Асинхронные двигателя: Асинхронные электродвигатели подбор по характеристикам

Содержание

Асинхронный электродвигатель: устройство и принцип работы

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.


Асинхронные электродвигатели: схема, принцип работы и устройство

Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора. Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится. Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают). 

В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.

Устройство и принцип действия

Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.

Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.

Асинхронный двигатель

Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.

Виды асинхронных двигателей

Можно выделить 3 базовых типа асинхронных электродвигателей:

  • 1-фазный – с короткозамкнутым ротором
  • 3-х фазный – с короткозамкнутым ротором
  • 3-х фазный – с фазным ротором

Схема устройства асинхронного двигателя с короткозамкнутым ротором

То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.

Ещё одна разновидность – асинхронный двигатель с массивным ротором. Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки). Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.

Какой ротор лучше, фазный или короткозамкнутый?

Преимущества короткозамкнутого:

  • Более-менее постоянная скорость вне зависимости от разных нагрузок
  • Допустимость кратковременных механических перегрузок
  • Простая конструкция, легкость пуска и автоматизации
  • Более высокие cos φ (коэффициент мощности) и КПД, чем у электродвигателей с фазным ротором

Недостатки:

  • Трудности в регулировании скорости вращения
  • Большой пусковой ток
  • Низкий мощностной коэффициент при недогрузках

Преимущества фазного:

  • Высокий начальный вращающий момент
  • Допустимость кратковременных механических перегрузок
  • Более-менее постоянная скорость при разных перегрузках
  • Меньший пусковой ток, чем у двигателей с короткозамкнутым ротором
  • Возможность использования автоматических пусковых устройств

Недостатки:

  • Большие габариты
  • Коэффициент мощности и КПД ниже, чем у электродвигателей с короткозамкнутым ротором

Какой двигатель лучше выбрать?

Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

  • Относительно небольшая стоимость
  • Низкие эксплуатационные затраты
  • Отсутствие необходимости в преобразователях при включении в сеть (только для нагрузок, не нуждающихся в регулировании скорости)
  • Отсутствие потребности в дополнительном источнике питания – в отличие от синхронных аналогов

Тем не менее, у асинхроников есть недостатки. А именно:

  • Малый пусковой момент
  • Высокий пусковой ток
  • Отсутствие возможности регулировки скорости при подключении к сети
  • Ограничение максимальной скорости частотой сети
  • Высокая зависимость электромагнитного момента от напряжения питающей сети
  • Низкий мощностной коэффициент – в отличие от синхронных агрегатов

Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

  • Высокий пусковой ток
  • Слабый пусковой момент
  • Рассинхрон между механическим моментом на валу привода и механической нагрузкой (это провоцирует высокий рост силы тока и избыточные нагрузки при запуске, а также снижение КПД при пониженной нагрузке)
  • Невозможность точной регулировки скорости работы прибора

Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:

  • степень загрузки двигателя по отношению к номинальной
  • конструкция и модель
  • степень износа
  • отклонение напряжения в сети от номинального.

Как избежать снижения КПД?

  • Обеспечение стабильного уровня загрузки – не ниже 75%
  • Увеличение мощностного коэффициента
  • Регулировать напряжение и частоту подаваемого тока

Для этого используются:

  • Частотные преобразователи – они плавно изменяют скорость вращения двигателя путем изменения частоты питающего напряжения
  • Устройства плавного пуска – они ограничивают скорость нарастания пускового тока и его предельное значение, как одни из факторов, из-за которых падает КПД

Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.


Принцип работы асинхронного электродвигателя | Русэлт

Асинхронные электродвигатели – это устройства, главным назначением которых является преобразование энергии переменного электротока в механическую. Своим названием двигатель обязан асинхронному типу вращения ротора относительно частоты вращения магнитного поля, индуцирующего электроток в обмотке статора.

Принцип работы на примере асинхронного электродвигателя трехфазного тока

Этот тип электрического двигателя наиболее часто применяется в различных сферах промышленности. Двигатель имеет 3-и обмотки на статоре, со смещением на 120 градусов. Обмотки запитаны переменным током и объединены по схеме «звезда» или «треугольник». При подаче напряжения на обмотку статора во всех трёх фазах появится магнитный поток.

Вместе с изменением частоты напряжения на обмотке статора, изменяется и магнитный поток. Фазы и магнитные потоки смещены относительно друг друга на сто двадцать градусов. Суммарный магнитный поток и будет вращающимся магнитным потоком, создающим электродвижущую силу (ЭДС). ЭДС, в замкнутой электроцепи обмотки ротора, индуцирует электроток. Во взаимодействии с магнитным потоком статора, ток создает пусковой момент электрического двигателя. Ротор начинает вращение в таком же направлении, что и магнитное поле статора при превышении пусковым моментом двигателя его тормозного момента.

Преимущества и недостатки асинхронных электродвигателей

Простота эксплуатации и хорошая ремонтопригодность – главные достоинства асинхронного двигателя, сделавшие его наиболее востребованным в очень разных сферах машиностроения и приборостроения. Привлекает и:

  • Сравнительно невысокая цена;
  • Надёжность
  • Несложность подсоединения в общую электроцепь устройств.

Асинхронные электродвигатели имеют и ряд недостатков:

  • Трудности с точным регулированием скорости;
  • Большой пусковой ток;
  • Относительно невысокий коэффициент мощности.

По типу обмотки ротора, короткозамкнутой или фазной, асинхронные двигатели, подразделяются на 2 типа:

  • Электродвигатели с короткозамкнутым ротором имеют обмотку, замыкающуюся на сам ротор;
  • Электродвигатели с фазным ротором – обмотку с концами, выведенными на щеточно-коллекторный узел.

Преимущество двигателя с фазным ротором в том, что скорость вращения можно регулировать путем подключения дополнительных сопротивлений (реостатного регулирования).

Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

  • Просмотров: 90499
  • Асинхронные электродвигатели

    Асинхронные погружные электродвигатели (ПЭД) — это наиболее широко используемый тип двигателей для привода электроцентробежных насосов. Несмотря на то, что они не способны развивать высокие обороты, как двигатели на постоянных магнитах (вентильные), они доказали свою надежность в ходе эксплуатации, обладают меньшей себестоимостью и трудоемкостью изготовления. Стандартные асинхронные двигатели просты в эксплуатации и доступны в широком диапазоне типоразмеров по мощности, габариту и исполнению.

    От технического уровня на стадии проекта, качества изготовления и надежной работы двигателя зависит долговечная работа установки. Компания «Новомет» имеет собственную научно-техническую базу для проектирования, изготовления и испытания опытных образцов, а также производственную базу для серийного изготовления погружных электродвигателей.

    область применения

    • Применяются в качестве привода центробежных насосов, применяемых для откачки пластовой жидкости.

    возможности

    • Выпускаются в габаритах от 96 мм до 185 мм
    • Номинальная мощность в диапазоне от 16 до 650 кВт

    особенности

    • Широкая линейка типоразмеров по мощности и габариту
    • Применение компаундированного статора позволяет добиться полной герметезации обмоток, устранить перегрев, увеличить сопротивление изоляции в 10 раз
    • Фильтр для масла в основании двигателя позволяет продлить срок безотказной эксплуатации
    Наружный диаметр двигателя

    Номинальная мощность

    1 секция

    2 секции

    3 секции

    96 мм

    3.78 дюйма

    16-32 кВт (@50Гц)

    45-56 кВт (@50Гц)

    70-100 кВт  (@50Гц)

    103 мм

    4.06 дюйма

    16-90 кВт  (@50Гц)

    63-160 кВт  (@50Гц)

    140-250 кВт  (@50Гц)

    117 мм

    4.60 дюйма

    12-125 кВт (@50Гц)

    90-250 кВт (@50Гц)

    270-400 кВт  (@50Гц)

    130 мм

    5.12 дюйма

    22-140 кВт (@50Гц)

    160-300 кВт (@50Гц)

    350-560 кВт  (@50Гц)

    143 мм

    5.62 дюйма

    63-220 кВт  (@50Гц)

    260-440 кВт  (@50Гц)

    555 кВт  (@50Гц)

    185 мм

    7.44 дюйма

    100-400 кВт  (@50Гц)

    345-650 кВт (@50Гц)

     

    В настоящее время компанией «НОВОМЕТ» производится широкая линейка асинхронных электродвигателей, освоено 6 габаритов: 96, 103, 117, 130, 143 и 185 мм. Число типоразмеров ПЭД – от 7 до 28 в каждом габарите диапазон мощностей – от 8 до 650 кВт. Обширная номенклатура позволяет подобрать наиболее оптимальное сочетание двигатель-насос, для обеспечения работы установки с максимально возможным КПД.

    В зависимости от конструкции электродвигатели могут изготавливаться в различных модификациях, например с трубчатым охладителем (для температуры окружающей среды до 200°С), с двухсторонним выходом вала (для установок перевернутого типа, или присоединения погружного сепаратора механических примесей).

    Электродвигатели оснащаются погружным блоком контроля параметров установки различных производителей, в том числе ТМС-Новомет.

    Погружной электродвигатель состоит из основных элементов: неподвижного статора, вращающегося ротора, головки с токовводом и основания. Электродвигатель выполняется маслозаполненным. В головке электродвигателя, расположенной в верхней части, размещена колодка токоввода и узел упорного подшипника, который воспринимает осевые нагрузки от веса ротора. Основание расположено в нижней части электродвигателя и содержит фильтр для очистки масла. Головка и основание герметично соединены с корпусом статора резьбой.

    Основные направления совершенствования асинхронных электродвигателей общего назначения

    следующая новость >

    Основные направления совершенствования асинхронных электродвигателей общего назначения

    Низковольтные асинхронные электродвигатели общего назначения мощностью 0,25…400 кВт, именуемые во всем мире стандартные асинхронные двигатели, составляют основу силового электропривода, применяемого во всех областях человеческой деятельности. Они потребляют до 40% производимой электроэнергии, поэтому их совершенствованию в промышленно развитых странах придают большое значение. Каковы основные направления на этом пути – поделились со СМИ эксперты «НИПТИЭМ».

    В настоящее время внутренний рынок России, призванный отражать интересы потребителей, не формулирует сколько-нибудь определенных требований к стандартным асинхронным двигателям, кроме ценовых. В связи с этим для выявления тенденций их совершенствования будем исходить из требований внешнего рынка, на котором уже работают российские заводы, и из достижений основных зарубежных производителей стандартных асинхронных двигателей.

    ЭНЕРГОСБЕРЕЖЕНИЕ

    Ведущие фирмы-производители выпускают энергосберегающие стандартные асинхронные двигатели мощностью 15-30 кВт и более. В этих двигателях потери электроэнергии снижены не менее, чем на 10 % по сравнению с ранее производимыми двигателями с «нормальным» КПД (h). При этом КПД энергосберегающего двигателя можно определить как hэ = h / [1 — е (1 — h)], где е — относительное снижение суммарных потерь в двигателе. Очевидно, производство энергосберегающих электродвигателей связано с дополнительными затратами, которые можно оценить с помощью коэффициента удорожания Ку = 1 + (1 — h) е2.100. Результаты расчетов показывают, что в условиях России дополнительные затраты, связанные с приобретением энергосберегающих электродвигателей, окупаются за счет экономии электроэнергии за 2-3 года в зависимости от мощности двигателя. При этом срок окупаемости более мощных двигателей меньше, так как эти двигатели имеют большую годовую наработку и более высокий коэффициент загрузки. В ряде стран вопросы энергосбережения в стандартных асинхронных двигателях связывают не столько со снижением эксплуатационных затрат, сколько с экологическими проблемами, обусловленными производством электроэнергии.

    ПОВЫШЕНИЕ РЕСУРСА. СНИЖЕНИЕ УРОВНЯ ШУМА

    С энергосбережением — уменьшением потерь в асинхронном двигателе — неразрывно связано повышение его ресурса вследствие снижения температуры его обмоток. При применении системы изоляции класса нагревостойкости F (qб = 100оС и qб — q = 20°С, где qб и q — превышение температуры обмоток над температурой окружающей среды, соответствующее базовому ресурсу и фактическое) теоретический ресурс системы изоляции обмотки увеличивается в 4 раза согласно известному соотношению Тсл = Тсл.б ехр [-0,1 ln2 (qб — q)], где Тсл и Тсл.б — средний и базовый ресурсы системы изоляции обмоток, причем Тсл.б = 20.103 ч. В действительности ресурс обмотки определяется не только термодеструкцией, но и другими факторами (коммутационным перенапряжением, механическими усилиями, влажностью и др.), поэтому он увеличивается не так значительно, но при этом не менее, чем в 2 раза. Руководствуясь этими соображениями, европейские фирмы-производители стандартных асинхронных двигателей придерживаются правила применения систем изоляции класса нагревостойкости F (qб = 100°С) при превышении температуры обмоток, соответствующем базовому для систем изоляции класса нагревостойкости В (qб = 80°С). Снижение температуры обмоток стандартных асинхронных двигателей способом охлаждения ICO141 МЭК 60034-6 позволяет в уменьшить диаметр вентилятора наружного обдува и существенно (до 5 дБ(А)) снизить уровень вентиляционного шума, который в двигателях с частотой вращения 3000 и 1500 мин-1 является определяющим.

    СЕРВИС-ФАКТОР

    Декларирование сервис-фактора означает, что двигатель, работающий при номинальных напряжении и частоте может быть перегружен до мощности, получаемой путем умножения номинального значения на сервис-фактор. Обычно сервис-фактор принимают равным 1,15, реже — 1,1. При этом превышение температуры обмоток должно быть не более 90 и 115°С для систем изоляции класса нагревостойкости В и F соответственно. Применение двигателей с сервис-фактором позволяет:
    — избежать переустановленной мощности для двигателей, работающих с систематическими перегрузками до 15 %;
    — эксплуатировать двигатели в сетях с существенными колебаниями напряжения без снижения нагрузки;
    — эксплуатировать двигатели при повышенной температуре окружающей среды без снижения нагрузки.
    Результаты расчетов показывают, что при равномерном распределении перегрузок во всем временном интервале допустимая суммарная длительность работы двигателя, имеющего сервис-фактор 1,15, с 15 %-ной перегрузкой составляет треть ресурса. И в этом случае энергосберегающие двигатели с изоляцией класса нагревостойкости F и превышением температуры обмоток, соответствующем классу В, автоматически имеют сервис-фактор 1,15.

    УНИВЕРСАЛЬНОСТЬ ПИТАНИЯ

    В настоящее время большинство стандартных асинхронных двигателей в России выпускают на напряжение сети 380 В при частоте 50 Гц. Вместе с тем МЭК предусматривает к 2003 г. переход на напряжение 400 В (публикация МЭК 60038). При этом необходимо будет обеспечивать длительную работу двигателя при отклонениях напряжения от номинального ±10 % (сейчас это ограничение установлено на уровне ±5 % — публикация МЭК 60031-1). Для обеспечения работы двигателя при пониженном на 10 % напряжении питания потребуются новые подходы при проектировании с целью создания соответствующих температурных запасов. Следует отметить, что и в этом случае для энергосберегающих двигателей с сервис-фактором 1,15 проблем не будет. Все европейские фирмы уже производят стандартные асинхронные двигатели на напряжение 400 В, российские заводы — пока только для поставок на экспорт. Одним из насущных требований европейского рынка является обеспечение возможности работы двигателя при напряжении 400 В и частоте 50 Гц от сети 480 В и 60 Гц при повышенной на 20 % номинальной мощности. Такую возможность также следует предусматривать при проектировании новых машин.

    ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ

    Вопросы электромагнитной совместимости (ЭМС) в настоящее время приобретают все большее значение при освоении и сертификации новых серий электродвигателей. ЭМС электродвигателя определяется его способностью в реальных условиях эксплуатации функционировать при воздействии случайных электрических помех и при этом не создавать недопустимых радиопомех другим средствам. Помехи от электродвигателя могут возникать в присоединенных к нему цепях питания, заземления, управления, в окружающем пространстве. ГОСТ Р 50034-92 устанавливает нормы на уровни устойчивости двигателей к отклонениям напряжения и частоты, несимметрии и несинусоидальности питающего трехфазного напряжения, а также методы испытания двигателей на устойчивость к помехам. Вместе с тем при проектировании и производстве асинхронных двигателей для внешнего рынка необходимо руководствоваться публикацией МЭК 1000-2-2, в которой установлены уровни совместимости для низкочастотных распространяющихся по проводам помех и передаче сигналов в низковольтных системах электропитания. При этом измерительное оборудование должно обеспечивать и спектральный анализ на базе компьютерных информационно-измерительных систем.

    ВОЗМОЖНОСТЬ РАБОТЫ В СИСТЕМАХ РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА

    При работе от преобразователя частоты (ПЧ) в ряде случаев необходимо предусматривать защиту двигателя от перенапряжения (если это не предусмотрено в системе) путем усиления витковой и корпусной изоляции. Большинство выпускаемых и применяемых в настоящее время ПЧ, рассчитанных на среднюю мощность до 3000 кВт, по своей структуре являются инверторами. Выходное трехфазное напряжение в этих ПЧ формируется методом широтно-импульсной модуляции, что приводит к воздействию на изоляцию (витковую, межфазовую) электродвигателя напряжения импульсной формы, амплитуда которого значительно превышает амплитуду первой гармоники выходного напряжения. Это приводит к преждевременному старению изоляции и снижению срока службы обмотки и двигателя в целом. Увеличение срока службы асинхронного двигателя общепромышленного применения в составе регулируемого привода может и должно быть обеспечено схемотехническими решениями ПЧ или введением специальных фильтрующих устройств в цепь питания электродвигателя. Разработка ПЧ и регулируемого электродвигателя в едином конструктивном исполнении позволяет оптимизировать систему электропривода не только по массогабаритным показателям и удобству обслуживания, но и с позиций единой системы независимого теплоотвода решить вопрос охлаждения машины на малых частотах вращения. При регулировании частоты вращения, превышающей синхронную, следует применять подшипники соответствующей быстроходности. В связи с этим в публикации МЭК 60034- 1 предусмотрено значительное увеличение предельных скоростей, допускаемых для стандартных асинхронных двигателей.

    Авторы: Кравчик А.Э., д.т.н., Андрианов М.В., к.т.н.

    NORD — Электродвигатели NORD DRIVEYSTEMS

    Электродвигатели

    Большая мощность, маленький расход

    NORD поставляет широкий спектр электродвигателей, которые отвечают всем принятым мировым требованиям и стандартам эффективности. Наши двигатели находят применение в многочисленных приложениях, потому что они не только мощные и прочные, но и комбинируются со всеми редукторами NORD.

    Будь то в мешалках, конвейерных системах, внутрипроизводственной логистике или пищевой промышленности, электродвигатели NORD можно найти везде, где требуется высокая мощность. Они работают надежно и с очень высоким КПД (до 95 процентов) на протяжении многих лет. Это позволяет нашим клиентам экономить на эксплуатационных расходах и одновременно сохраняет окружающую среду.

    Доводы в пользу покупки электродвигателей NORD:

    • Максимальная эффективность
      Наши электродвигатели соответствуют требованиям действующего стандарта IEC 60034-30-1: 2014 и EUP 640/2009, а экономичные синхронные двигатели – даже самому высокому классу эффективности IE4.
    • Лучшее качество
      Мы производим все двигатели на собственном производстве в соответствии со строгими стандартами.
    • Высокая эксплуатационная готовность
      Благодаря нашему собственному производству мы можем доставить все наши электродвигатели за короткое время по всему миру.
    • Высокая гибкость
      Благодаря одинаковым размерам двигателей вы можете легко переходить с одного класса энергоэффективности на следующий, без необходимости проведения механической регулировки.

    Экономичные и сильные: наши электродвигатели

    Электрические приводы в промышленных применениях расходуют до 70 процентов от общей потребляемой энергии. Для многих компаний здесь открывается большой потенциал для оптимизации.

    Поэтому мы в NORD разработали серию мощных энергосберегающих двигателей. Эти одиночные двигатели характеризуются очень высоким КПД и иногда значительно эффективнее, чем это требует актуальное постановление ЕС.

    Энергоэффективные электродвигатели NORD подходят практически для любого применения. Самая экономичная серия IE4 выпускается в трех типоразмерах с мощностью от 1,1 до 5,5 кВт.

    Вы хотите значительно сократить свои затраты на энергию? Тогда получите информацию о наших энергоэффективных синхронных двигателях IE4 прямо сейчас!

    Нажмите здесь

    Электродвигатели для особых областей применения

    В некоторых областях применения стандартные двигатели не могут быть использованы, например, потому что условия окружающей среды слишком суровы, транспортируемые грузы слишком тяжелые или существует опасность взрыва.

    Для таких случаев в нашем ассортименте есть специальные двигатели в диапазоне мощности от 0,12 до 30 кВт: взрывозащищенные версии доступны в вариантах для использования в пылевой атмосфере и в газовой атмосфере. Наши двигатели сертифицированы в соответствии с требованиями ATEX, IECEx и HazLoc. Посмотрите, как ведут себя наши одиночные двигатели в сложнейших условиях на сталелитейном заводе!

    Посмотреть видео

    ▷ Синхронные и асинхронные двигатели — где их использовать?

    Многие люди часто не понимают, что такое синхронные и асинхронные двигатели, и каковы их области применения. Именно поэтому один из новейших членов сообщества электротехники написал эту статью. Проверьте это ниже:

    Следующая информация касается общих принципов работы синхронных и асинхронных двигателей, их преимуществ, а также где они обычно используются и чего можно достичь с помощью каждого из этих двигателей.

    Давайте сначала сконцентрируемся на их принципах работы…

    Синхронные и асинхронные двигатели — Принципы работы

    Синхронные двигатели

    Это типичный электродвигатель переменного тока, способный развивать синхронную скорость. В этих двигателях и статор, и ротор вращаются с одинаковой скоростью, что обеспечивает синхронизацию. Основной принцип работы заключается в том, что когда двигатель подключен к сети, электричество течет в обмотки статора, создавая вращающееся электромагнитное поле.Это, в свою очередь, индуцируется на обмотках ротора, который затем начинает вращаться.

    Требуется внешний источник постоянного тока, чтобы синхронизировать направление и положение вращения ротора с направлением вращения статора. В результате такой блокировки двигатель либо должен работать синхронно, либо не вращаться совсем.

    Двигатели асинхронные

    Принцип работы асинхронных двигателей почти такой же, как и у синхронных двигателей, за исключением того, что к ним не подключен внешний возбудитель.Проще говоря, асинхронные двигатели, также известные как асинхронные двигатели, также работают по принципу электромагнитной индукции, в которых ротор не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.

    Единственная загвоздка в том, что в асинхронных двигателях нет внешнего устройства, подключенного для возбуждения ротора, и, следовательно, скорость ротора зависит от переменной магнитной индукции. Это изменяющееся электромагнитное поле заставляет ротор вращаться со скоростью, меньшей, чем скорость магнитного поля статора.Поскольку скорость ротора и скорость магнитного поля статора меняются, эти двигатели известны как асинхронные двигатели. Разница в скорости известна как «проскальзывание».

    Синхронные и асинхронные двигатели — преимущества и недостатки

    1. Синхронный двигатель работает с постоянной скоростью и заданной частотой независимо от нагрузки. Но скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    2. Синхронный двигатель может работать в широком диапазоне коэффициентов мощности, как с запаздыванием, так и с опережением, тогда как асинхронный двигатель всегда работает с запаздыванием p.f, который может быть очень низким при уменьшении нагрузок.
    3. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель может запускаться самостоятельно.
    4. На крутящий момент синхронного двигателя не влияют изменения приложенного напряжения, как на асинхронный двигатель.
    5. Для запуска синхронного двигателя требуется внешнее возбуждение постоянного тока, но асинхронный двигатель не требует внешнего возбуждения для работы.
    6. Синхронные двигатели обычно дороги и сложны по сравнению с асинхронными двигателями, которые менее дороги и удобны для пользователя.
    7. Синхронные двигатели особенно хороши для низкоскоростных приводов (ниже 300 об / мин), потому что их коэффициент мощности всегда можно отрегулировать до 1,0, и они очень эффективны. С другой стороны, асинхронные двигатели отлично подходят для скоростей выше 600 об / мин.
    8. В отличие от асинхронных двигателей, синхронные двигатели могут работать на сверхнизких скоростях за счет использования мощных электронных преобразователей, которые генерируют очень низкие частоты. Их можно использовать для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.

    Синхронные и асинхронные двигатели — применение

    Приложения для синхронных двигателей
    1. Они обычно используются на электростанциях для достижения соответствующего коэффициента мощности. Они работают параллельно шинам и часто перегружаются извне для достижения желаемого коэффициента мощности.
    2. Они также используются в обрабатывающей промышленности, где используется большое количество асинхронных двигателей и трансформаторов для преодоления запаздывающей p.f.
    3. Используется на электростанциях для выработки электроэнергии с заданной частотой.
    4. Используется для управления напряжением путем изменения его возбуждения в линиях передачи.
    Применение асинхронных двигателей

    Более 90% двигателей, используемых в мире, являются асинхронными двигателями, и они находят широкое применение в самых разных областях. Некоторые из них:

    1. Центробежные вентиляторы, нагнетатели и насосы
    2. Компрессоры
    3. Конвейеры
    4. Подъемники, а также краны большой грузоподъемности
    5. Станки токарные
    6. Масляные, текстильные, бумажные комбинаты и т. Д.
    Заключение

    В заключение, синхронные двигатели используются только тогда, когда от машины требуются характеристики низкой или сверхнизкой скорости, а также при желаемых коэффициентах мощности (как отстающих, так и опережающих). В то время как асинхронные двигатели преимущественно используются в большинстве вращающихся или движущихся машин, таких как вентиляторы, подъемники, шлифовальные машины и т. Д.

    Что вы думаете об этой статье? Вам это помогло?

    Асинхронный двигатель | КСБ

    Асинхронный двигатель имеет пассивный ротор, который закорочен постоянно (короткозамкнутый ротор) или временно (см. Ротор с контактным кольцом).Он может производить до нескольких мегаватт и чаще всего используется в качестве стандартного трехфазного двигателя в промышленных приложениях.

    Магнитное поле в асинхронном двигателе создается током намагничивания, передаваемым через предоставленную электрическую энергию. Асинхронные двигатели характеризуются скольжением, т.е. е. зависящая от нагрузки разница между скоростью вращения ротора и скоростью вращающегося поля питающего напряжения.

    Ротор представляет собой металлическую клетку с осевыми стержнями, расположенными симметрично по кругу и прикрепленными к кольцу короткого замыкания (концевому кольцу) на каждом конце.

    Статор состоит из распределенных катушек, которые индуцируют напряжение в стержнях ротора (см. Индукция) посредством вращающегося магнитного поля. Это приводит к сильному протеканию тока в короткозамкнутых стержнях, который создает силу между ротором и статором в магнитном поле и приводит к электромагнитному взаимодействию, ответственному за асинхронизм. Асинхронные двигатели подвержены значительным потерям в статоре и роторе.

    В двигателях с контактным ротором трехфазная обмотка ротора подключается к переменным резисторам, обычно используемым в качестве жидкостных пускателей, через контактные кольца.Такая конструкция обеспечивает плавный процесс пуска, который не создает ударной нагрузки на сеть электропитания и позволяет в определенной степени изменять скорость. Однако это также приводит к значительным потерям мощности.

    Обмотки ротора с короткозамкнутым ротором обычно состоят из одно- или двухпроводных шин, закороченных на концах кольцевым проводником. Роторы с короткозамкнутым ротором очень просты по конструкции, надежны и не требуют обслуживания. См. Рис.1 Асинхронный двигатель

    Инжир.1 Асинхронный двигатель: асинхронный двигатель в разрезе

    В отношении контакта с водой различают двигатели с сухим ротором, погружные двигатели и двигатели с мокрым ротором. См. Рис.2 Асинхронный двигатель

    сухой двигатель)
    Внутреннее смачивание Внешнее смачивание
    Ротор Обмотка Сухой корпус Сухой корпус (погружной 9011 Сухой двигатель (с защитой от проникновения воды или без нее) Сухой (заполненный воздухом) погружной двигатель
    Влажный (двигатель с мокрым ротором) Сухой двигатель (герметичный двигатель) Двигатель с мокрым ротором насоса с мокрым ротором Полностью погружной двигатель (заполненный жидкостью)

    Рис.2 Асинхронный двигатель: Обозначение асинхронных двигателей в зависимости от влажности

    Сухой двигатель имеет различные типы защиты от проникновения воды (см. Тип защиты).

    Погружной электродвигатель частично или полностью погружен в воду и обычно устанавливается в вертикальном положении. Тепло, вырабатываемое двигателем, передается непосредственно окружающей обрабатываемой жидкости. Его отличительной особенностью является корпус двигателя, который смачивается снаружи (см. Погружной электронасос).Внутреннее смачивание и глубина погружения отличают погружные двигатели с масляным или воздушным наполнением для малых и средних глубин погружения (погружные насосы для сточных вод) от полностью погружных двигателей.
    См. Рис. 3, 4 Насос для сточных вод

    Полностью погружные двигатели смачиваются жидкостью, находящейся внутри и снаружи. Они рассчитаны на любую глубину погружения и, прежде всего, используются в скважинах (см. Погружные скважинные насосы), поэтому они имеют небольшой диаметр и относительно длинные.Полностью погружные двигатели могут быть оснащены мокрой обмоткой статора (включая водонепроницаемую пластиковую изоляцию) или, в сочетании с корпусом, сухой обмоткой (см. Герметичный моторный насос).

    Двигатель с мокрым ротором заполнен жидкостью и, в отличие от погружного двигателя, его корпус не смачивается снаружи. Он имеет подшипники с жидкостной смазкой (см. Подшипники скольжения) и вместе с насосом образует герметичный насосный агрегат (насос с мокрым ротором). Двигатель может быть оборудован мокрой обмоткой статора или, в сочетании с баком, сухой обмоткой, и часто является предпочтительным двигателем для циркуляционных насосов.

    Разница между синхронным и асинхронным двигателем (со сравнительной таблицей)

    Разница между синхронным двигателем и асинхронным двигателем объясняется с учетом таких факторов, как его тип, скольжение, потребность в дополнительном источнике питания, требования к контактным кольцам и щеткам, их стоимость, эффективность, коэффициент мощности, источник тока, скорость, самозапуск , влияние на крутящий момент из-за изменения напряжения, их рабочей скорости и различных применений как синхронного, так и асинхронного двигателя.

    Различия между синхронным и асинхронным двигателем объясняются ниже в табличной форме.

    BASIS СИНХРОННЫЙ ДВИГАТЕЛЬ АСИНХРОННЫЙ ДВИГАТЕЛЬ
    Определение Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.
    N = NS = 120f / P
    Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.
    N
    Тип Бесщеточный двигатель, двигатель с переменным сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
    Скольжение Без проскальзывания. Значение скольжения равно нулю. Имеют пробуксовку, поэтому величина пробуксовки не равна нулю.
    Дополнительный источник питания Требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Не требует дополнительных источников запуска.
    Контактное кольцо и щетки Требуются контактное кольцо и щетки Контактное кольцо и щетки не требуются.
    Стоимость Синхронный двигатель дороже асинхронного Менее затратный
    КПД КПД выше, чем у асинхронного двигателя. Менее эффективный
    Коэффициент мощности Изменяя возбуждение, коэффициент мощности может быть соответственно отрегулирован как отстающий, опережающий или единичный. Асинхронный двигатель работает только с отстающим коэффициентом мощности.
    Электропитание Ток подается на ротор синхронного двигателя Ротор асинхронного двигателя не требует тока.
    Скорость Скорость двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    Самозапуск Синхронный двигатель не самозапускается Самозапуск
    Влияние на крутящий момент Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя Изменение приложенного напряжения влияет на крутящий момент асинхронного двигателя
    Рабочая скорость Они работают плавно и относительно хорошо на низкой скорости, ниже 300 об / мин. Скорость вращения двигателя выше 600 об / мин отличная.
    Приложения Синхронные двигатели используются на электростанциях, обрабатывающей промышленности и т. Д., Они также используются в качестве регулятора напряжения. Используется в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и подъемниках. и т. д.

    Синхронный двигатель — это двигатель, который работает с синхронной скоростью, то есть скорость ротора равна скорости статора двигателя.Отсюда следует соотношение N = N S = 120f / P, где N — скорость ротора, а Ns — синхронная скорость.

    Асинхронный двигатель — это асинхронный двигатель переменного тока. Ротор Асинхронного двигателя вращается со скоростью меньше синхронной, т.е. N S

    Разница между синхронным и асинхронным двигателем

    1. Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора. Асинхронный двигатель — это машина, ротор которой вращается со скоростью меньше синхронной.
    2. Бесщеточный двигатель, двигатель с регулируемым сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
    3. Синхронный двигатель не имеет скольжения. Значение скольжения равно нулю. Асинхронный двигатель имеет скольжение, поэтому значение скольжения не равно нулю.
    4. Синхронному двигателю требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Асинхронный двигатель не требует дополнительного источника пуска.
    5. Контактное кольцо и щетки необходимы в синхронном двигателе, тогда как асинхронный двигатель не требует контактного кольца и щеток. Только асинхронный двигатель с обмоткой требует и контактного кольца, и щеток.
    6. Синхронный двигатель дороже асинхронного двигателя.
    7. КПД синхронного двигателя больше, чем у асинхронного двигателя.
    8. Путем изменения возбуждения коэффициент мощности синхронного двигателя может быть соответственно отрегулирован как отстающий, опережающий или единичный, тогда как асинхронный двигатель работает только с отстающим коэффициентом мощности.
    9. Ток подается на ротор синхронного двигателя. Ротор асинхронного двигателя не требует тока.
    10. Скорость синхронного двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    11. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель запускается автоматически.
    12. Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя, но влияет на крутящий момент асинхронного двигателя.
    13. Синхронный двигатель работает плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин, тогда как скорость выше 600 об / мин работа асинхронного двигателя превосходна. Асинхронные двигатели используются в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и лифтах. и т. д.
    14. Синхронный двигатель может применяться в различных сферах применения на электростанциях, в обрабатывающей промышленности и т. Д. Он также используется в качестве регулятора напряжения.

    Таким образом, синхронный двигатель отличается от асинхронного двигателя.

    Лаборатория автомобильной электроники Clemson: Асинхронные двигатели переменного тока

    Асинхронные двигатели переменного тока

    Базовое описание

    Двигатели переменного тока — это электрические машины, преобразующие электрическую энергию (поставляемые в виде синусоидально изменяющегося во времени или «переменного» тока) до вращательной механической энергии посредством взаимодействие магнитных полей и проводников. В отличие от двигателей, которые работают напрямую от постоянного тока, Двигатели переменного тока обычно не требуют щеток или коммутаторов.Одним из типов двигателей переменного тока является асинхронный или асинхронный двигатель переменного тока.

    Асинхронные или асинхронные двигатели состоят из статора с обмоткой, способной производить вращающийся магнитный поле, и ротор с закороченной обмоткой проводника, в котором ток индуцируется вращающееся магнитное поле. Поля, создаваемые током, наведенным в ротор создает восстанавливающий момент, отвечающий за вращение ротора. Вращающееся магнитное поле, создаваемое статором, легко настраивается с помощью многофазного источника переменного тока.

    Термин «асинхронный» относится к тому факту, что вращение ротора всегда медленнее, чем скорость вращения магнитного поля. Разница в скорости поля и ротора называется «скольжением», а крутящий момент двигателя пропорциональна этому скольжению. Таким образом, частота вращения двигателей зависит как от частоты возбуждения, так и от нагрузки.

    Синхронная скорость или теоретическая максимальная скорость асинхронный двигатель зависит от частоты сети (например,г. часто 60 Гц в США) и количество полюсов. Асинхронные двигатели часто называемые двигателями с короткозамкнутым ротором из-за конструкции обмотки ротора.

    Асинхронный двигатель запускается с максимальным скольжением и имеет склонность рисовать изначально очень высокий ток, особенно при запуске с высокой нагрузкой. Это приводит к необходимости иметь отдельный пусковой механизм. В случае однофазных двигателей переменного тока для запуска двигателя сначала необходимо привести в движение ротор.Это достигается за счет использования механического пускового усилия или с помощью отдельной пусковой обмотки.

    Хотя большинство электрических и гибридно-электрических автомобилей используют синхронные двигатели переменного тока в качестве главного привода, в Tesla Roadster, Tesla Model S, Mercedes B-Class с электроприводом и в некоторых других используется асинхронный двигатель переменного тока.

    Производителей
    Baldor, Bircraft, Century, Circor, Emerson, Empire Magnetics, Fasco, Groschopp, Kinetek, Leeson, Met Motors, Motion Control Group, North American Electric, Pittman, Powertec, Remy, Siemens, Sterling Electric, Teco, Toshiba, WEG, Чжунда
    Для получения дополнительной информации
    [1] Асинхронный двигатель, Википедия.
    [2] Двигатели переменного тока, CoolMagnetMan.com.
    [3] Induction Motor Action, учебник на веб-сайте HyperPhysics Университета штата Джорджия.
    [4] Electric Motor Assembly, YouTube, 15 января 2009 г.
    [5] Трехфазный асинхронный двигатель переменного тока, Freescale.com.
    [6] AC Motors, YouTube, 19 мая 2010 г.
    [7] Squirrel Cage Motors, YouTube, 18 июля 2010 г.

    Основное различие между синхронным и асинхронным двигателем

    В чем разница между синхронным и асинхронным двигателем (асинхронным двигателем)

    Электродвигатели — это машины, которые преобразуют электрическую энергию в механическую для выполнения механических операций.Эти двигатели могут быть предназначены для работы на переменном (AC) или постоянном (DC) токе. Двигатели переменного тока подразделяются на два типа; Синхронные двигатели и асинхронные двигатели. Оба они имеют некоторые общие черты, например, в конструкции, но совершенно разные по принципу действия и производительности.

    Прежде чем перейти к списку различий между синхронным двигателем и асинхронным двигателем, мы собираемся обсудить их основы и то, как они работают. Для ясного объяснения вы можете знать разницу между однофазным и трехфазным источником питания, относящуюся к работе однофазных и трехфазных двигателей переменного тока.

    Как работает двигатель переменного тока?

    Как мы знаем из нашей предыдущей статьи «Различия между двигателями переменного и постоянного тока», двигатели постоянного тока работают по принципу магнитного поля, действующего на проводник с током, который испытывает механическую силу. Где статор генерирует статическое магнитное поле, а ротор, состоящий из нескольких обмоток, несет входной постоянный ток.

    В двигателях переменного тока используется идея вращательного магнитного поля RMF. Статор состоит из нескольких обмоток, которые создают переменное магнитное поле при подаче входного переменного тока.Это магнитное поле вращается вокруг ротора.

    Ротор, состоящий из обмоток или проводников с замкнутым контуром, пропускает ток либо посредством индукции, либо через внешний источник тока, создающий собственное магнитное поле. Магнитное поле, создаваемое ротором, взаимодействует с вращающимся магнитным полем и начинает вращаться в его направлении.

    Относительная разница между полем вращения статора и скоростью ротора называется скольжением. если скольжение двигателя равно нулю или ротор имеет ту же скорость вращения, что и поле вращения статора, двигатель называется синхронным двигателем переменного тока.если двигатель переменного тока имеет скольжение или существует разница между скоростью возбуждения статора и ротором, двигатель называется асинхронным двигателем. Чтобы узнать больше о различных типах двигателей, обратитесь к предыдущим сообщениям о двигателях BLDC (бесщеточный постоянного тока), шаговых двигателях и серводвигателях.

    Связанные сообщения:

    Синхронный двигатель

    Как следует из названия, синхронный двигатель имеет ротор, который предназначен для вращения с той же скоростью, что и его вращающееся магнитное поле статора, называемой синхронной скоростью .

    Статор создает вращающееся магнитное поле при подаче переменного тока. Ротор может быть спроектирован для создания собственного магнитного поля с использованием внешнего источника постоянного тока через контактные кольца или постоянного магнита .

    Ротор предназначен для создания магнитных полюсов, равных полюсам статора или целых кратных полюсов. Когда статор и ротор находятся под напряжением, магнитное поле ротора блокируется с вращающимся магнитным полем статора, и он вращается с точной скоростью поля статора.

    Из-за инерции синхронный двигатель не запускается сразу с синхронной скоростью (вращательное магнитное поле). Поэтому для обеспечения пускового момента используется дополнительная обмотка, называемая « демпферная обмотка ». Во время запуска он действует как асинхронный двигатель. Таким образом, предполагается, что синхронные двигатели не самозапускающиеся , им нужен дополнительный пусковой механизм.

    Это может быть двигатель с отдельным возбуждением или без возбуждения, т.е. первый требует отдельного источника постоянного тока, возбуждает обмотки ротора и генерирует магнитное поле, в то время как последний описывает синхронный двигатель, ротор которого предназначен для намагничивания вращающимся магнитным полем статора. и вращается вместе с ним.

    Ротор синхронного двигателя вращается с синхронной скоростью, которая зависит от частоты питания и полюсов обмоток статора. Следовательно, скорость двигателя не зависит от нагрузки. Чтобы изменять скорость синхронного двигателя, необходимо изменять частоту питания. Это достигается за счет использования частотно-регулируемого привода (VFD).

    Связанные сообщения:

    Асинхронный двигатель

    Название асинхронного двигателя предполагает, что скорость ротора асинхронна со скоростью вращения магнитного поля статора.Точнее, ротор асинхронного двигателя вращается с относительно меньшей скоростью, чем статор RMF. Это связано с наличием проскальзывания между его скоростью статора и ротора.

    Ротор асинхронного двигателя представляет собой короткозамкнутый ротор с обмоткой. Ротор с короткозамкнутым ротором построен с использованием тяжелых медных стержней, соединенных на конце с помощью токопроводящего кольца, которое электрически закорачивает их вместе. Ротор с обмоткой состоит из нескольких обмоток поверх многослойного стального сердечника.

    Вращающееся магнитное поле статора вызывает индуцированный ток в роторе. Этот индуцированный ток течет внутри ротора, создавая собственное магнитное поле. Согласно закону Ленца, это поле ротора противодействует причине, которая его порождает, и пытается устранить ее, догоняя скорость статора RMF (синхронную скорость). При этом ротор вращается в направлении статора RMF. Асинхронный двигатель также известен как асинхронный двигатель , поскольку он работает по принципу индукции.

    Асинхронный двигатель никогда не может работать на синхронной скорости, вместо этого она всегда ниже синхронной скорости и зависит от скольжения двигателя. Причина в том, что индуцированный ток в роторе генерируется из-за разницы между полем статора и ротора. если в случае, если он работает с синхронной скоростью, это означает, что ротор магнитно заблокирован, и между полем статора и ротора нет разницы. Следовательно, не будет магнитного потока, индуцирующего ток в роторе.Магнитный поток необходим для асинхронного двигателя, поэтому он должен работать с меньшей скоростью, чем его синхронная скорость.

    Ротор с короткозамкнутым ротором имеет более простую конструкцию и позволяет наведенному току проходить через медные шины. В то время как заведенный ротор позволяет пользователю изменять ток ротора во время его запуска, как это используется в «Пускателе двигателя». Дело в том, чтобы безопасно запустить двигатель, уменьшив огромный пусковой ток, потребляемый асинхронным двигателем. Обычно это делается путем последовательного подключения переменного резистора к обмоткам ротора с помощью контактных колец.

    Скорость асинхронного двигателя зависит от скольжения двигателя, которое изменяется в зависимости от нагрузки и сопротивления ротора. Другими словами, скорость асинхронного двигателя может изменяться в зависимости от нагрузки или за счет изменения сопротивления ротора.

    Связанное сообщение:

    Различия между синхронным двигателем и асинхронным двигателем

    В следующей таблице показаны основные различия между синхронным двигателем и асинхронным (асинхронным) двигателем.

    Синхронный двигатель Асинхронный двигатель
    Синхронный двигатель — это двигатель переменного тока, который работает с синхронной скоростью. Асинхронный двигатель — это тип двигателя переменного тока, который работает со скоростью, меньшей, чем синхронная скорость.
    Он работает по принципу магнитной блокировки между полем ротора и статора. Он работает по принципу электромагнитной индукции между статором и ротором.
    Нет скольжения, т.е. скольжение синхронного двигателя равно 0. В асинхронном двигателе есть скольжение, и оно всегда больше 0.
    Скорость двигателя зависит от частоты питания и количество полюсов статора.

    Н с = 120 f / P

    Скорость двигателя зависит от нагрузки, сопротивления ротора и скольжения, с. она всегда меньше синхронной скорости.

    N = N с (1-с)

    N с

    Скорость не меняется при изменении нагрузки, подключенной к двигателю. Скорость меняется в зависимости от нагрузки двигателя.
    Это не самозапуск и требует дополнительных обмоток для запуска двигателя. Асинхронные двигатели самозапускаются и не требуют дополнительных механизмов.
    Ротор требует дополнительного источника тока. Ротор асинхронного двигателя не требует дополнительного питания.
    Синхронному двигателю с независимым возбуждением требуется дополнительный источник постоянного тока для питания обмотки ротора. Не требует дополнительных источников.
    Также необходимы контактные кольца и щетки для подачи постоянного тока на обмотки ротора. Для него не требуются контактные кольца, однако для управления скоростью можно использовать контактные кольца с намоткой.
    Скорость двигателя регулируется только путем изменения частоты питания с помощью частотно-регулируемого привода. Скорость двигателя можно регулировать с помощью переменного сопротивления ротора, а также устройств с частотно-регулируемым приводом.
    Источник входного напряжения не изменяет скорость или крутящий момент синхронного двигателя. Источник входного напряжения можно использовать для изменения крутящего момента и скорости двигателя.
    Колебания основного напряжения питания не влияют на работу синхронного двигателя. Колебания сетевого напряжения влияют на его скорость и работу.
    Начальная стоимость выше, чем у асинхронного двигателя. Асинхронные двигатели дешевле.
    Операция сложная. Операция проста и удобна для пользователя.
    Если предлагают высокую эффективность и точность. Они не так эффективны, как синхронный двигатель.
    Может легко работать на очень низкой скорости с помощью частотно-регулируемого привода. Работать на малой скорости довольно сложно.
    Лучше всего работает на более низкой скорости, обычно ниже 300 об / мин. Лучше всего подходит для работы на скорости выше 600 об / мин.
    Может работать с отстающим, опережающим или единичным коэффициентом мощности, регулируя его возбуждение. Асинхронный или асинхронный двигатель всегда работает с отстающим коэффициентом мощности.
    Он также может одновременно использоваться для коррекции коэффициента мощности, используя его в качестве опережающего коэффициента мощности. Его нельзя использовать для корректировки коэффициента мощности, а только для управления механическими нагрузками.
    Поскольку он работает с постоянной скоростью, резкое изменение нагрузки вызовет колебания потребляемого тока. В асинхронном двигателе такого явления нет.

    Вывод этой статьи заключается в том, что синхронные двигатели эффективны, но дороже и используются для приложений со сверхнизкими оборотами, предлагая при этом функцию коррекции коэффициента мощности. С другой стороны, асинхронные двигатели используются для высоких оборотов с регулируемой скоростью, будучи недорогими и простыми в эксплуатации.

    Связанный пост об электрических двигателях.

    Асинхронный двигатель и синхронный: в чем разница?

    Все вращающиеся электродвигатели переменного и постоянного тока работают за счет взаимодействия двух магнитных полей. Один из них стационарный и (обычно) связан с внешним кожухом двигателя. Другой вращается и связан с вращающимся якорем двигателя (также называемым его ротором). Вращение вызвано взаимодействием двух полей.

    В простом двигателе постоянного тока есть вращающееся магнитное поле, полярность которого меняется каждые пол-оборота с помощью комбинации щеточного коммутатора.Щетки — в основном проводящие углеродные стержни, которые касаются проводов на роторе при их вращении — также служат для подачи электрического тока во вращающийся якорь. В бесщеточном двигателе постоянного тока ситуация несколько иная. Вращающееся поле по-прежнему меняется на противоположное, но посредством коммутации, которая происходит в электронном виде.

    Асинхронный двигатель обладает уникальным качеством, заключающимся в отсутствии электрического соединения между неподвижной и вращающейся обмотками. Сетевой переменный ток подается на клеммы двигателя и питает неподвижные обмотки.

    Все асинхронные двигатели являются асинхронными двигателями. Асинхронное название возникает из-за разницы между скоростью вращения поля статора и несколько меньшей скоростью ротора.

    Ротор с короткозамкнутым ротором от асинхронного двигателя. Этот пример взят из небольшого вентилятора.

    Большинство современных асинхронных двигателей имеют ротор в виде беличьей клетки. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе.Твердый сердечник ротора состоит из листов электротехнической стали.

    Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора. Это асинхронные двигатели с фазным ротором. Смысл конструкции состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо.Когда ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически они становятся такими же, как ротор с короткозамкнутым ротором.

    Стационарная часть обмоток асинхронного двигателя (статор) подключается к источнику переменного тока. Подача напряжения на статор вызывает прохождение переменного тока в обмотках статора. Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

    Северный полюс статора индуцирует южный полюс ротора.Но положение полюса статора меняется при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс в роторе пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила создается, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот. Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора, потому что поле ротора всегда на некоторую величину отстает от поля статора.Эта задержка заставляет ротор вращаться со скоростью, несколько меньшей, чем скорость поля статора. Разница между ними называется скольжением.

    Размер скольжения может быть разным. Это зависит главным образом от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора. Скольжение в двигателе конструкции B составляет от 0,5% до 5%.

    Когда двигатель остановлен, обмотки ротора и статора фактически являются первичной и вторичной обмотками трансформатора.Когда к статору изначально подается переменный ток, ротор не движется. Таким образом, индуцированное в роторе напряжение имеет ту же частоту, что и напряжение статора. Когда ротор начинает вращаться, частота индуцируемого в нем напряжения f r падает. Если f — частота напряжения статора, то скольжение s связывает их через f r = sf. Здесь s выражается в виде десятичной дроби.

    Поскольку асинхронный двигатель не имеет щеток, коллектора или подобных движущихся частей, его производство и обслуживание дешевле, чем другие типы двигателей.

    Для сравнения, рассмотрим синхронный двигатель. Здесь ротор вращается с той же скоростью, то есть синхронно, с магнитным полем статора. Как и асинхронный двигатель, синхронный двигатель переменного тока также содержит статор и ротор. Обмотки статора также подключаются к сети переменного тока, как в асинхронном двигателе. Магнитное поле статора вращается синхронно с частотой сети.

    Обмотка ротора синхронного двигателя может получать ток разными способами, но обычно не за счет индукции (за исключением некоторых конструкций, только для обеспечения пускового момента).Тот факт, что ротор вращается синхронно с частотой сети переменного тока, делает синхронный двигатель полезным для управления высокоточными часами.

    Следует подчеркнуть, что ротор синхронного двигателя переменного тока вращается синхронно с целым числом циклов переменного тока. Это не то же самое, что сказать, что он вращается со скоростью, равной частоте сети. Частота вращения ротора двигателя, то есть синхронная скорость N, составляет:

    N = 120 футов / P = 60 футов / точек

    Где f — частота сети переменного тока в Гц, P — количество полюсов (на фазу), а p — количество пар полюсов на фазу.

    Соответственно, чем больше полюсов, тем медленнее вращается синхронный двигатель. При равной мощности дороже построить более медленный двигатель. При 60 Гц:

    • Двухполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 3600 об / мин.
    • Четырехполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1800 об / мин.
    • Шестиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1200 об / мин.
    • Восьмиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 900 об / мин
    • Десятиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 720 об / мин.
    • Двенадцатиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 600 об / мин.
    Промышленный синхронный двигатель. Синхронные двигатели переменного тока

    малой мощности полезны там, где требуется точное время. Синхронные двигатели переменного тока высокой мощности, хотя и более дорогие, чем трехфазные асинхронные двигатели, обладают двумя дополнительными качествами. Несмотря на более высокую начальную стоимость, они могут окупиться в долгосрочной перспективе, поскольку они более энергоэффективны, чем другие типы двигателей. Во-вторых, иногда одновременно, они могут работать с опережающим или единичным коэффициентом мощности, поэтому один или несколько синхронных двигателей переменного тока могут обеспечивать коррекцию коэффициента мощности, а также выполнять полезную работу.

    Существует несколько различных типов синхронных двигателей переменного тока. Обычно их классифицируют по способам создания магнитного поля. Двигатели с независимым возбуждением имеют магнитные полюса, питаемые от внешнего источника. Напротив, магнитные полюса возбуждаются самим двигателем в самовозбуждаемой (также иногда называемой невозбужденной и непосредственно возбужденной) машине. Типы без возбуждения включают реактивные двигатели, двигатели с гистерезисом и двигатели с постоянными магнитами. Кроме того, существуют двигатели с возбуждением от постоянного тока.

    Синхронные двигатели без возбуждения имеют стальные роторы. В процессе работы ротор намагничивается необходимыми магнитными полюсами аналогично асинхронному двигателю. Но ротор вращается с той же скоростью и синхронно с вращающимся магнитным полем статора. Причина в том, что в роторе есть прорези. Двигатели запускаются как асинхронные. Когда они приближаются к синхронной скорости, прорези позволяют синхронному магнитному полю фиксироваться на роторе. Затем двигатель вращается с синхронной скоростью до тех пор, пока требуемый крутящий момент низкий.

    В реактивном электродвигателе ротор имеет выступающие полюса, напоминающие отдельные зубцы. Ротора меньше, чем полюсов статора, что препятствует совмещению полюсов статора и ротора, и в этом случае вращения не будет. Реактивные двигатели не запускаются автоматически. По этой причине в ротор часто встраиваются специальные обмотки (так называемые обмотки с короткозамкнутым ротором), поэтому реактивный двигатель запускается как асинхронный.

    Двигатель с гистерезисом использует широкую петлю гистерезиса в высококоэрцитивном роторе из кобальтовой стали.Из-за гистерезиса фаза намагничивания в роторе отстает от фазы вращающегося магнитного поля статора. Эта задержка создает крутящий момент. При синхронной скорости поля ротора и статора блокируются, обеспечивая непрерывное вращение. Одним из преимуществ гистерезисного двигателя является то, что он самозапускается.

    Синхронный двигатель переменного тока с постоянными магнитами имеет постоянные магниты, встроенные в ротор. Последние лифты приводятся в действие этими двигателями, и коробка передач не требуется.

    Пример двигателя с постоянными магнитами с электронной коммутацией, в данном случае от небольшого воздушного вентилятора.Этот стиль называется аутраннером, потому что ротор находится вне статора и встроен в лопасти вентилятора. Это четырехполюсный двигатель, о чем свидетельствуют четыре обмотки статора (внизу). Также виден датчик Холла, который обеспечивает часть электронной коммутации.

    Синхронный двигатель с прямым возбуждением может называться различными именами, включая ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом. Ротор содержит постоянные магниты.Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

    Пример того, как на катушки двигателя постоянного тока подается питание в последовательности, которая приводит в движение ротор.

    Компьютер контролирует последовательное включение питания обмоток статора в нужное время с помощью твердотельных переключателей. Питание подается на катушки, намотанные на зубья статора, и если выступающий полюс ротора идеально совмещен с зубом статора, крутящий момент не создается.Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере, некоторый магнитный поток пересекает зазор под углом, не перпендикулярным поверхностям зуба. В результате возникает крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

    Еще один тип синхронного двигателя — это реактивный двигатель с регулируемым сопротивлением (SR).
    Его ротор состоит из многослойных стальных пластин с рядом зубцов.Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них пазов.

    В отличие от асинхронных двигателей, здесь нет стержней ротора, и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, содержащих роторы, несущие проводники.

    Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора.Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен способу регулирования скорости с помощью тока якоря в традиционном щеточном двигателе постоянного тока.

    Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения числа оборотов двигателя.

    И, наконец, синхронный двигатель переменного тока с возбуждением постоянным током. Для создания магнитного поля требуется выпрямленный источник питания. Эти двигатели обычно имеют мощность, превышающую одну лошадиную силу.

    Разница между синхронным двигателем и асинхронным двигателем

    Двигатели переменного тока можно разделить на две основные категории — (i) синхронный двигатель и (ii) асинхронный двигатель . Асинхронный двигатель обычно называют асинхронным двигателем. Оба типа сильно отличаются друг от друга.Основные различия между синхронным двигателем и асинхронным двигателем обсуждаются ниже.
    Конструктивная разница
    • Синхронный двигатель : Статор имеет осевые пазы, которые состоят из обмотки статора, намотанной на определенное количество полюсов. Обычно используется ротор с явнополюсным ротором, на котором установлена ​​обмотка ротора. Обмотка ротора запитана постоянным током с помощью контактных колец. Также можно использовать ротор с постоянными магнитами.
      Синхронный двигатель
    • Асинхронный двигатель : Обмотка статора аналогична обмотке синхронного двигателя.Он накручивается на определенное количество полюсов. Можно использовать ротор с короткозамкнутым ротором или ротор с обмоткой. В роторе с короткозамкнутым ротором стержни ротора постоянно замкнуты накоротко с концевыми кольцами. В роторе с намоткой обмотки также постоянно закорочены, поэтому контактные кольца не требуются.
      Асинхронный двигатель
    Разница в рабочем
    • Синхронный двигатель : Полюса статора вращаются с синхронной скоростью (Нс) при питании от трехфазного источника питания.Ротор питается от источника постоянного тока. Во время пуска ротор необходимо вращать со скоростью, близкой к синхронной. В этом случае полюса ротора магнитно соединяются с вращающимися полюсами статора, и, таким образом, ротор начинает вращаться с синхронной скоростью.
      • Синхронный двигатель всегда работает со скоростью, равной его синхронной скорости.
        т.е. Фактическая скорость = Синхронная скорость
        или N = Ns = 120f / P
      • Подробнее о работе синхронного двигателя здесь.
    • Асинхронный двигатель : Когда на статор подается двух- или трехфазный источник переменного тока, создается вращающееся магнитное поле (RMF). Относительная скорость между вращающимся магнитным полем статора и ротором вызовет индуцированный ток в проводниках ротора. Ток ротора порождает поток ротора. Согласно закону Ленца, направление этого индуцированного тока таково, что он будет иметь тенденцию противодействовать причине его образования, то есть относительной скорости между RMF статора и ротором.Таким образом, ротор будет пытаться догнать RMF и снизить относительную скорость.
    Другие отличия
    • Синхронным двигателям требуется дополнительный источник постоянного тока для питания обмотки ротора. Асинхронные двигатели не требуют дополнительного источника питания.
    • Контактные кольца и щетки необходимы в синхронных двигателях, но не в асинхронных двигателях (за исключением асинхронного двигателя с обмоткой, в котором двигатели с контактным кольцом используются для добавления внешнего сопротивления обмотке ротора).
    • Синхронным двигателям требуется дополнительный пусковой механизм для первоначального вращения ротора, близкого к синхронной скорости. В асинхронных двигателях пусковой механизм не требуется.
    • Коэффициент мощности синхронного двигателя можно отрегулировать на отстающий, единичный или опережающий, изменяя возбуждение, тогда как асинхронный двигатель всегда работает с отстающим коэффициентом мощности.
    • Синхронные двигатели обычно более эффективны, чем асинхронные.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *