Асинхронный двигатель принцип: Трехфазный асинхронный двигатель

Содержание

Преимущества и недостатки асинхронного двигателя

Подавляющее большинство электродвигателей, используемых в промышленности – асинхронные двигатели с короткозамкнутым ротором. В новом оборудовании их доля составляет более 95%, остальное – серводвигатели, шаговые двигатели, щеточные двигатели постоянного тока и некоторые другие специфические виды приводов.

Преимущества асинхронного двигателя

Конструкция. По сравнению с другими типами электродвигателей асинхронный двигатель имеет наиболее простую конструкцию. С одной стороны это объясняется использованием стандартной трехфазной системы электроснабжения, с другой – принципом действия агрегата. Данная особенность обуславливает еще одно важное преимущество — невысокую цену асинхронных приводов. Среди двигателей разных типов одинаковой мощности асинхронный будет самым дешевым.

Подключение. Благодаря тому, что в стандартной трехфазной системе питания фазы сдвинуты на 120°, для формирования вращающегося поля не нужны дополнительные элементы и преобразования. Вращение поля внутри статора и, как следствие, вращение ротора обусловлены самой конструкцией асинхронного двигателя. Достаточно обеспечить подачу напряжения через коммутационный аппарат (контактор или пускатель), и двигатель будет работать.

Эксплуатация. Затраты на эксплуатацию асинхронного электродвигателя крайне малы, а обслуживание не представляет никаких сложностей. Нужно лишь время от время проводить чистку от пыли и по необходимости протягивать контакты подключения. При правильной установке и эксплуатации двигателя замена подшипников производится раз в 15-20 лет.

Недостатки асинхронных двигателей

Скорость вращения ротора. Скорость вращения вала двигателя зависит от частоты питающей сети (стандартные значения в промышленности – 50 и 60 Гц) и от количества полюсов обмоток статора.

Это можно считать недостатком в том случае, когда необходимо в процессе работы менять скорость вращения. Для решения данной проблемы были разработаны многоскоростные асинхронные двигатели, у которых имеется возможность переключения обмоток.

Кроме того, в современном оборудовании управление скоростью реализуется за счет преобразователей частоты.

Скольжение. Эффект скольжения проявляется в том, что частота вращения ротора всегда будет меньше частоты вращения поля внутри статора. Это заложено в принцип работы асинхронного двигателя и отражено в его названии. Скольжение также зависит от механической нагрузки на валу.

При необходимости скольжение можно скомпенсировать, а скорость вращения сделать независимой от нагрузки при помощи преобразователя частоты.

Величина напряжения питания. В сырых и влажных помещениях, где действуют повышенные требования к электробезопасности, применение асинхронного электродвигателя может быть невозможным. Дело в том, что из-за конструктивных особенностей такие двигатели практически не производятся на напряжение питания менее 220 В. В таких случаях применяют приводы постоянного тока, рассчитанные на напряжение 48 В и менее, либо используют гидравлические или пневматические приводы.

Чувствительность к напряжению питания. При отклонении напряжения питания более чем на 5% параметры двигателя могут отличаться от номинальных, а сам агрегат может перегреваться. Кроме того, при понижении напряжения падает момент электродвигателя, который квадратически зависит от напряжения.

При использовании преобразователя частоты скорость вращения меняется путем изменения величины и частоты питающего напряжения. Принципиально, что отношение напряжения к частоте должно быть константой.

Пусковой ток. Большой пусковой ток – проблема асинхронных двигателей мощностью более 10 кВт. При пуске ток может превышать номинальный в 5-8 раз и длиться несколько секунд. Из-за этого негативного эффекта мощные двигатели нежелательно подключать напрямую.

Чаще всего для понижения пускового тока применяют схему «Звезда-Треугольник», устройства плавного пуска и преобразователи частоты. Также можно использовать асинхронные двигатели с фазным ротором.

Пусковой момент. В силу электрических и механических переходных процессов в момент пуска двигатель обладает крайне низким КПД и большой реактивностью. Из-за низкого пускового момента привод может не справиться с началом вращения тяжелых механизмов. Этот же недостаток приводит к нагреву двигателя при пуске. Отсюда возникает другая проблема – ограничение количества пусков в единицу времени.

При использовании частотного преобразователя момент при пуске и на низких частотах может быть увеличен за счет повышения напряжения.

Вывод

Плюсы асинхронных двигателей значительно перевешивают минусы. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска.

Другие полезные материалы:
Способы защиты электродвигателей
Когда не нужен плавный пуск
Когда нецелесообразно ремонтировать двигатель

Принцип действия асинхронного двигателя


Понять принцип действия асинхронного двигателя не сложно, если не пользоваться учебниками для вузов и школ. Зачастую академическая литература лишь препятствует пытливому уму разобраться в работе электромоторов и часто навсегда отбивает охоту заниматься изысканиями, связанными с электротехникой и электромеханикой. В последнее время у многих людей, не связанных напрямую с наладкой и проектированием машин, появился интерес к сборке самодельных станков, механизмов, летательных аппаратов и самодвижущихся машин. Поэтому в этой статье мы попытались доступно объяснить принцип действия асинхронного электродвигателя без сложных понятий и формул.

Работа любого асинхронного двигателя построена на принципе вращающегося магнитного поля. Как его можно создать? Например, можно взять постоянный магнит и начать вращать его вокруг своей оси – получится вращающееся магнитное поле. А если крутить магнит возле медного диска, то он станет вращаться вслед за магнитом, пытаясь его догнать. Со стороны наблюдателя кажется, что между магнитом и диском есть невидимая вязкая связь. Их движение не синхронно, диск крутится с некоторым отставанием.

Объяснить это явление можно тем, что магнит при вращении возбуждает в структуре диска индукционные токи или токи Фуко. Они всегда движутся по замкнутому кругу — нигде не начинаясь и нигде не заканчиваясь, и являются, по сути, токами короткого замыкания, которые разогревают металл и от которых обычно пытаются избавиться. Но в нашем случае они полезны, т.к. порождают во вращаемом диске магнитное поле, которое дальше взаимодействует с полем постоянного магнита.

В асинхронных электродвигателях всё происходит по тому же принципу, только чтобы получить вращающееся поле, используют не постоянный магнит, а обмотки статора, в которых создаётся поле вращения. Условия для вращения можно создать только в многофазных системах, где ток сдвинут по фазе на определённый градус. В быту используются двухфазные электродвигатели, где вторая фаза создаётся искусственно с помощью сдвигающего конденсатора, катушки или сопротивления. В промышленности применяют трёхфазные системы.

Первый трёхфазный асинхронный двигатель был сделан русским учёным Доливо-Добровольским. Схема его работы показана на рисунке. Статор состоял из трёх обмоток (полюсов), отдалённых друг от друга на 120°. Вверху показан график синусоидального тока всех трёх полюсов, наложенных на один рисунок. В момент, когда ток одной из фаз равен нулю (отмечено пунктиром), две другие имеют значения близкие к максимальным и отличаются по направлению тока. Так между двумя работающими обмотками создаются магнитное поле. В следующий момент ситуация меняется – один из работающих полюсов отключается, оставшийся в работе меняет полярность (т.к. в обмотке меняется направление тока), а полюс только что включившийся в работу, поддерживает сместившееся магнитное поле. Магнитные линии пересекают часть металлического ротора и в нём генерируются вихревые токи. Они взаимодействуют с вращающимся полем статора и увлекаются за ним, пытаясь его догнать, и ротор проворачивается.

Основной принцип работы асинхронного двигателя, созданного в позапрошлом веке, остаётся актуальным и для современных электродвигателей. Только вместо дисковых и цилиндровых роторов стали использовать короткозамкнутые роторы по типу «беличья клетка» и фазные роторы. Также изменилась форма обмоток статора – вместо катушек с полюсными наконечниками теперь делают радиальные обмотки, уложенные в пазы.

Асинхронные двигатели хороши тем, что они не имеют скользящих контактов (ток в роторе индуцируется бесконтактно), а направление вращения легко поменять, изменив направление тока в одной из обмоток (поменяв фазы на клеммах мотора). Выше была рассмотрена работа статора с одной парой рабочих полюсов (двухполюсного с тремя обмотками). Количество оборотов в минуту такого электромотора равно частоте тока, т.е. 50 об/сек или 3000 об/мин. Изготавливают также 4-х и 6-ти полюсные электродвигатели с шестью и девятью обмотками соответственно. Частота вращения таких моторов составляет 1500 и 1000 об/мин.

Подведём итоги. Принцип действия асинхронного двигателя основывается на создании в обмотках статора вращающегося магнитного поля, которое пересекает контур ротора и индуцирует в нём электродвижущую силу. Поскольку он замкнут на коротко, то в нём возникает переменный ток. Магнитное поле этого тока вместе с вращающимся магнитным полем статора создают крутящий момент. Ротор начинает крутиться и пытается сравнять свою скорость со скоростью убегающего поля статора. Но как только частота вращения ротора совпадёт с частотой вращения магнитного поля статора, в роторе затухнут все электромагнитные процессы и крутящий момент станет равным нулю. Ротор начинает отставать и магнитное поле статора снова начинает возбуждать контур ротора. Этот процесс будет повторяться всё снова и снова. Таким образом, частота вращения ротора стремится догнать частоту вращения магнитного поля статора, но всё время отстаёт, т.е. вращается не синхронно, а значит асинхронно.

В станкостроении асинхронные двигатели не заменимы. Ни какой другой тип электромоторов не имеет такой высокой износоустойчивости и универсальности. Поэтому такое оборудование как станок для сетки рабицы, правильно-отрезной и просечно-вытяжной станки, выпускаемые на нашем предприятии, оснащены именно асинхронными электроприводами. На видео хорошо объясняется принцип работы асинхронного электродвигателя, его устройство и отличительные особенности

• Скачать принцип работы трёхфазного асинхронного двигателя




Свежие записи:

Двигатель асинхронный трехфазный: устройство и принцип действия.

22.11.2018

Трехфазный асинхронный двигатель является наиболее распространённым типом моторов. В таком электродвигателе на статоре устанавливается трехфазная обмотка, что обуславливает его название.

СОДЕРЖАНИЕ:

  1. Конструкция 
  2. Принцип действия
  3. Режим работы
  4. Преимущества

КОНСТРУКЦИЯ ТРЕХФАЗНОГО асинхронного ДВИГАТЕЛЯ

Основная задача двигателя — это превращение электрической энергии в механическую. Конструкция его состоит из двух основных элементов таких как ротор (подвижная часть) и статор (неподвижная часть).

Между ними находиться воздушный зазор. Оба этих элемента имеют в себе сердечники, где размещается специальные витки обмотки. В роторе они располагаются на валу, а в статоре в специальных пазах на корпусе.

Пазы, на которых крепиться обмотка имеют угловое расстояние между собой в 120 градусов. Наиболее распространённым является  система с короткозамкнутым ротором или как ее называют «беличье колесо». В этом случае обмотка крепиться на каркас цилиндрической формы, а стержни соединяются с сердечником ротора и накоротко замыкаются с торцов.

Помимо короткозамкнутого также используются и двигатели с фазным ротором. В этом случае фазы обмотки присоединяется к специальным контактным кольцам, а их концы изолируются друг от друга и от вала. При всем этом статоры в обоих представленных видах могут не отличаться конструкционно.

Существует несколько схем соединения трехфазных обмоток между собой. Основными способами являются т.н. «звезда» и «треугольник». Иногда устанавливаются и комбинированные варианты. Подбор схемы зависит от напряжения питания в сети. В первом случае концы фаз обмоток соединены в одной точке. Во втором — конец каждой фазы поочередно соединяется с началом следующей.

ПРИНЦИП ДЕЙСТВИЯ

Работа асинхронного двигателя основывается на вращении магнитных полей. С помощью тока в обмотке статора создается движущееся магнитное поле, которое воздействует на контур ротора и индуцирует в нем электродвижущую силу. Если этот показатель выше силы трения, то вал приводиться в движение.

Ротор увеличивает частоту вращения пытаясь догнать скорость вращения магнитных полей обмотки статора. Однако, когда этот параметр сравниваеться то электродвижущая достигает нулевого значения и магнитное воздействие пропадает.

Поэтому частота вращение вала никогда не совпадает (не синхронна) с частотой движущихся магнитных полей. Из-за этого двигатель называют асинхронным.

РЕЖИМЫ РАБОТЫ

Трехфазный электродвигатель асинхронного типа имеет несколько возможных режимов работы:

  • Пуск. 
  • Двигательный режим.
  • Холостой ход.
  • Генераторный режим.
  • Электромагнитное торможение.

Пуск является начальным этапом работы любого двигателя. В этом режиме на обмотку пускается ток и создаются вращающиеся магнитные поля. В момент, когда сила трения меньше электродвижущей — ротор начинает вращение.

Двигательный режим выполняет основную задачу электродвигателя, то есть превращает электродвижущую силу в механическое вращение вала.

Холостой ход происходит, когда на валу отсутствует нагрузка, то есть он не подсоединен к другим устройствам.

Генераторный режим включается, когда обороты вала принудительно, например, с помощью другого двигателя, превышают скорость вращения электромагнитного поля. В этом случае электродвижущая сила имеет обратный вектор и двигатель превращается в источник активной энергии.

Электромагнитное торможение происходит, когда искусственно изменяют направление вращения электромагнитного поля и ротора на противоположные. Происходит довольно быстрое торможение. Применяется только в экстренных случаях, так как выделяется огромное количество тепла.

ПРЕИМУЩЕСТВА ТРЕХФАЗНОГО АСИНХРОННОГО ДВиГАТЕЛЯ

Трёхфазный двигатель также может работать в однофазном режиме, когда это потребуется. Однако номинальная мощность при этом понижается приблизительно вдвое.

В случае пропадания одной из фаз двигатель продолжит работу и даже будет возможен запуск, но с пониженной мощностью. Относительная дешевизна, хороший КПД и надежность поспособствовали тому, что такие моторы заслужили наибольшую популярность во всем мире. 

На нашем сайте вы сможете найти электродвигали для любых ситуаций. В каталогах представлены моторы таких мировых лидеров как Siemens, ABB, Lenze, а также VEM motors.

На страницах нашего блога также можно также ознакомиться с другими типами асинхронных моторов >>>ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ <<< или более подробно узнать о конструкции электродвигателей  >>> ВИДЫ ЭЛЕКТРОДВИГАТЕЛЕЙ <<<  

Подписывайтесь на наши обновления:

       


Трехфазный асинхронный электродвигатель

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя

Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя

Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов
Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током

Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°) Вращающееся магнитное поле
Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током
Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый роторМагнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2<n1. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1-n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:

  • где s – скольжение асинхронного электродвигателя,
  • n1 – частота вращения магнитного поля статора, об/мин,
  • n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s~0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

§75. Принцип действия асинхронного двигателя

Принцип действия асинхронного двигателя. Трехфазные асинхронные двигатели являются самыми распространенными электрическими двигателями и применяются для привода различных станков, насосов, вентиляторов, компрессоров, грузоподъемных механизмов, а также на э. п. с. переменного тока в качестве двигателей вспомогательных машин..

Асинхронный двигатель состоит из неподвижной части статора 1 (рис. 248, а), на котором расположены обмотка 2 статора, и вращающейся части — ротора 3 с обмоткой 4. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка 2 статора представляет собой трехфазную или в общем случае многофазную обмотку, катушки которой размещают равномерно вдоль окружности статора. Фазы этой обмотки А-Х, B-Y и C-Z размещены равномерно по окружности статора; они соединяются «звездой» (рис. 248,б) или «треугольником» и подключаются к сети трехфазного тока. Обмотку 4 размещают равно-

Рис. 248. Электромагнитная схема асинхронного двигателя (а), схема включения его обмоток (б) и пространственное распределение вращающего магнитного поля (в) в двухполюсной машине

мерно вдоль окружности ротора. При работе двигателя она замкнута накоротко.

При подключении обмотки статора к сети создается синусоидально распределенное вращающееся магнитное поле 5 (рис. 248, в). Оно индуцирует в обмотках статора и ротора э. д. с. e1 и е2. Под действием э. д.с. е2 по проводникам ротора будет проходить электрический ток i2. На рис. 248, а показано согласно правилу правой руки направление э. д. с. е2, индуцированной в проводниках ротора при вращении магнитного потока Ф, по часовой стрелке (при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки). Если ротор неподвижен или частота его вращения п меньше синхронной частоты n1, активная составляющая тока ротора совпадает по фазе с индуцированной э. д. с. е2, при этом условные обозначения (крестики и точки) показывают одновременно и направление активной составляющей тока i2.

На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарная сила Fрез, приложенная ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения соответствует равенству электромагнитного момента М тормозному, приложенному к валу от приводимого во вращение механизма и внутренних сил трения.

Э.д.с, индуцированная в проводниках обмотки ротора, зависит от частоты их пересечения вращающимся полем, т. е. от разности частот вращения магнитного поля n1 и ротора n. Чем больше разность n1— n, тем больше э. д. с. е2. Следовательно, необходимым условием для возникновения в асинхронной машине электромагнитного вращающего момента является неравенство частот вращения n1 и n. Только при этом условии в обмотке ротора индуцируется э. д. с. и возникает ток i и электромагнитный момент М. По этой причине машина называется асинхронной (ротор ее вращается несинхронно с полем). Иногда ее называют индукционной ввиду того, что ток в роторе возникает индуктивным путем, а не подается от какого-либо внешнего источника.

Для характеристики отставания частоты вращения ротора двигателя от частоты вращения магнитного поля служит скольжение, его выражают в относительных единицах или процентах:

s = (n1— n) /n1 или s = [(n1— n) /n1] 100% (81)

Если, например, четырехполюсный двигатель имеет s = 4%, то частота вращения его ротора равна 1440 об/мин (частота вращения поля при частоте 50 Гц составляет 1500 об/мин, а отставание ротора от частоты поля равно 4 % от 1500 об/мин, т. е. 60 об/мин). В двухполюсном двигателе при s = 4% частота вращения ротора составляет 2880 об/мин (3000—0,04*3000 = 2880).

Частота вращения ротора, выраженная через скольжение,

n = n1(1 – s) (82)

По своей конструкции различают двигатели с фазным ротором (с контактными кольцами) и с короткозамкнутым ротором. Они имеют одинаковую конструкцию статора и отличаются выполнением ротора. Пусковые свойства этих двигателей различны.

Асинхронный Двигатель Переменного Тока: Подключение, Ремонт

Строение такого двигателя не отличается большой сложностью

Электрические моторы заняли в жизни человека почетное место и применяются в приборах различной мощности и габаритов. Встретить их можно повсеместно, начиная от электрических зубных щеток, стиральных машин микроволновых печей до беговых дорожек, промышленного оборудования или огромных автомобилях.

Причина популярности предельно ясна даже неспециалисту – простота устройства, легкость в обслуживании, рентабельность производства и многое другое, включая повсеместную электрификацию. Исключение, пожалуй, составляют автомобили, так как подать к ним ток по проводам нельзя, если это не троллейбус, но и то, в этом направлении сегодня ведется множество разработок.

Сегодня мы с вами поговорим о том, что представляет собой асинхронный двигатель переменного тока. Узнаем, как он устроен, и за счет каких принципов работает. Погнали!

Что такое асинхронный двигатель

Классический двигатель переменного тока асинхронный

Трехфазный асинхронный двигатель мало чем отличается от своих собратьев и состоит из двух основных частей – вращающейся и неподвижной, или другими словами ротора и статора. Располагаются они один в другом при этом, не касаясь друг друга. Между деталями имеется небольшой воздушный зазор от 0,5 до 2 миллиметров, в зависимости от конструкции двигателя.

Схематическое строение

Однако это не все детали. Давайте разберем строение более подробно.

Схематическое строение трехфазного двигателя

  • Статор – фактически главная рабочая часть, являющаяся мощным электромагнитом. Состоит он их сердечника, выполненного из тонколистовой технической стали, толщиной всего лишь 0,5 миллиметров, которая покрывается токоизоляционным лаком, и обмотки, сделанной из медной проволоки, которая также изолирована и располагается продольных пазах сердечника

Строение статора прекрасно видно на представленной выше схеме, где показано, что сердечник собран из множества пластин совмещенных друг с другом.

Цилиндр на валу снизу – это и есть ротор

  • Ротор – данный элемент также состоит из сердечника, обмотка которого короткозамкнута (хотя бывает и другое строение), который располагается на валу. Сердечник этого элемента также представлена в виде шихтованной детали, однако сталь не покрывается лаком, так как ток, протекающий внутри, будет очень слабым, и естественной оксидной пленки будет вполне достаточно, чтобы ограничить вихревые токи.
  • Вал мотора представляет собой центральную ось, вокруг которой и происходит вращение электромотора. С разных концов на этом элементе располагаются подшипники качения, за счет которых обороты происходят максимально плавно и легко. Сами подшипники запрессованы в боковые крышки, в которых имеются посадочные места под них.

Совет! Подшипники должны сидеть очень плотно, при этом они должны быть отцентрованы, смазаны, легко вращаться, то есть быть исправными, иначе при высоких оборотах двигатель очень быстро выйдет из строя.

Разбитая и новые крыльчатки

  • На конце вала, противоположном приводу, располагается небольшая крыльчатка, которая при включенном двигателе выполняет функцию его охлаждения. Кстати, данный элемент тоже может стать причиной появления вибрации в двигателе, если его лопасти отломаются, что негативно сказывается на сроке службы агрегата. Пример разбитого вентилятора можно увидеть на фото выше.
  • Идем по цепочке. Боковые крышки корпуса крепятся к станине, которая удерживает все вышеназванное вместе.

Также любой двигатель имеет пусковую аппаратуру и силовые цепи, о чем мы подробнее поговорим немного позже.

Принцип вращение электромагнитного поля

Электромагнитная индукция в моторах

Главной особенностью любого электрического двигателя является то, что он способен переводить электрическую энергию в кинетическую, то есть механическую. При этом, разобрав его строение, вы можете увидеть, что никакого прямого или передаточного привода он не имеет. Как же тогда происходит вращение двигателя?

Вся фишка в том, что обмотка статора способна создавать сильное вращающееся магнитное поле, которое увлекает за собой ротор, при включении мотора в электрическую сеть. Данное магнитное поле имеет определенную частоту вращения, которая прямопропорциональна частоте переменного тока, и имеет обратную пропорциональность числу пар полюсов обмотки.

То есть данную частоту можно вычислить по формуле: n1 = f1*60/p, где: n1 – частота вращения магнитного поля; f1 – частота переменного тока в Герцах; p – количество пар полюсов.

Строение асинхронного двигателя переменного тока

Пока ничего не понятно?

Ничего, сейчас во всем разберемся.

  • Чтобы наглядно себе представить принцип вращения магнитного поля, давайте рассмотрим примитивную трехфазную обмотку, имеющую всего три витка.

Пример того, как вращается магнитное поле в электрическом двигателе

  • Витки – это проводники, по которым при включении в сеть протекает электрический ток. Во время этого процесса вокруг проводника возникает электромагнитное поле.
  • Мы знаем, что показатели переменного тока изменяются со временем – сначала он нарастает, затем падает до нуля, потом течет в обратном направлении по тому же принципу, и так до бесконечности. Именно поэтому переменный ток изображают в виде синусоиды.

Графическое изображение переменного тока

  • В то время как изменяются показатели тока, меняются и параметры магнитного поля, вызываемого им.
  • Особенностью трехфазных двигателей и генераторов является то, что в один момент времени по обмотке статора ток протекает в фазах со смещением на 120 градусов, то есть на треть времени одного такта.
  • Такт – это 1 Герц, то есть прохождение переменным током одного полного цикла колебания синусоиды. Схематически это будет выглядеть вот так.

Смещение между фазами составляет ровно 120 градусов

  • В результате в статоре двигателя одновременно образуется несколько магнитных полей, которые, взаимодействуя, дают результирующее поле.

Изменение магнитного поля в разные моменты времени

  • Когда происходит изменение параметров токов, протекающих в фазах, начинает изменяться и результирующее магнитное поле. Выражается это в смене его ориентации, при том, что амплитуда остается одинаковой.
  • В результате получается так, что магнитное поле вращается вокруг некой центральной оси.

А что будет, если внутрь данного магнитного поля поместить проводник?

Принцип электромагнитной индукции

Согласно закону об электромагнитной индукции, который мы подробно описывали в статье про генераторы постоянного и переменного тока, в проводнике возникает электродвижущая сила, сокращенно ЭДС. Если этот проводник замкнут на внешнюю цепь или на себя, то в нем потечет ток.

Согласно закону Ампера, на проводник с током, помещенным в магнитное поле, начинает действовать сила, и контур начинает вращаться. По этому принципу и работают асинхронные двигатели переменного тока, однако вместо рамки в магнитном поле находится короткозамкнутый ротор, который своим внешним видом напоминает беличье колесо.

Строение короткозамкнутого ротора

  • Как видно из схемы выше, такой ротор состоит из параллельно расположенных стержней, которые с торцов замкнуты двумя кольцами.
  • При подключении статора к электрической сети, он начинает формировать вращающееся магнитное поле, которое индуктирует во всех стержнях ротора ЭДС, из-за чего ротор начнет вращаться.
  • При этом в разных стержнях будет отличаться направление текущего тока и его величина, в зависимости от того, в каком положении они находятся относительно полюсов магнитного поля. Опять-таки, если не понятно, то отсылаем вас снова к закону об электромагнитной индукции.

Изменение ЭДС на примере генератора переменного тока

Интересно знать! Стержни на роторе наклоняют относительно оси его вращения. Делается это для того, чтобы пульсация момента и высшие гармоники ЭДС, сокращающие эффективность двигателя, были меньше.

Особенности асинхронного двигателя

Неприхотливые в эксплуатации электромоторы

Итак, давайте разбираться с тем, какие двигатели переменного тока называются асинхронными.

Скольжение ротора

Главной особенностью таких агрегатов является то,  что частота вращения ротора отличается от этого же показателя у магнитного поля. Назовем условно эти значения n2 и n1, соответственно.

Объяснить это можно тем, что индуцироваться ЭДС может только при этом неравенстве – n2 должна быть меньше n1. Разница в частотах этих вращений называется частотой скольжения, а сам эффект отставания ротора и называется скольжением, которое обозначается как «s». Высчитать этот параметр можно по следующей формуле: s = (n1-n2)/n1.

Асинхронный двигатель в разрезе

  • Давайте представим себе ситуацию, в которой частоты n1 и n2 будут одинаковыми. В этом случае положение стержней ротора относительно магнитного поля будет неизменным, а значит, движение проводников относительно магнитного поля происходить не будет, то есть ЭДС не индуктируется, и ток не течет. Отсюда следует вывод, что сил приводящих ротор в движение возникать не будет.
  • Если предположить, что изначально двигатель был в движении, то теперь ротор начнет замедляться, отставая от магнитного поля, а значит, стержни сместятся относительно магнитного поля и снова начнет расти ЭДС и движущая сила, то есть вращение снова возобновится.
  • Приведенное описание довольно грубое. В реальности ротор асинхронного двигателя никогда не может догнать скорость вращения магнитного поля, поэтому крутится равномерно.
  • Уровень скольжения тоже величина непостоянная, и может изменяться от 0 до 1, или другими словами, от 0 до 100 процентов. Если скольжение близко к 0, что соответствует холостому режиму работы двигателя, то есть ротор не будет испытывать противодействующий момент. Если значение этого параметра близко к 1 (режим короткого замыкания), то ротор будет неподвижен.
  • Отсюда можно сделать вывод, что скольжение напрямую будет зависеть от механической нагрузки на вал двигателя, и чем она больше, тем выше и коэффициент.

Принцип работы асинхронного двигателя

  • Для асинхронных двигателей средней и малой мощности допустимый коэффициент скольжения находится в диапазоне от 2 до 8%.

Мы уже написали, что такой двигатель преобразует электрическую энергию с обмоток статора в кинетическую, однако стоит понимать, что эти силы не равны друг другу. Всегда при преобразовании происходят потери на гистерезисе, нагреве, трении и вихревых токах.

Данная часть энергии рассеивается в виде тепловой, поэтому двигатель и оборудуется вентилятором для охлаждения.

Питание двигателя

Схема подключения

Давайте теперь разберемся с тем, как происходит подключение асинхронного электродвигателя переменного тока.

  • Мы уже вкратце описывали, как протекает ток в трехфазной сети, но не совсем понятно, какие выгоды такое питание имеет перед однофазными или двухфазными аналогами.
  • В первую очередь можно отметить экономичность системы с таким подключением.
  • Также для нее характерна большая эффективность.

Фазы подключаются к обмотке статора по определенным схемам, называемым звезда и треугольник, каждая из которых имеет свои особенности. Соединения эти могут быть выполнены как внутри двигателя, так и снаружи, в распределительной коробке. В первом случае из корпуса выходит три провода, а во втором шесть.

Для лучшего понимания принципов работ схем давайте введем некоторые понятия:

  1. Фазное напряжение – напряжение в одной фазе, то есть разница потенциалов между ее концами.
  2. Линейное напряжение – это разница в потенциалах разных фаз.

Эти значения очень важны, так как позволяют рассчитать потребляемую мощность электромотора.

Вот формулы, предназначенные для этого:

Формулы расчета мощности двигателя

Данные формулы вычисления мощности двигателя справедливы для подключения и звездой, и треугольником. Однако стоит всегда учитывать, что подключение одного и того же двигателя разными способами будет сказываться на его энергопотреблении.

А если потребляемая мощность не соответствует параметрам двигателя, то может произойти расплавление обмотки статора, и моментальный выход из строя агрегата.

Чтобы понять это лучше, давайте разберем один наглядный пример:

  • Представьте двигатель, подключенный по схеме «звезда», который подключен в сеть переменного тока. Линейное напряжение будет составлять 380В, а фазовое 220В. Потребляет при этом он 1А.
  • Высчитываем мощность: 1,73*380*1 = 658 Вт – 1,73 является корнем из 3.
  • Если сменить схему подключения на треугольник, то получится следующее. Линейное напряжение останется без изменений и составит 380В, а вот фазовое напряжение (вычисляем по первой формуле) увеличится и станет таким же 380В.
  • Увеличенное в корень из 3 раз фазовое напряжение, приведет к увеличению в такое же количество раз фазового тока. То есть Iл будет равно не 1, а 1,73*1,73, что приблизительно равняется 3
  • Повторяем расчет мощности: 1,73*380*3 = 1975 Вт.

Как видно из примера, потребляемая мощность стала намного больше, и если двигатель не рассчитан на работу в таком режиме, то он неизбежно перегорит.

Как выглядят схематично разбираемые подключения обмотки

Подключение трехфазного двигателя асинхронного типа к однофазной сети

Разобрав принцип работы трехфазного асинхронного двигателя переменного тока, становится понятным, что напрямую подключить его к общественным сетям, в который «царит» одна фаза,  не так просто. Выполнить такое подключение становится возможным, если применить фазосдвигающие элементы.

Варианты подключения трехфазного двигателя к однофазной сети

При таком подключении двигатель может работать в двух режимах:

  1. Первый ничем не отличается от работы однофазных двигателей (смотреть рисунки а, б и г, где применяется пусковая обмотка). При таком режиме работы двигатель способен выдать лишь 40-50% от своей номинальной мощности.
  2. Второй (в, д, е) – режим конденсаторного двигателя, при котором агрегат способен выдать до 80-ти% мощности (в схему включен постоянно работающий конденсатор).

Совет! Емкость конденсатора рассчитывается по специальным формулам, согласно выбранной схеме.

Как управлять электродвигателем

Управление асинхронным электродвигателем переменного тока может быть реализовано тремя способами:

Магнитный пускатель

  • Прямое подключение к питающей сети – для этого применяются магнитные пускатели, с помощью которых можно реализовать нереверсивные и реверсивные режимы работы мотора. Отличие, думаем понятно – во втором случае двигатель мотет вращаться в другом направлении. Недостатком такого подключения является то, что в цепи присутствуют большие пусковые токи, что не очень хорошо для самого агрегата. Цена такого устройства будет самой низкой

Устройство плавного пуска

  • Плавный пуск двигателя – такие устройства для управления применяются тогда, когда вам требуется возможность регулировки скорости вращения вала при запуске двигателя. Показанный прибор уменьшает пусковые токи, в результате чего защищает двигатель от больших пусковых токов. Оно обеспечивает плавный старт и остановку вала.

Частотный преобразователь

  • Самым дорогим и сложным подключением электрического двигателя является применение частотного преобразователя. Такое решение используется тогда, когда требуется регулировка скорости вращения вала двигателя не только при старте и торможении. Данное устройство способно менять частоту и напряжение подаваемого на двигатель тока.
  • Его применение имеет следующие плюсы: во-первых сокращается энергопотребление мотора; во-вторых, как и устройство плавного пуска, двигатель защищается от ненужных перегрузок, что благотворно сказывается на его состоянии и сроке службы.

Частотные преобразователи могут реализовать следующие методы регулирования:

Скалярное управление

  1. Управление скалярного типа. Наиболее простой и недорогой в реализации, обладающий медленным откликом на изменение нагрузки в сети и небольшим диапазоном регулировки, в виде недостатков. Из-за того подобное управление применимо лишь там, где изменение нагрузки происходит по определенному закону, например, переключение режимов в фене.
  2. Управление векторного типа. Данная схема применяется там, где требуется обеспечить независимое управление вращением электродвигателя, например, в лифте. Она позволяет сохранять одинаковые обороты даже при изменяющихся параметрах нагрузки.

Асинхронный двигатель с фазным ротором

Более сложная конструкция асинхронного двигателя

До того момента, как частотные преобразователи получили широкое распространение, асинхронные двигатели большой и средней мощности изготавливались с фазным ротором. Такая конструкция дает двигателю лучшие свойства по плавному пуску и регулировке оборотов, однако  эти агрегаты намного сложнее в плане строения.

  • Статор такого мотора ничем не отличается от того, что устанавливается в двигателях с короткозамкнутым ротором, но вот сам ротор устроен по-другому.
  • Также как и статор, он имеет трехфазную обмотку, которая подключается «звездой» к контактным кольцам. Обмотка укладывается в пазы стального сердечника, от которого она изолируется.

Кольца контактные

  • Контактные кольца соединяются через графитовые щетки с трехфазным пусковым или регулировочным реостатом, с помощью которого и производится пуск ротора.

Реостат жидкостного типа

  • Реостаты бывают металлическими и жидкостными. Первые (их еще называют проволочными) – ступенчатые, которые управляются механическим переключением своими руками рукояти контроллера, либо автоматически, при помощи контроллера с электроприводом. Вторые представляют собой некие сосуды с электролитом, в который опущены электроды. Изменение сопротивления такого реостата осуществляется за счет глубины их погружения.

Интересно знать! Отдельные модели АДФР, с целью увеличения КПД и ресурса щеток, после запуска ротора поднимают щетки и за счет короткозамкнутого механизма замыкают кольца.

На сегодняшний день устройства с фазными роторами практически не применяются, так как их эффективно заменяют асинхронные двигатели с короткозамкнутым ротором, оснащенные частотным преобразователем.

На этом подведем итог. Мы узнали строение асинхронного трехфазного двигателя и принцип его работы. Материал для большинства читателей будет теоретическим, но, думаем, все равно интересным. Если вам нужно узнать, как выполнить ремонт асинхронного двигателя переменного тока, то прочтите предыдущую статью на нашем сайте. Там будет дана инструкция по разбору, и рассказано, что можно диагностировать и исправить самостоятельно, не обращаясь в мастерскую. Также рекомендуем к просмотру подобранное нами видео.

Принцип работы асинхронного двигателя | Эксплуатация электрических машин и аппаратуры | Архивы

Страница 9 из 74

Работа асинхронного двигателя основана на явлении взаимодействия индуктированного тока ротора с магнитным полем статора (рис. 26).
При включении трехфазного двигателя в сеть по его фазам протекают токи, образующие вращающееся магнитное поле, скорость вращения которого равна:
Вращающийся магнитный поток пересекает обмотку ротора и в ней индуктируется э. д. с., направление которой определяется по правилу правой руки. Направления индуктированных э д. с. ротора (рис. 26) отмечены знаком плюс и точкой. В замкнутой обмотке ротора под действием э. д. с. возникают токи такого же направления.
На каждый проводник с током в магнитном поле действует сила, направление которой определяется по правилу левой руки. Под действием сил Fпр (рис. 26) возникает момент М двигателя, ротор разворачивается в направлении вращения магнитного поля со скоростью п, меньшей скорости поля п1. Скорость ротора асинхронного двигателя в принципе не может достичь синхронной скорости. Если допустить, что скорость ротора и магнитного поля равны, то в таком случае обмотка ротора не будет пересекаться магнитным полем, поэтому не возникнет э. д. с., ток ротора и момент двигателя будут равны нулю Ротор уменьшит свою скорость, его обмотка будет пересекаться магнитным полем и вновь возникнет момент двигателя.

Рис. 26. Модель асинхронного двигателя.

Скорость ротора асинхронной машины называют асинхронной скоростью, то есть скорость, неравная синхронной скорости поля, Если скорость ротора п, то роторная обмотка пересекается магнитным полем со скоростью (п1 — п). Отношение скорости пересечения ротора магнитным полем к синхронной скорости называется скольжением машины:

или в процентах

В зависимости от величины и знака скольжения различают три режима работы асинхронной машины: двигательный, генераторный и режим электромагнитного тормоза.
В двигательном режиме направления скорости вращения ротора и магнитного поля совпадают, но скорость ротора меньше поля. Поэтому скольжение положительное и меньше единицы. Двигательный режим асинхронной машины схватывает диапазон скольжения от 1 до 0. В первый момент включения двигателя в сеть ротор неподвижен (п = 0), чему будет соответствовать скольжение S=1. При скорости ротора, равной синхронной (что соответствует синхронному ходу асинхронной машины), скольжение равно нулю. Номинальное скольжение для разных асинхронных двигателей различно, порядок поминального скольжения равен 0,01—0,07 (1—7%).
Скорость вращения ротора двигателя через скольжение выразим формулой:

где скольжение 5 в долях, а не в процентах.
По номинальной скорости двигателя пп, указанной на его щитке, можно определить синхронную скорость п1, число полюсов 2р
и номинальное скольжение S. Допустим, на щитке асинхронного двигателя, включаемого в сеть с частотой f = 50 гЦ, указана номинальная скорость п — 940 об/мин. Помня, что скорость двигателя лишь на несколько процентов меньше синхронной а ряд синхронных скоростей при 50 гЦ представляет числа 3000; 1500; 1000; 750 и т. д. об/мин, то скорость поля для данного двигателя будет равна пх — 1000 об/мин. Число полюсов машины подсчитывают по формуле:
Номинальное скольжение двигателя равно;

Ротор и магнитное поле вращаются в одном направлении. Для изменения направления вращения (реверсирования) нужно изменить направление вращения магнитного поля. Для этого необходимо поменять два любых провода, соединяющих двигатель с сетью.
В генераторном режиме ротор машины, вращаясь в направлении магнитного поля, имеет скорость выше синхронной, чему будет соответствовать отрицательное скольжение.
При генераторном режиме асинхронной машины создается скольжение от нуля до отрицательной бесконечности. Для перевода асинхронного двигателя в режим генератора необходим дополнительный двигатель, который мог бы вращать ротор со скоростью больше синхронной.
В режиме электромагнитного тормоза ротор машины вращается в противоположную сторону по отношению к направлению вращения магнитного поля. Такой режим асинхронной машины будет, если ротор при включенном статоре в сеть принудительно вращать каким-либо другим двигателем против поля и если при вращающемся роторе быстро произвести реверсирование двигателя. В режиме электромагнитного тормоза скорость ротора отрицательна, скольжение больше единицы. Электромагнитному тормозу асинхронной машины соответствуют скольжения от единицы до бесконечности.

Конструкция, работа, различия и применение

В электрических машинах, таких как двигатели, мы часто путаемся с типами двигателей, такими как синхронный двигатель, а также асинхронным двигателем с их применением. Эти двигатели используются в различных приложениях благодаря надежности, а также прочности. Как следует из названия, название этого двигателя происходит от того факта, что ротор в двигателе работает асинхронно с вращающимся магнитным полем. Итак, в этой статье дается обзор асинхронного двигателя, конструкции, принципа работы и т. Д.

Что такое асинхронный двигатель?

Определение: Электродвигатель, работающий с переменным током, известен как асинхронный двигатель. Этот двигатель в основном работает на индуцированном токе внутри ротора от вращающегося магнитного поля статора. В этой конструкции двигателя движение ротора не может быть синхронизировано через движущееся поле статора. Поле вращающегося статора этого двигателя может индуцировать ток в обмотках ротора. В свою очередь, этот ток будет создавать силу, толкающую ротор в направлении статора.В этом двигателе, поскольку ротор не совпадает по фазе со статором, создается крутящий момент.


Асинхронный двигатель

Это наиболее распространенный тип двигателя. В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем. Основная особенность этого мотора в том, что скорость не может быть изменена. Рабочая скорость этого двигателя в основном зависит от частоты источника питания, а также от номера.полюсов.

Конструкция асинхронного двигателя

В этой конструкции двигателя нет магнитов. В этой конструкции двигателя фазы могут быть соединены с катушками. Так что магнитное поле может быть создано. В этом двигателе ток внутри ротора может быть активирован за счет индуцированного напряжения вращающегося поля. Как только магнитное поле проходит через ротор, на роторе индуцируется напряжение. Потому что магнитное поле ротора может быть создано за счет магнитного поля статора.Обычно магнитное поле ротора движется асинхронно по направлению к магнитному полю статора или с задержкой во времени. Таким образом, задержка между двумя магнитными полями может быть известна как «проскальзывание».

Конструкция асинхронного двигателя

Работа асинхронного двигателя

Принцип работы этого двигателя почти такой же, как и у синхронного двигателя, за исключением внешнего возбудителя. Эти двигатели, также называемые асинхронными двигателями, работают по принципу электромагнитной индукции, когда ротор в этом двигателе не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.У этих двигателей нет внешних устройств для стимуляции ротора внутри двигателя. Таким образом, скорость вращения ротора в основном зависит от нестабильной магнитной индукции.

Изменяющееся электромагнитное поле может вызвать вращение ротора с меньшей скоростью, чем магнитное поле статора. Когда скорость ротора, а также скорость магнитного поля внутри статора изменяется, эти двигатели называются асинхронными двигателями. Изменение скорости можно назвать скольжением.


Разница между синхронным и асинхронным двигателем

Разница между синхронным и асинхронным двигателем приведена в следующей таблице.

Функция Синхронный двигатель

Асинхронный двигатель

Определение Это один из видов машин, в котором скорость ротора и статора скорость эквивалентна.

N = NS = 120f / P

Это один из видов машин, в которых ротор вращается с меньшей скоростью по сравнению с синхронной скоростью.

Н меньше NS

Тип Типы синхронных: переменное сопротивление, бесщеточный, гистерезисное и переключаемое сопротивление. Асинхронный двигатель переменного тока также известен как асинхронный двигатель.
Скольжение Значение скольжения этого двигателя равно нулю Значение скольжения этого двигателя не равно нулю
Стоимость Это дорого Это дешевле
КПД Высокий КПД Низкий КПД
Скорость Скорость двигателя не зависит от неравенства нагрузки. Скорость двигателя уменьшается при увеличении нагрузки.
Электропитание Электропитание может подаваться на ротор в двигателе Ротор в этом двигателе не нуждается в токе.
Самозапуск Этот двигатель не самозапускается Этот двигатель самозапускается
Влияние крутящего момента Как только приложенное напряжение изменится, это не повлияет на крутящий момент этого двигателя Как только поданное напряжение изменится, это повлияет на крутящий момент этого двигателя.
Коэффициент мощности Коэффициент мощности может быть изменен после изменения возбуждения на основе запаздывания, единицы или опережения. Он просто работает с отстающим коэффициентом мощности.
Приложения Эти двигатели применяются в промышленности, на электростанциях и т. Д. Этот двигатель также используется в качестве контроллера напряжения. Эти двигатели применяются в вентиляторах, центробежных насосах, бумажных фабриках, воздуходувках, лифтах, компрессорах. и текстильные фабрики и т. д.

Преимущества

Асинхронный двигатель имеет следующие преимущества.

  • Меньше затрат
  • Простота обслуживания
  • Высокая эффективность при работе с частичной нагрузкой
  • Подходит для высоких скоростей вращения, что позволяет достигать высоких оборотов в секунду вместе с инверторами VECTOPOWER

Применения

Большая часть двигатели, используемые в различных приложениях в мире, являются асинхронными.Приложения в основном включают следующее.

  • Центробежные насосы
  • Воздуходувки
  • Вентиляторы
  • Конвейеры
  • Компрессоры
  • Тяжелые краны
  • Лифты
  • Токарные станки
  • Бумажные фабрики 9017
  • Масляные мельницы Почему асинхронный двигатель еще называют асинхронным двигателем?

    Асинхронный двигатель зависит от индуцированного тока в роторе от вращающегося магнитного поля в статоре.

    2). Какие бывают типы асинхронных двигателей?

    Это однофазные и трехфазные двигатели

    3). В чем главная особенность асинхронного двигателя?

    Основной особенностью этого двигателя является то, что скорость не может изменяться.

    4). Каков коэффициент мощности асинхронного двигателя?

    Этот мотор работает просто на отстающей п.ф.

    Итак, это все об асинхронном двигателе. Эти двигатели часто используются в 90% приложений по всему миру из-за высокой прочности и надежности.Эти двигатели используются в различных движущихся или вращающихся машинах, таких как лифты, вентиляторы, шлифовальные машины и т. Д. Вот вопрос к вам, каковы недостатки асинхронного двигателя?

    Принцип работы и типы асинхронного двигателя

    Асинхронные двигатели — наиболее часто используемые двигатели во многих областях. Их также называют асинхронными двигателями , потому что асинхронный двигатель всегда работает со скоростью ниже синхронной. Синхронная скорость означает скорость вращающегося магнитного поля в статоре.
    В основном существует 2 типа асинхронных двигателей в зависимости от типа входного источника питания — (i) однофазный асинхронный двигатель и (ii) трехфазный асинхронный двигатель.

    Или их можно разделить по типу ротора — (i) двигатель с короткозамкнутым ротором и (ii) двигатель с контактным кольцом или тип

    .

    Основной принцип работы асинхронного двигателя

    В двигателе постоянного тока необходимо подавать питание как на обмотку статора, так и на обмотку ротора. Но в асинхронном двигателе только обмотка статора питается переменным током.
    • Переменный поток создается вокруг обмотки статора из-за источника переменного тока. Этот переменный поток вращается с синхронной скоростью. Вращающийся поток называется «вращающимся магнитным полем» (RMF).
    • Относительная скорость между RMF статора и проводниками ротора вызывает индуцированную ЭДС в проводниках ротора согласно закону электромагнитной индукции Фарадея. Проводники ротора закорочены, и, следовательно, ток ротора возникает из-за наведенной ЭДС. Поэтому такие двигатели называются асинхронными двигателями . (Это действие аналогично тому, что происходит в трансформаторах, поэтому асинхронные двигатели могут называться вращающимися трансформаторами .)
    • Теперь индуцированный ток в роторе также будет создавать вокруг него переменный поток. Этот поток ротора отстает от потока статора. Направление индуцированного тока ротора, согласно закону Ленца, таково, что он будет иметь тенденцию противодействовать причине его возникновения.
    • Поскольку причиной возникновения тока ротора является относительная скорость между магнитным потоком вращающегося статора и ротором, ротор будет пытаться догнать RMF статора.Таким образом, ротор вращается в том же направлении, что и поток статора, чтобы минимизировать относительную скорость. Однако ротору никогда не удается догнать синхронную скорость. Это основной принцип работы асинхронного двигателя любого типа, однофазный или трехфазный.
    Синхронная скорость:

    где, f = частота подачи

    P = количество полюсов

    Квитанция:

    Ротор пытается догнать синхронную скорость поля статора, и, следовательно, он вращается.Но на практике ротор никогда не догоняет. Если ротор достигает скорости статора, не будет относительной скорости между потоком статора и ротором, следовательно, не будет индуцированного тока ротора и создания крутящего момента для поддержания вращения. Однако это не остановит двигатель, ротор замедлится из-за потери крутящего момента, крутящий момент снова будет действовать из-за относительной скорости. Вот почему ротор вращается со скоростью, которая всегда меньше синхронной скорости.

    Разница между синхронной скоростью (N s ) и фактической скоростью (N) ротора называется скольжением.

    ▷ Синхронные и асинхронные двигатели — где их использовать?

    Многие люди часто не понимают, что такое синхронные и асинхронные двигатели, и каковы их области применения. Именно поэтому один из новейших членов сообщества электротехники написал эту статью. Проверьте это ниже:

    Следующая информация касается общих принципов работы синхронных и асинхронных двигателей, их преимуществ, а также где они обычно используются и что можно достичь с помощью каждого из этих двигателей.

    Давайте сначала сконцентрируемся на их принципах работы…

    Синхронные и асинхронные двигатели — Принципы работы

    Синхронные двигатели

    Это типичный электродвигатель переменного тока, способный развивать синхронную скорость. В этих двигателях и статор, и ротор вращаются с одинаковой скоростью, что обеспечивает синхронизацию. Основной принцип работы заключается в том, что когда двигатель подключен к сети, электричество течет в обмотки статора, создавая вращающееся электромагнитное поле.Это, в свою очередь, индуцируется на обмотках ротора, который затем начинает вращаться.

    Требуется внешний источник постоянного тока, чтобы синхронизировать направление и положение вращения ротора с направлением вращения статора. В результате такой блокировки двигатель либо должен работать синхронно, либо не вращаться совсем.

    Асинхронные двигатели

    Принцип работы асинхронных двигателей почти такой же, как и у синхронных двигателей, за исключением того, что к ним не подключен внешний возбудитель.Проще говоря, асинхронные двигатели, также известные как асинхронные двигатели, также работают по принципу электромагнитной индукции, в которых ротор не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.

    Единственная загвоздка в том, что в асинхронных двигателях нет внешнего устройства, подключенного для возбуждения ротора, и, следовательно, скорость ротора зависит от переменной магнитной индукции. Это изменяющееся электромагнитное поле заставляет ротор вращаться со скоростью, меньшей, чем скорость магнитного поля статора.Поскольку скорость ротора и скорость магнитного поля статора меняются, эти двигатели известны как асинхронные двигатели. Разница в скорости известна как «проскальзывание».

    Синхронные и асинхронные двигатели — преимущества и недостатки

    1. Синхронный двигатель работает с постоянной скоростью и заданной частотой независимо от нагрузки. Но скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    2. Синхронный двигатель может работать в широком диапазоне коэффициентов мощности, как с запаздыванием, так и с опережением, тогда как асинхронный двигатель всегда работает с запаздыванием p.f, который может быть очень низким при уменьшении нагрузок.
    3. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель может запускаться самостоятельно.
    4. На крутящий момент синхронного двигателя не влияют изменения приложенного напряжения, как на асинхронный двигатель.
    5. Для запуска синхронного двигателя требуется внешнее возбуждение постоянного тока, но асинхронный двигатель не требует внешнего возбуждения для работы.
    6. Синхронные двигатели обычно дороги и сложны по сравнению с асинхронными двигателями, которые менее дороги и удобны для пользователя.
    7. Синхронные двигатели особенно хороши для низкоскоростных приводов (ниже 300 об / мин), потому что их коэффициент мощности всегда можно отрегулировать до 1,0, и они очень эффективны. С другой стороны, асинхронные двигатели отлично подходят для скоростей выше 600 об / мин.
    8. В отличие от асинхронных двигателей, синхронные двигатели могут работать на сверхнизких скоростях за счет использования мощных электронных преобразователей, которые генерируют очень низкие частоты. Их можно использовать для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.

    Синхронные и асинхронные двигатели — применение

    Приложения для синхронных двигателей
    1. Они обычно используются на электростанциях для достижения соответствующего коэффициента мощности. Они работают параллельно шинам и часто перегружаются извне для достижения желаемого коэффициента мощности.
    2. Они также используются в обрабатывающей промышленности, где используется большое количество асинхронных двигателей и трансформаторов для преодоления запаздывающей p.f.
    3. Используется на электростанциях для выработки электроэнергии с заданной частотой.
    4. Используется для управления напряжением путем изменения его возбуждения в линиях передачи.
    Применение асинхронных двигателей

    Более 90% двигателей, используемых в мире, являются асинхронными двигателями, и они находят широкое применение в самых разных областях. Вот некоторые из них:

    1. Центробежные вентиляторы, нагнетатели и насосы
    2. Компрессоры
    3. Конвейеры
    4. Подъемники, а также краны большой грузоподъемности
    5. Станки токарные
    6. Нефтяные, текстильные, бумажные комбинаты и т. Д.
    Заключение

    В заключение, синхронные двигатели используются только тогда, когда от машины требуются характеристики низкой или сверхнизкой скорости, а также при желаемых коэффициентах мощности (как отстающих, так и опережающих). В то время как асинхронные двигатели преимущественно используются в большинстве вращающихся или движущихся машин, таких как вентиляторы, подъемники, шлифовальные машины и т. Д.

    Что вы думаете об этой статье? Вам это помогло?

    Асинхронный двигатель

    : конструкция, работа и различия

    Асинхронный двигатель является наиболее широко используемым двигателем в отрасли. Практически невозможно представить себе промышленность без использования этого двигателя, поскольку он работает на субсинхронной скорости. известен как асинхронный двигатель.Взяв на себя такую ​​важную роль, становится необходимо изучить ее подробно. В этой статье обсуждается обзор асинхронного двигателя, такой как его определение, работа, конструкция, различия и применения.

    Что такое асинхронный двигатель?

    Определение: Двигатель переменного тока, в котором статор не синхронизирован с ротором и может свободно вращаться со скоростью, меньшей, чем синхронная скорость, из-за скольжения. Это связано с тем, что вращающееся магнитное поле не взаимодействует с индуцированным полем ротора.В этом двигателе крутящий момент создается, когда ротор не совпадает по фазе со статором, а ток, индуцируемый в роторе, следует закону Ленца.

    асинхронный двигатель

    Однако, если ротор каким-то образом выровняется со статором, это приведет к блокировке ротора и крутящего момента не будет. Этот двигатель всегда работает с запаздывающим коэффициентом мощности, так как ротор отстает от статора. Коэффициент мощности этого двигателя в основном зависит от конструкции и тока нагрузки, в отличие от синхронного двигателя, где его можно легко изменить, изменив ток возбуждения.

    Работа асинхронного двигателя

    Этот двигатель работает по принципу закона Ленца, который гласит, что направление тока, индуцируемого в проводнике путем изменения магнитного поля, таково, что магнитное поле, создаваемое индуцированным током, противодействует изменяющемуся магнитному полю, которое создает Это.

    Изменяющееся магнитное поле создается трехфазным или разделенным фазным током, подаваемым на обмотку статора, и поскольку это магнитное поле разрезает проводники ротора, создавая индуцированный ток в роторе, который противодействует изменяющемуся магнитному полю статора.И, таким образом, производя вращательное движение.
    Работа этого двигателя будет продолжена по мере обсуждения конструкции и дизайна.

    Конструкция асинхронного двигателя / Конструкция асинхронного двигателя

    Трехфазный асинхронный двигатель доступен в двух типах

    • Скользящий кольцевой тип или с фазным ротором
    • Тип с короткозамкнутым ротором или с короткозамкнутым ротором

    асинхронный -motor-construction

    Первый тип, т.е. контактные кольца, состоит из реальной обмотки в пазах ротора, которая соединена с контактными кольцами.В этом двигателе мы можем создать сопротивление ротора через контактные кольца и щетки. Это позволяет нам изменять пусковые характеристики двигателя.

    Тип с короткозамкнутым ротором имеет стержни ротора на роторе, которые закорочены через кольца с обеих сторон. Этот тип двигателя имеет фиксированные пусковые характеристики, которые нельзя изменить путем добавления дополнительного сопротивления.

    Тип контактных колец требует технического обслуживания, так как дополнительно имеет контактные кольца и щетки, которые подвержены износу.Остальные основные части, такие как

    • Статор
    • Ротор
    • Обмотки статора
    • Обмотки ротора (для типа ротора с фазным ротором) и стержни клетки с закорачивающими короткими замыканиями (для двигателей с короткозамкнутым ротором)
    • Кроме того, этот двигатель также имеет :
    • Подшипники
    • Торцевые крышки
    • Вентилятор двигателя с крышкой.
    • Клеммная коробка

    Статор и ротор изготовлены из штамповок из кремнистой стали. Это сделано для уменьшения потерь из-за вихревых токов и гистерезиса. Статор может быть подключен к трехфазному источнику питания по схеме треугольника или треугольника. звезда.

    Когда мы подаем питание на статор, потребляемый ток делится на две составляющие, одна из которых является составляющей возбуждения, а другая составляющей нагрузки. Создаваемое таким образом циркулирующее магнитное поле вызывает циркуляционное движение в роторе. Все перечисленные выше детали облегчают вращательное движение ротора.

    Разница между асинхронным двигателем и синхронным двигателем

    Основное различие между ними заключается в скорости, синхронный двигатель вращается со скоростью, которая является скоростью вращающегося магнитного поля и определяется как 120 f / p, где ‘f’ — частота питания, а p — количество полюсов.

    В то время как асинхронный двигатель имеет скорость, которая всегда меньше синхронной скорости из-за скольжения. Можно сказать, что Nas = 120f / p-скольжение. Где Nas означает асинхронную скорость, или мы также можем сказать Nas

    Различие можно увидеть в различных аспектах:

    Технические характеристики Синхронный двигатель

    Асинхронный двигатель

    Тип

    Щеточные двигатели двигатели и двигатели статического возбудителя — это типы двигателей, доступные в синхронном диапазоне. Асинхронный двигатель переменного тока с ротором в клетке или с ротором представляет собой асинхронный двигатель

    Скольжение

    В синхронном двигателе скольжение равно нулю В этом двигателе скольжение не равно нулю

    Требование дополнительного источника питания

    В синхронном двигателе требуется дополнительный источник питания для возбуждения двигателя В случае асинхронного двигателя дополнительный источник питания не требуется

    Контактное кольцо и щетки

    В синхронном двигателе обычно требуются токосъемные кольца и щетки. В этом двигателе контактные кольца и щетки не требуются.

    Стоимость

    Стоимость синхронного двигателя выше

    Стоимость асинхронного двигателя ниже.

    КПД

    КПД синхронного двигателя выше КПД этого двигателя ниже.

    Коэффициент мощности

    В этом двигателе коэффициент мощности можно изменить путем изменения тока возбуждения. Этот двигатель всегда работает с запаздывающими коэффициентами мощности, которые нельзя изменить.

    Скорость

    В этом двигателе скорость не зависит от нагрузки В этом двигателе скорость уменьшается с нагрузкой.

    Пуск

    Синхронный двигатель не самозапускается, однако его можно запустить как трехфазный асинхронный двигатель, и после достижения почти синхронной скорости он может работать как синхронный двигатель.

    Этот двигатель самозапускается и может быть легко запущен с помощью подходящего распределительного устройства.

    Техническое обслуживание

    Синхронный двигатель требует высокого технического обслуживания Асинхронный двигатель требует минимального технического обслуживания

    Крутящий момент

    Изменение напряжения не влияет на крутящий момент синхронного двигателя Крутящий момент этого двигателя пропорционален квадрату напряжения.

    Применения

    Синхронный двигатель используется там, где потребность в мощности высока, например, на сталелитейных заводах / электростанциях и т. Д. Эти двигатели очень широко используются во всех небольших приложениях. Этот двигатель также используется в качестве синхронного конденсатора для повышения коэффициента мощности.

    Применения

    • Этот двигатель находит самое широкое применение в промышленности, поскольку он очень надежен, не требует обслуживания и экономичен. Эти двигатели используют почти 70% энергии в промышленности.
    • Трудно представить себе отрасль, в которой не используются эти двигатели,
    • А именно: бумага, металл, пищевая, перерабатывающая промышленность, такая как цемент, удобрения, перекачивание, транспортировка и т. Д.

    Часто задаваемые вопросы

    1) Что такое принципиальная разница между синхронным и асинхронным двигателем?

    Основное различие заключается в том, что асинхронный двигатель — это двигатель с фиксированной скоростью (синхронный), тогда как скорость асинхронного двигателя всегда меньше синхронной скорости.

    2) Почему асинхронный двигатель находит очень широкое применение в промышленности, а синхронный — нет?

    Этот двигатель практически не требует обслуживания и экономичен.

    3) Можно ли изменить коэффициент мощности асинхронного двигателя?

    Нет, коэффициент мощности этого двигателя не может быть изменен, он немного изменится только в зависимости от нагрузки.

    4) Может ли асинхронный двигатель когда-либо работать с опережающим коэффициентом мощности, как у синхронного двигателя?

    Нет, этот двигатель никогда не может работать с опережающим коэффициентом мощности.

    5). Что произойдет с крутящим моментом асинхронного двигателя, если напряжение питания изменится?

    В этом двигателе крутящий момент прямо пропорционален квадрату напряжения

    6). каково будет влияние изменения частоты на асинхронный двигатель?

    Изменение частоты в некоторой степени влияет на частоту вращения двигателя.

    7). Можем ли мы каким-либо образом изменить частоту вращения асинхронного двигателя?

    Да, мы можем изменить частоту вращения этого двигателя, если мы изменим частоту и напряжение одновременно, сохраняя постоянное соотношение.

    8). Что произойдет, если асинхронный двигатель будет работать в условиях перегрузки?

    Если этот двигатель работает в условиях перегрузки, он потребляет чрезмерный ток и вызовет перегорание двигателя.

    Таким образом, мы можем сделать вывод из вышеизложенного, что асинхронные двигатели широко используются в промышленности, и они предлагают много преимуществ по сравнению с другими типами двигателей, с появлением технологии переменного напряжения и частоты их роль еще больше возросла. Эти двигатели эволюционировали от низкого КПД до очень высокого КПД.Вот вам вопрос, что такое асинхронный двигатель?

    2-3-2. Принцип вращения асинхронного двигателя

    Рис. 2.35 Силовой двигатель для промышленного использования

    Как описано в главе 1, существует много типов двигателей с вращающимся магнитным полем.

    В этой главе рассматриваются силовые двигатели, используемые на заводах (рис. 2.35), и асинхронные двигатели , широко используемые в домашних условиях для электрических вентиляторов и стиральных машин.

    Вводная книга по двигателям объясняет принцип вращения асинхронного двигателя с использованием диска Arago (см.рис.2.42).

    Ротор обычных асинхронных двигателей имеет конструкцию, показанную на рис. 2.36 (а). Если вы разберете ротор, вы увидите, что это не диск и что он состоит из пластины из кремнистой стали и алюминиевой детали в форме клетки, как показано на рис. 2.36 (b). Такой ротор называется короткозамкнутым ротором .

    Использование диска Араго для объяснения принципа вращения двигателей, оснащенных короткозамкнутым ротором, неуместно. Это может быть лучше объяснено подходом, используемым для двигателей постоянного тока.

    Рис. 2.36 Конструкция ротора с короткозамкнутым ротором

    Как показано на Рис. 2.37, замкнутая катушка помещена в магнитное поле, а внешний магнит вращается. Затем, как видно из принципа выработки энергии в двигателях постоянного тока, в катушке происходит выработка энергии, и через катушку протекает ток.

    По мере протекания тока катушка создает крутящий момент, который взаимодействует с исходным магнитным полем, а затем катушка начинает вращаться.

    Если увеличить количество витков, как показано на рис.2.38 можно заменить катушки на обойму.

    А именно, обойма асинхронных двигателей соответствует обмотке двигателей постоянного тока.

    Рис. 2.37 Принцип вращения асинхронных двигателей Рис. 2.38 Замена с короткозамкнутым ротором

    Ниже приводится краткое описание принципа вращения асинхронных двигателей.

    • <1> Вращение магнитного поля
    • <2> Генерация индукционного тока
    • <3> Возникновение силы при взаимодействии тока и магнитного поля
    • <4> Вращение ротора

    На реальных двигателях механизм последовательно возбуждает несколько катушек вместо перемещения магнитов для получения того же эффекта.Чтобы изменить возбуждение, необходимы две или несколько синусоид, сдвинутых во времени.

    Обычно на заводах используются трехфазные 200 В переменного тока, сдвинутые на 120 градусов друг от друга (рис. 2.39).

    Рис. 2.39 При использовании трехфазного переменного тока с фазами, смещенными друг от друга на 120 градусов

    Поскольку источник питания для домашнего использования однофазный 100 В переменного тока, мы должны создать, так или иначе, синусоидальную волну, смещенную от этого источника питания при использовании асинхронного двигателя. Один из способов — увеличить фазу тока катушки на 90 градусов с помощью конденсатора.Двигатель, который работает таким образом, называется однофазным двигателем с конденсаторным управлением.

    Однофазный двигатель с конденсаторным питанием создает вращающееся магнитное поле с помощью набора из двух обмоток, одна из которых является главной обмоткой, которая подключена непосредственно к источнику питания, а другая — вспомогательной обмоткой, которая подключена к источнику питания через конденсатор. .

    Конструкция конденсаторного двигателя показана на рис. 1.2 главы 1.

    Принцип работы однофазного асинхронного двигателя

    Производство вращающегося поля

    Рассмотрим две обмотки «A» и «B», смещенные так, что они создают магнитное поле на 90 ° друг от друга в пространстве.Результатом этих двух полей является вращающееся магнитное поле постоянной величины & phiv; м . Неоднородное магнитное поле создает неоднородный крутящий момент, который делает работу двигателя шумной и влияет на пусковой крутящий момент.


    Рисунок: Создание однородного магнитного поля.

    Принцип пуска

    Однофазный асинхронный двигатель состоит из однофазной обмотки на статоре и клеточной обмотки на роторе. Когда к обмотке статора подключен однофазный источник питания, создается пульсирующее магнитное поле.В пульсирующем поле ротор не вращается по инерции. Следовательно, однофазный асинхронный двигатель не запускается автоматически и требует определенных средств запуска. Были предложены две теории для определения характеристик однофазного асинхронного двигателя.

    1. Теория двойного вращающегося поля.
    2. Теория кросс-поля.

    Теория двойного вращающегося поля

    Эта теория для однофазной системы утверждает, что стационарное пульсирующее магнитное поле может быть разделено на два RMF, каждая из которых имеет одинаковую величину, но вращается в противоположном направлении.

    Асинхронная машина реагирует на каждое магнитное поле отдельно, и чистый крутящий момент в двигателе равен некоторой части крутящего момента, создаваемого каждым из двух магнитных полей.

    Уравнение переменного магнитного поля, ось которого зафиксирована в пространстве:

    β max — максимальное значение плотности потока синусоидально распределенного воздушного зазора. «B» представляет уравнение вращающегося поля, движущегося в положительном направлении α, а «A» представляет уравнение вращающегося поля, движущегося в положительном направлении.Поле, движущееся в положительном направлении α, называется полем, вращающимся вперед, а в направлении отрицательного α — полем, вращающимся назад.

    Таким образом, делается вывод, что стационарное пульсирующее магнитное поле может быть разрешено за счет двух вращающихся магнитных полей, оба одинаковой величины и движущихся с синхронной скоростью в противоположном направлении с той же частотой, что и стационарное магнитное поле.

    Теория, основанная на таком разрешении переменного поля на два поля, вращающихся в противоположных направлениях, называется теорией поля Double Revolving однофазной индукционной машины.

    Что такое трехфазный двигатель и как он работает?

    Трехфазные двигатели (также численно обозначаемые как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы. Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает на принципах электромагнитной индукции.Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленных приложениях, но широко используются в домашних условиях, таких как пылесосы, компрессоры холодильников и кондиционеры, из-за использования однофазных двигателей. фаза переменного тока в домах и офисах. В этой статье мы обсудим, что такое трехфазный двигатель, и опишем, как он работает. Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, охватывающим двигатели переменного тока, двигатели постоянного тока, асинхронные двигатели, или к более общей статье о типах двигателей.Полный список статей о моторах можно найти в разделе статей по теме.

    Что такое трехфазное питание?

    Чтобы понять трехфазные двигатели, полезно сначала понять трехфазную мощность.

    При производстве электроэнергии переменный ток (AC), создаваемый генератором, имеет характеристику, заключающуюся в том, что его амплитуда и направление меняются со временем. Если показано графически с амплитудой по оси Y и временем по оси X, соотношение между напряжением или током в зависимости отвремя будет напоминать синусоидальную волну, как показано ниже:

    Рисунок 1 — Однофазный переменный ток

    Изображение предоставлено: Фуад А. Саад / Shutterstock.com

    Электроэнергия, подаваемая в дома, является однофазной, это означает, что имеется один токоведущий провод плюс нейтраль и заземление. В трехфазном питании, которое используется в промышленных и коммерческих условиях для работы более крупного оборудования, которое требует большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o из 2π / 3. радианы друг от друга.Если рассматривать графически, каждая фаза будет выглядеть как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:

    Рисунок 2 — Трехфазное электрическое питание со сдвигом фаз 120
    o между каждой фазой

    Изображение предоставлено: teerawat chitprung / Shutterstock.com

    Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для выработки механической энергии в виде вращающегося вала двигателя.

    Что такое трехфазный двигатель?

    Трехфазные двигатели — это тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть асинхронными двигателями (также называемыми асинхронными двигателями) или синхронными двигателями. Двигатели состоят из трех основных компонентов — статора, ротора и корпуса.

    Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образуя индукционные катушки, по одной катушке на каждую фазу источника электроэнергии.Катушки статора питаются от трехфазного источника питания.

    Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и представляет собой компонент двигателя, который вращается для выработки механической энергии на выходе двигателя.

    Корпус двигателя удерживает ротор с валом двигателя на комплекте подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, которые удерживают подшипниковые опоры и вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя.Вращающийся вентилятор втягивает окружающий воздух снаружи корпуса и заставляет воздух проходить через статор и ротор для охлаждения компонентов двигателя и рассеивания тепла, которое генерируется в различных катушках от сопротивления катушки. Кожух также обычно имеет выступающие механические ребра снаружи, которые служат для дальнейшего отвода тепла в наружный воздух. Торцевая крышка также обеспечит место для электрических соединений для трехфазного питания двигателя.

    Как работает трехфазный двигатель?

    Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году.Фарадей заметил, что когда проводник, такой как катушка или проволочная петля, помещается в изменяющееся магнитное поле, в проводнике возникает наведенная электродвижущая сила или ЭДС. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле и что магнитное поле будет изменяться, когда ток в проводе изменяется по величине или направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения магнитного потока во времени:

    Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.

    На рисунке 3 ниже показан закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, которое приводит к изменению магнитного поля.

    Рисунок 3 — Принцип электромагнитной индукции

    Изображение предоставлено: Фуад А. Саад / Shutterstock.com

    Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка генерирует магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток колеблется в течение полного цикла.Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120, или , магнитная полярность трех катушек не одинакова в один и тот же момент времени. Это состояние приводит к тому, что статор создает так называемое RMF или вращающееся магнитное поле. Поскольку ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к возникновению противоположного магнитного поля, создаваемого ротором. Поле ротора стремится выровнять свою полярность относительно поля статора, в результате к валу двигателя прикладывается чистый крутящий момент, и он начинает вращаться, пытаясь выровнять свое поле.Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.

    В трехфазных асинхронных двигателях ротор стремится поддерживать соосность с RMF статора, но никогда не достигает этого, поэтому асинхронные двигатели также называют асинхронными. Явление, которое заставляет скорость ротора отставать от скорости RMF, известно как скольжение, что выражается как:

    , где N r — это скорость ротора, а N s — синхронная скорость вращающегося поля (RMF) статора.

    Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставляет ротор вращаться с точно такой же скоростью вращения (в синхронизация — значит, скольжение равно 0). Для получения дополнительной информации о том, как это сделать, обратитесь к статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных двигателей, не нуждаются в питании от сети переменного тока.

    Контроллеры двигателей для 3-фазных двигателей

    Скорость, создаваемая трехфазным двигателем переменного тока, является функцией частоты сети переменного тока, поскольку она является источником RMF в обмотках статора. Поэтому некоторые контроллеры двигателей переменного тока работают, используя вход переменного тока для генерации модулированной или управляемой частоты на входе двигателя, тем самым управляя скоростью двигателя. Другой подход, который можно использовать для управления скоростью двигателя, — это изменение скольжения (описано ранее).Если скольжение увеличивается, скорость двигателя (то есть скорость ротора) уменьшается.

    Чтобы узнать больше о подходах к управлению двигателями, просмотрите нашу статью о контроллерах двигателей переменного тока.

    Сводка

    В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

    Источники:
    1. https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
    2. https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
    3. http://www.oddparts.com/oddparts/acsi/defines/poles.htm
    4. http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
    5. https://www.elprocus.com/induction-motor-types-advantages/
    6. https: // www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
    7. https://www.worldwideelectric.net/resource/construction-ac-motors/

    Прочие изделия из двигателей

    Больше от Machinery, Tools & Supplies

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *