции и испытаниям определены в стандарте МЭК 60898 .

Для различных применений три характеристик отключения B, C и D определены в МЭК 60898 ( Рисунок 1 ):

The tripping characteristics B, C and D under IEC 60898 are distinguished by the trip level of the short-circuit trigger The tripping characteristics B, C and D under IEC 60898 are distinguished by the trip level of the short-circuit trigger Рисунок 1 — Характеристики отключения B, C и D в соответствии с IEC 60898 различаются уровнем срабатывания триггера короткого замыкания

Характеристики отключения B, C и D согласно МЭК 60898 отличаются уровнем срабатывания триггера короткого замыкания

  • Характеристика отключения B является стандартной характеристикой для цепей розеток в жилых и общественных зданиях (I> ≥3… 5 * I e )
  • Характеристика отключения C выгодна при использовании электрооборудования с более высокими пусковыми токами, как, например, ламп и двигателей (I> ≥5… 10 * I e )
  • Характеристика отключения D адаптирована для электрического оборудования, которое может генерировать сильные скачки тока, такие как трансформаторы, электромагнитные клапаны или конденсаторы (I> ≥10… 20 * I e )
Миниатюрные автоматические выключатели

обычно подходят для однофазных и трехфазных источников питания до номинального напряжения 240/415 В и AC-DC MCB дополнительно для источников постоянного напряжения до номинальных напряжений 1 25 В, 220 В или 440 В в зависимости от количества полюсов.

В дополнение к качеству расцепления в соответствии с характеристикой срабатывания, ключевой особенностью MCB является их номинальная коммутационная способность. Они назначены классам коммутационной емкости, которые указывают максимальный размер тока короткого замыкания, который может быть обработан.

Стандартными значениями согласно МЭК 60898 являются 1500, 3000, 4500, 6000, 10000, 20000 и 25000 А.

При выборе MCB для защиты кабелей и проводников необходимо соблюдать допустимые значения пропускной способности I 2 · t для проводников.Их нельзя превышать во время устранения короткого замыкания.

Следовательно, значения I 2 · t по отношению к предполагаемому току короткого замыкания являются важной характеристикой MCB.

В некоторых странах миниатюрные автоматические выключатели классифицируются в соответствии с допустимыми значениями I 2 · t . В соответствии с « Техническими условиями подключения » ( TAB ) энергетических предприятий Германии ( EVU ), например, только MCB с номинальной коммутационной способностью не менее 6000 A и Класс ограничения энергии 3 можно использовать для обеспечения избирательности в распределительных щитах жилых и хозяйственных зданий за счетчиком.

Для промышленного применения обычно требуется коммутационная способность 10000 A ( 10 кА ).


Установка миниатюрных автоматических выключателей, безопасных зазоров

MCB как компоненты систем установки обычно разрабатываются таким образом, чтобы соблюдение требований к безопасному зазору обеспечивалось, когда они соответствуют структуре системы.

Автоматические выключатели могут выдерживать очень высокие токи при высоких напряжениях при коротких замыканиях.

MCB Safety clearances MCB Safety clearances Рисунок 2 — Важно соблюдать безопасные зазоры. Никакие проводящие части не могут быть расположены в заштрихованных зонах, таких как металлические стены или неизолированные проводники.

Во время процесса разрушения контактные системы и камеры искрения, следовательно, преобразуют большое количество энергии в тепловую энергию.

В дополнение к высоким температурам компонентов, таких как контактов , деионных пластин и стенок контактных камер , энергия, преобразованная в дугу, приводит к нагреву воздуха в контактная система до нескольких тысяч градусов по Цельсию и, следовательно, до образования проводящей плазмы.Эта плазма обычно испускается через отверстия для выдувания наружу и не должна доходить до проводящих частей, чтобы предотвратить вторичные короткие замыкания.

В этом сезоне безопасные зазоры указаны для автоматических выключателей ( , рис. 2 ), внутри которых не должно быть никаких токопроводящих частей, например металлических стен или неизолированных проводников.

Часто используются дополнительные изоляционные компоненты ( фазовые перегородки или крышки; в некоторых случаях дополнительно ).Для некоторых продуктов требуется дополнительная изоляция подключенных проводников в соответствии с техническими условиями производителя.

Несоблюдение мер безопасности может привести к авариям с наиболее серьезными последствиями.


Пример: Acti 9 MCB (ВИДЕО)

Ресурс: Аллен Брэдли — распределительное устройство низкого напряжения и распределительное устройство

,
Что такое масляный выключатель? — Принцип действия, конструкция и обслуживание Масляный автоматический выключатель

— это такой тип автоматического выключателя, который использовал масло в качестве диэлектрической или изоляционной среды для гашения дуги. В масляном выключателе контакты выключателя выполнены с возможностью разделения внутри изоляционного масла. Когда в системе возникает неисправность, контакты автоматического выключателя размыкаются под изоляционным маслом, и между ними возникает дуга, и тепло дуги испаряется в окружающем масле.Масляный выключатель делится на две категории

Строительство масляного выключателя

Масляный выключатель

очень прост в конструкции. Он состоит из токоведущих контактов, заключенных в прочный герметичный металлический резервуар, защищающий от атмосферных воздействий, и бак заполнен трансформаторным маслом. Масло действует как дугогасительная среда и как изолятор между токоведущей частью и землей.

В верхней части масла воздух заполнен в баке, который служит в качестве подушки для контроля за вытесненным маслом при образовании газа вокруг дуги, а также для поглощения механического удара при движении масла вверх.Бак выключателя надежно закреплен болтами для вибрации, возникающей при прерывании очень высокого тока. Масляный выключатель состоит из выхода газа, который установлен в крышке бака для удаления газов.

oil-circuit-breaker-content Принцип работы масляного выключателя

В нормальных условиях работы контакт масляного выключателя замкнут и проводит ток. Когда в системе возникает неисправность, контакты выключателя разъединяются, и между контактами возникает дуга.

Благодаря этой дуге выделяется большое количество тепла, и достигается очень высокая температура, которая испаряет окружающую нефть в газ. Освобожденный таким образом газ окружает дугу, и его взрывной рост вокруг нее сильно вытесняет нефть. Дуга гаснет, когда расстояние между неподвижным и подвижным контактом достигает определенного критического значения, зависит от тока дуги и напряжения восстановления.

oil-circuit-breaker Масляный выключатель очень надежен в эксплуатации и очень дешев.Наиболее важной особенностью масляного выключателя является то, что не используются специальные устройства для управления дугой, вызванной движущимся контактом. Масло как дугогасящая среда имеет определенные преимущества и недостатки

Преимущества нефти как дугогасящая

  1. Масло обладает высокой диэлектрической прочностью и обеспечивает изоляцию между контактами после того, как дуга погасла.
  2. Масло, используемое в автоматическом выключателе, обеспечивает небольшой зазор между проводниками и компонентами заземления.
  3. Газообразный водород образуется в резервуаре, который имеет высокую скорость диффузии и хорошие охлаждающие свойства.

Недостатки нефти как гашение дуги

  1. Масло, используемое в масляном выключателе, является легковоспламеняющимся и, следовательно, может привести к пожару.
  2. Существует риск образования взрывоопасной смеси с воздухом.
  3. Из-за разложения масла в дуге образуются частицы углерода, которые загрязняют нефть, и, следовательно, диэлектрическая прочность масла уменьшается.

Техническое обслуживание масляного выключателя

После того, как автоматический выключатель был прерван током короткого замыкания, иногда их контакты могут сгореть из-за искрения. Кроме того, диэлектрическое масло обугливается в области контактов, тем самым теряя свою диэлектрическую прочность. Это приводит к снижению отключающей способности выключателя. Поэтому обслуживание масляного выключателя необходимо для проверки и замены масла и контактов.

,
Метод испытания выключателя — типы и стандартные испытания

Испытание автоматических выключателей является более сложным по сравнению с другим электрическим оборудованием, таким как трансформатор или машина, потому что ток короткого замыкания очень большой. Испытания трансформатора в основном делятся на две группы: типовые испытания и обычные испытания.

Типовые испытания выключателя

Типовые испытания проводятся с целью подтверждения возможностей и подтверждения номинальной характеристики автоматического выключателя.Такие испытания проводятся в специально построенной испытательной лаборатории. Типовые испытания можно в целом классифицировать как испытание на механические характеристики, тепловое испытание, испытание на диэлектрик или изоляцию, испытание на короткое замыкание для проверки работоспособности, отключающей способности, кратковременного номинального тока и рабочего режима. ,

Механический тест — Это тип теста на механические способности, включающий многократное размыкание и размыкание выключателя. Автоматический выключатель должен размыкаться и замыкаться с правильной скоростью и выполнять назначенную работу и работу без механического отказа.

Тепловое испытание — Тепловые испытания проводятся для проверки теплового поведения автоматических выключателей. Тестируемый выключатель имеет дело с устойчивым повышением температуры вследствие протекания его номинального тока через его полюс в номинальном состоянии. Повышение температуры для номинального тока не должно превышать 40 ° для тока меньше 800 А нормального тока и 50 ° для нормального значения тока 800 А и выше.

Диэлектрический тест — Эти тесты выполняются для проверки частоты напряжения и выдерживаемого импульсного напряжения.Испытания частоты питания проводятся на новом выключателе; испытательное напряжение изменяется в зависимости от номинального напряжения выключателя.

Испытательное напряжение с частотой 15-100 Гц применяется следующим образом. (1) между полюсами с замкнутым автоматическим выключателем (2) между полюсом и землей с разомкнутым автоматическим выключателем и (3) через клеммы с разомкнутым автоматическим выключателем.

При импульсных испытаниях на прерыватель подается импульсное напряжение определенной величины. Для наружного контура проводятся сухие и мокрые испытания.

Испытание на короткое замыкание — Автоматические выключатели подвергаются внезапным коротким замыканиям в испытательных лабораториях на короткое замыкание, и осциллограммы используются для определения поведения автоматических выключателей во время включения, во время размыкания контактов и после дуги вымирание.

Осциллограммы изучаются с особым вниманием к токам возбуждения и отключения, как симметричным, так и асимметричным напряжениям перезапуска, а распределительное устройство иногда проверяется при номинальных условиях.

Регулярные испытания выключателя

Рутинные испытания также выполняются в соответствии с рекомендациями стандартов индийской инженерной службы и индийских стандартов. Эти испытания проводятся на территории производителей. Регулярные испытания подтверждают правильное функционирование выключателя. Обычные испытания подтверждают правильное функционирование автоматического выключателя.

Испытание напряжением на частоте мощности, такое же, как упомянуто в разделе типовых испытаний, испытание на падение напряжения в милливольтах выполняется для определения падения напряжения в токовой цепи механизма выключателя.Эксплуатационные испытания на выключателе имитируют его отключение путем искусственного замыкания контактов реле.

,Воздушный автоматический выключатель

— типы ACB, эксплуатация и применение

Воздушный автоматический выключатель

Конструкция, эксплуатация, типы, преимущества и применение

Что такое автоматический выключатель?

Автоматический выключатель — это устройство, которое может

,
    ,
  • создать или оборвать цепь вручную или с помощью дистанционного управления в нормальных условиях.
  • Разомкнуть цепь автоматически в случае неисправности (например, перегрузки по току, короткого замыкания и т. Д.)
  • Сделайте цепь вручную или с помощью дистанционного управления в условиях неисправности.

Автоматический выключатель используется для переключения механизма и защиты системы. Для этой цели также используются другие связанные устройства и компоненты, связанные с автоматическими выключателями, такими как предохранители, реле, переключатели и т. Д. Автоматические выключатели широко используются в промышленности, а также в системах питания для управления и защиты различных частей цепи, таких как распределительные устройства, трансформаторы. Моторы, Генераторы / Генератор переменного тока и т. Д., Что делает систему стабильной и надежной. Circuit Breaker Symbols Circuit Breaker Symbols

Существуют различные типов воздушных выключателей , доступных на рынке, и мы обсудим один за другим подробно.

Воздушный автоматический выключатель (ACB)

Воздушный автоматический выключатель (ACB) — это электрическое защитное устройство, используемое для защиты от короткого замыкания и перегрузки по току до 15 кВ с номинальным током от 800 А до 10 кА. Он работает в воздухе (где воздушный взрыв в качестве дугогасящей среды) при атмосферном давлении для защиты подключенных электрических цепей. ACB полностью заменен масляным автоматическим выключателем, потому что все еще предпочтительнее использовать ACB, потому что, как в масляном автоматическом выключателе, нет вероятности пожара масла.

Конструкция воздушного выключателя

На следующем рисунке показаны основные и внешние части ACB . (ABB EMax Воздушный выключатель низкого напряжения, ограничения тока и селективного (без ограничения тока)).

"Delixi "Delixi

  1. Кнопка выключения (O)
  2. Кнопка включения (I)
  3. Индикатор положения основного контакта
  4. Индикатор состояния механизма накопления энергии
  5. Кнопка сброса
  6. Светодиодные индикаторы
  7. Контроллер
  8. «Подключение», « Тестовый »и« изолированный »ограничитель положения (трехпозиционный механизм фиксации / блокировки)
  9. Поставляемый пользователем замок
  10. Соединение«, «Проверка» и «разделение» индикации положения
  11. Разъединение соединения (CE), (CD) ) Тест (CT) Контакты индикации положения
  12. Номинальная заводская табличка
  13. Цифровые дисплеи
  14. Механическая рукоятка накопителя энергии
  15. Встряхивание (ВХОД / ВЫХОД)
  16. Хранилище-качалка
  17. Кнопка сброса аварийного отключения

На следующем рисунке показан Внутренняя конструкция воздушного выключателя

"Air "Air

  • 1.Опорная конструкция из листовой стали
  • 2. Трансформатор тока для расцепителя защиты
  • 3. Изолирующая коробка группы полюсов
  • 4. Редкие горизонтальные клеммы
  • 5a. Пластины для фиксированных главных контактов
  • 5b. Пластины для фиксированной дуги Контакты
  • 6a. Пластины для главных подвижных контактов
  • 6b. Пластины для перемещения Дугогасительные контакты
  • 7. Дугогасительная камера
  • 8. Клеммная коробка для фиксированной версии — Скользящие контакты для съемной версии
  • 9.Защитный расцепитель
  • 10. Автоматический выключатель Управление замыканием и размыканием
  • 11. Закрывающие пружины

Связанные материалы: Разница между MCB и MCCB в соответствии со стандартами МЭК

Принцип действия воздушного выключателя

Принцип работы Воздушный автоматический выключатель довольно отличается от других типов автоматических выключателей. Основной целью автоматического выключателя является предотвращение восстановления дуги после нулевого тока, когда зазор контакта будет выдерживать напряжение восстановления системы.Это делает то же самое, но по-другому. Во время прерывания дуги вместо напряжения питания создается напряжение дуги. Напряжение дуги определяется как минимальное напряжение, необходимое для поддержания дуги. Автоматический выключатель увеличивает напряжение тремя различными способами:

  • Напряжение дуги может быть увеличено путем охлаждения плазмы дуги. Как только температура движения частицы плазмы в плазме дуги уменьшается, потребуется больше градиента напряжения для поддержания дуги.
  • При разделении дуги на несколько рядов увеличивается напряжение дуги.
  • Напряжение дуги может быть увеличено путем удлинения пути дуги. Как только длина пути дуги увеличивается, путь сопротивления будет увеличиваться, больше напряжения дуги подается на путь дуги, следовательно, напряжение дуги увеличивается.

Работает при напряжении до 1 кВ. Он содержит две пары контактов. Основная пара несет ток и контакт из меди. Дополнительная пара контактов выполнена из углерода. Когда выключатель размыкается, главный контакт размыкается первым. Во время размыкания основного контакта дуговой контакт остается в контакте друг с другом.Дуга инициируется, когда дуговые контакты разделены. Автоматический выключатель устарел для среднего напряжения.

Типы воздушных автоматических выключателей

Существует четыре типа ACB , которые используются в управлении и защите для поддержания и стабильной работы распределительных устройств и внутреннего среднего напряжения.

  • Автоматический выключатель с воздушным прерывателем или ACB
  • Магнитный выключатель с воздушным прерывателем
  • Воздушный желоб Перерыв Автоматический выключатель
  • Воздушный выключатель 9015

Похожие сообщения: Как прочитать Табличку с данными MCB Рейтинг данных Напечатано на нем?

P Выключатель с воздушной цепью или воздушный выключатель с перекрестной струей:

Выключатель снабжен камерой, окружающей контакт.Камера известна как «дугогасительная камера». Дуга создана для вождения в нее. Дугогасительная камера поможет в достижении охлаждения. Arc Желоб сделан из некоторого огнеупорного материала. Внутренние стенки дугогасительной камеры имеют такую ​​форму, что дуга не только принудительно сближается, но и проникает в змеевидный канал, спроецированный на стенку дугогасительной камеры.

Дугогасительная камера разделена на несколько небольших отсеков с помощью металлических разделительных пластин. Металлические разделительные пластины представляют собой дугоделители, и каждый из небольших отсеков ведет себя как мини-дугогасительная камера.Начальная дуга разделится на серию дуг, в результате чего все напряжения дуги превысят напряжение системы. Они являются предпочтительным выбором для применения при низком напряжении. Plain air circuit breaker or Cross-Blast Air Circuit Breaker Plain air circuit breaker or Cross-Blast Air Circuit Breaker

Воздушный выключатель с воздушным желобом

В воздушном выключателе с воздушным желобом есть два типа контактов, а именно «главный контакт» и «вспомогательные или дугогасительные контакты». Основные контакты выполнены из меди, а серебряные пластины имеют низкое сопротивление и проводят ток в замкнутом положении. Вспомогательные или дуговые контакты изготовлены из медного сплава, так как обладают термостойкостью и используются для предотвращения повреждения главных контактов из-за искрения и могут быть легко заменены при необходимости в случае износа.Во время работы автоматического выключателя дуговые или вспомогательные контакты замыкаются до и размыкаются после главных контактов автоматического выключателя.

Магнитные воздушные автоматические выключатели с магнитным обдувом обеспечивают магнитный контроль за моментом дуги для подавления дуги внутри устройств. Гашение дуги контролируется с помощью магнитного поля, создаваемого током в обмотках, последовательно соединенных с разрывной цепью.Эти катушки известны как «выдуть катушку». Магнитное поле не контролирует и не гасит дугу, создаваемую в выключателе, но оно перемещает дугу в желоба, где дуга соответственно удлиняется, охлаждается и гасится. Такие выключатели используются до 11 кВ.

Воздушный воздушный выключатель:

Этот тип автоматического выключателя используется для системного напряжения 245 кВ, 420 кВ и даже больше.

Воздушный взрыватель разделен на три категории:

  • Осевой взрыватель
  • Осевой взрыв с скользящим подвижным контактом.

Похожие сообщения:

Осевой взрыватель

Движущийся контакт находится в контакте. В нормальном замкнутом состоянии выключателя имеется сопловое отверстие в неподвижном контакте. При возникновении неисправности в камеру подается высокое давление. Воздух высокого давления будет проходить через сопло, напряжение которого достаточно для поддержания. Schematic diagram of axial blast air circuit breaker Schematic diagram of axial blast air circuit breaker

Осевой взрыв с скользящим подвижным контактом

Подвижный контакт установлен над поршнем, поддерживаемым пружиной.Взрыв переносит дугу к электроду дуги. Schematic diagram of Axial Blast Air Circuit Breaker with Side Moving Contact Schematic diagram of Axial Blast Air Circuit Breaker with Side Moving Contact

Преимущества и недостатки пневматического выключателя

Преимущества
  • Воздушный выключатель является подходящим вариантом для использования в тех случаях, когда требуется частая работа из-за меньшей энергии дуги
  • Риск пожара устраняется при эксплуатации воздушный взрыв выключателя.
  • Воздушный взрывной выключатель имеет небольшие размеры, поскольку диэлектрическая прочность растет очень быстро (конечный контактный зазор, необходимый для гашения дуги, очень мал).
  • Скорость автоматического выключателя значительно выше во время работы воздушного взрыва.
  • Гашение дуги намного быстрее
  • Длительность дуги одинакова для всех значений тока.
  • Стабильность работы может поддерживаться и зависит от скорости работы выключателей.
  • Это требует меньше обслуживания.

Связанный пост: Предохранитель HRC (предохранитель высокой разрывной способности) и его типы

Недостатки
  • Завод поставщика воздуха требует дополнительного обслуживания.
  • Содержит воздушный компрессор высокой производительности.
  • Существует вероятность утечки давления воздуха из места соединения воздуховодов.
  • Существует высокая вероятность повышения напряжения перезаряда и прерывания тока.
  • Воздух обладает относительно низкими дугогасящими свойствами.

Применение и использование воздушного выключателя

  • Используется для защиты растений.
  • Используется для общей защиты электрических машин.
  • Используется для защиты трансформаторов, конденсаторов и генераторов.
  • ACB также используется в системе распределения электроэнергии и NGD около 15 кВ.
  • Также используется в приложениях низкого, высокого напряжения и тока.

Статьи по теме:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *