Альтернативный источник электроэнергии: Виды альтернативной энергетики. Справка — РИА Новости, 13.11.2009

Содержание

Россия начала готовиться к переходу на альтернативные источники энергии

Куратором групп по адаптации российской экономике к энергопереходу планируется назначить вице-премьера РФ Андрея Белоусова

Рабочие группы по переходу России на альтернативные источники энергии создаются в РФ по указанию премьер-министра Михаила Мишустина. По данным РБК, рабочие группы будут способствовать снижению спроса на традиционные источники энергии, что позволит российской экономике встроиться в «глобальный энергопереход» и будет способствовать развитию альтернативной энергетики в стране.

Куратором групп по адаптации российской экономике к энергопереходу планируется назначить вице-премьера РФ Андрея Белоусова. Группам предстоит определить «риски и возможности», а также выработать оптимальный вариант развития событий. «Важно обеспечить сбор достоверных данных, координацию ведомств, организаций и экспертов», — сообщил источник.

Ответственность между министерствами, как сообщается, распределили следующим образом: Минобрнауки будет отвечать за научное сопровождение перехода, Минпромторг — за перестройку промышленности, Минэнерго — за реструктуризацию энергетики и развитие водородных проектов, Минприроды — за климатические проекты, Минэкономики доверили работу с регионами, а также аналитику, регулирование мероприятий, зеленое финансирование и международное взаимодействие (углеродный налог).

В июле 2021 года Евросоюз объявил о предстоящем введении так называемого углеродного налога на импортные товары с «углеродным следом». Когда налог будет взыматься полностью, российские поставщики железа, стали, алюминия и удобрений вынуждены будут платить порядка €1,1 млрд в год Евросоюзу.

Большие надежды теперь возлагаются на газовые поставки и освоение водородной энергетики, а вот ВИЭ — солнечная и ветряная энергетика — по-прежнему не считаются в правительстве солидной отраслью, заслуживающей большого внимания, поскольку важнее продать имеющиеся запасы газа.

Инженерные системы использования альтернативных источников энергии и отходов

Код и наименование направления подготовки:

08.04.01 Строительство

Уровень образования

Высшее образование — Магистратура

Квалификация

Магистр

Формы и сроки обучения:

Очная: 2 г

Заочная: 2 г 6 м

Информация по образовательной программе
Описание образовательной программы
Календарный учебный график
Рабочие программы дисциплин
Аннотации к рабочим программам дисциплин
Рабочие программы практик
Аннотации к рабочим программам практик
Методические и иные документы, разработанные ОО для обеспечения образовательного процесса

Группа компаний ИНФРА-М

ООО «Эдиторум» (адрес: 127282, г. Москва, ул. Полярная, д. 31В, стр. 1, ИНН: 7715485571, КПП: 771501001, ОГРН: 1157746438893 — далее именуемое — «Общество»)

предоставляет любым физическим и юридическим лицам (далее — Пользователь) настоящий Интернет-сайт и определенные услуги, интерфейсы и функциональные возможности, доступные на настоящем Сайте или через него («Услуги»), при условии согласия Пользователя соблюдать приведенные ниже условия их использования («Общие условия»). Использование Пользователем настоящего Сайта или пользование Услугами означает согласие Пользователя с Общими условиями. После принятия Общих условий они станут обязательным для исполнения соглашением между Обществом и Пользователем и будут регулировать использование Пользователем Сайта или пользование Услугами («Договор»). Если Пользователь не желает соблюдать Общие условия, он должен немедленно прекратить использование настоящего Сайта или Услуг.

Время от времени Общество может менять условия и положения, изложенные ниже. Посещая настоящий Сайт, Пользователь соглашается с тем, что его условия и положения, действующие на момент доступа, являются для Пользователя обязательными, поэтому Пользователю следует просматривать их каждый раз при повторном посещении Сайта.

Отсутствие гарантий

Настоящий Сайт и Услуги предоставляются «как есть», без каких-либо прямо выраженных или подразумеваемых гарантий, в максимально допустимом законом объеме. Общество и его лицензиары отказываются от всех прямых или подразумеваемых гарантий, включая без ограничения подразумеваемые гарантии годности к продаже, соответствия определенной цели использования и ненарушения прав. Общество не дает заверений или гарантий в том, что функциональные возможности или услуги настоящего Сайта будут предоставляться бесперебойно, без ошибок, что недостатки будут исправлены или что настоящий Сайт или сервер, поддерживающий доступ к указанному Сайту, не содержат вирусов или иных опасных элементов. Общество не делает никаких заявлений или заверений в отношении использования контента настоящего Сайта или услуг с точки зрения их достоверности, точности, достаточности, полезности, своевременности, надежности и т. д.

Ограничение ответственности

Общество не несет ответственности перед Пользователем или какой-либо другой стороной за фактические, штрафные, прямые или косвенные убытки в результате использования или невозможности использования Сайта, Услуг или контента настоящего Сайта или по причине работы Сайта, Услуг описанных на Сайте, даже если «Общество» было проинформировано о возможности таких убытков.

Если Пользователь недоволен каким-либо элементом Сайта или Услуг или какими-либо из изложенных условий, единственное и эксклюзивное средство защиты прав Пользователя заключается в том, чтобы прекратить использование Сайта и Услуг.

Обладание авторскими правами на Сайт

Сайт содержит материалы, такие как текст, фотографии и другие изображения, звук, данные, программное обеспечение, графику и логотипы, защищенные авторским правом и/или другими правами интеллектуальной собственности. Услуги, Сайт и все размещенные на Сайте материалы, включая без ограничения текст, фотографии и другие изображения, звук, данные, программное обеспечение, графику и логотипы, принадлежат Обществу или его лицензиарам и защищены законами Российской Федерации и других стран об авторском праве (в том числе в виде компиляции или базы данных), товарных знаках, базах данных и другой интеллектуальной собственности, а также международными соглашениями и конвенциями.

Пользование Сайтом

Пользователь может загружать и распечатывать только одну копию контента настоящего Сайта для личного, некоммерческого использования или в связи с приобретением Пользователем каких-либо продуктов Общества, при условии сохранения как есть и без изменений всей информации об авторском праве и товарных знаках. Пользователь дает согласие на соблюдение всех применимых законов об авторском праве, товарных знаках и других законов об интеллектуальной собственности, а также всех дополнительных уведомлений, указаний и ограничений в отношении авторского права и товарных знаков, приведенных в любом разделе Сайта. Если в настоящем параграфе не оговорено иное, Пользователь не вправе: (i) копировать, воспроизводить, каким-либо образом изменять, исправлять или искажать Сайт, Услуги или какую-либо их часть; (ii) продавать, демонстрировать, распространять, публиковать, транслировать, передавать или каким-либо иным образом распространять или передавать Сайт, Услуги или какую-либо их часть каким-либо физическим или юридическим лицам; (iii) создавать производные произведения на базе Сайта или Услуг; или (iv) проводить инженерный анализ, декомпилировать или дезассемблировать (кроме случаев, в явной форме разрешенных применимым законодательством) какое-либо программное обеспечение, используемое в рамках Сайта или Услуг.

Использование гиперссылок

Общество не несет ответственности за содержание других Интернет-сайтов, включая веб-сайты, через которые Пользователь мог получить доступ к настоящему Сайту или на которые Пользователь мог перейти с данного Сайта. Компания не несет никакой ответственности в связи с такими сайтами или ссылками.

Если предоставляются гиперссылки на Интернет-сайт третьей стороны, это делается с наилучшими намерениями и с тем убеждением, что такой веб-сайт содержит или может содержать материал, имеющий отношение к содержанию настоящего Сайта. Такая гиперссылка не означает, что Общество проверило или одобрило соответствующий сайт третьей стороны или его контент или что оно выражает одобрение, спонсирует или поддерживает аффилированные отношения с таким Интернет-сайтом, его владельцами или провайдерами.

Юрисдикция

Использование Пользователем настоящего Сайта и действие настоящих условий и положений регламентируются законодательством Российской Федерации. Суды Российской Федерации имеют эксклюзивную юрисдикцию в отношении всех споров, возникающих в связи с использованием вами настоящего Сайта. Посещая данный Сайт, Пользователь безоговорочно соглашается подчиниться юрисдикции государственных судов Российской Федерации по месту нахождения Общества.

Персональные данные

Персональные данные — это любая информация, которая может быть использована для идентификации Пользователя как отдельного лица, в том числе фамилия, имя и отчество, дата рождения, адрес, контактные реквизиты (телефон, адрес электронной почты), семейное, имущественной положение и иные данные, относимые Федеральным законом от 27 июля 2006 года № 152-ФЗ «О персональных данных» к категории персональных данных.

Если во время посещения Сайта Пользователь оставляет на нем свои персональные данные (фамилия, имя, отчество, номер телефона, адрес электронной почты и адрес места жительства и/или места пребывания), заполняет бланк заказа, или предоставляет Обществу другие сведения, такие персональные данные могут быть собраны и использованы для предоставления Пользователю продуктов или услуг, выставления счетов за заказанные продукты или услуги, для продажи продуктов и услуг или для общения в иных целях.

Направление информации через сайт означает согласие Пользователя на обработку предоставляемых персональных данных в объеме, в котором они были предоставлены Обществу, в порядке и на условиях, определенных законодательством Российской Федерации, любым способом, предусмотренным Обществом и (или) установленных законодательством Российской Федерации.

Целью обработки персональных является оказание Обществом и её партнерами услуг, а так же информирование об оказываемых Обществом и её партнерами услугах и реализуемых продуктах.

В случае отзыва согласия на обработку своих персональных данных Общество прекратит их обработку и уничтожит данные в срок, не превышающий трех рабочих дней с даты получения Обществом такого отзыва.

Отзыв согласия на обработку персональных данных должен быть осуществлен в письменной форме.

Общество может привлечь стороннюю организацию для оказания содействия по предоставлению вам запрошенной информации, продуктов и услуг. При таких обстоятельствах будут приняты меры с целью обеспечения того, чтобы персональные данные Пользователя хранились в строгом соответствии с политикой сохранения конфиденциальности Общества и использовались только для выполнения запросов Пользователя. Общество не продает и не раскрывает персональные сведения Пользователя третьим сторонам с тем, чтобы они могли продавать свои продукты или услуги Пользователю.

Данные, собираемые автоматически

Имя домена и IP адрес Пользователя регистрируются автоматически. Эти данные не являются личными сведениями и не идентифицируют Пользователя как отдельное лицо; они содержат только информацию о компьютере, используемом для просмотра Сайта. Такие данные используются для того, чтобы установить, в какой точке земного шара используется Сайт, для обеспечения полноты охвата, а также для анализа перехода по ссылкам с целью лучшего понимания особенностей использования Сайта. Общество не устанавливает связь между такими автоматически собираемыми данными и личными сведениями о конкретных людях.

Тем не менее, личные сведения могут быть собраны непреднамеренно при помощи автоматических функций коммерческого программного обеспечения третьей стороны, используемого для обеспечения работы серверов Общества. Если выяснится, что имел место такой сбор сведений, будут приняты разумные меры для удаления этих данных из систем Общества.

Чаты, доски объявлений и тематические конференции

Если в какой-либо момент времени на настоящем Сайте будет работать какой-либо чат, доска объявлений или форум, тематическая конференция и т. д., любая информация, которую Пользователь раскроет там, может быть собрана и использована в соответствии с настоящими Общими условиями. Общество не несет ответственности за использование другими сторонами любой информации, предоставляемой Пользователем указанным сторонам посредством чатов, досок объявлений, тематических конференций и других средств общения данного Сайта.

Безопасность

Общество реализует политики, правила и принимает технические меры безопасности для защиты личных сведений, находящихся под контролем Общества, в полном соответствии с законодательством по обеспечению конфиденциальности и защите данных, которое относится к юрисдикции, применимой к Сайту. Разработаны меры безопасности по предотвращению доступа, ненадлежащего использования или раскрытия, изменения, незаконного уничтожения или случайной потери данных.

Дети

Настоящий Сайт не предназначен для детей и не ориентирован на них. Общество преднамеренно не собирает сведения, поступающие от детей. Однако программное обеспечение, используемое для поддержания работы настоящего Сайта, автоматически не отличает посетителей моложе 18 лет от остальных пользователей, поэтому Общество требует, чтобы лица моложе 18 лет получили согласие родителя, опекуна, учителя или библиотекаря на просмотр настоящего Сайта. Если Общество обнаруживает, что ребенок разместил личные сведения на данном Сайте, то принимает разумные меры для удаления таких сведений из файлов компании.

Условия пользования, уведомления и новые редакции политики

Если Пользователь решает посетить данный Сайт, посещение и любой спор в отношении сохранения конфиденциальности регламентируются настоящими Общими условиями. Общество сохраняет за собой право вносить изменения в настоящую политику без уведомления Пользователей. Если Пользователь продолжает пользоваться Сайтом после внесения изменений в данную политику, это означает, что Пользователь принимает такие изменения.

Альтернативные источники электроэнергии для загородного дома —

В настоящее время в качестве основных используются следующие источники электрической энергии: атомные электростанции, работающие на ядерном топливе, тепловые электростанции, работающие на угле или газе и гидроэлектростанции. В ближайшие 50-60 лет запасы природного газа, угля, нефти будут исчерпаны практически полностью и возникнет энергетический кризис, поэтому уже сейчас в большинстве стран мира ведутся разработки энергосберегающих технологий, поиск альтернативных и недорогих источников энергии.

Электроснабжение частного дома можно осуществить различными способами. Так, например, если рядом с домом или на небольшом расстоянии от него проходит линия электропередач 0,4 кВ, то самым недорогим вариантом подключения будет вариант заказа в электромонтажной организации работ по подключению дома к электрическим сетям общего пользования. Если же подключение к электрическим сетям общего пользования связано с большими финансовыми затратами, то актуальным становится вопрос выбора альтернативного источника электроснабжения.

Существует несколько эффективных альтернативных источников электроэнергии. Основными из них являются работающие на энергии солнца и ветра. Выбор альтернативного источника довольно сложный и трудоемкий процесс. Прежде всего, необходимо рассчитать потребляемую электрическую мощность всех потребителей дома с учетом коэффициента загрузки и коэффициента одновременности, затем на основании полученных результатов выбрать мощность и тип источника электроснабжения, руководствуясь стоимостью оборудования, электромонтажных работ и кВт*ч электроэнергии.

Для электроснабжения среднестатистического загородного дома, расположенного в Подмосковье, использующего нагрузку, состоящую из холодильника, освещения, телевизора, кондиционера и стиральной машины, необходим источник электроэнергии мощностью 6 кВт. Среднесуточное потребление составит порядка 16 кВт*ч. Выбор альтернативного источника электроэнергии необходимо производить с учетом возможного увеличения потребляемой мощности:

Ветрогенератор

Стоимость ветроустановки в сборе мощностью 7 кВт составит порядка 24000 долларов. В состав комплекта, помимо самого вертогенератора и мачты для его установки, войдёт контроллер заряда аккумуляторов, инвертор 48/220 В, 20 аккумуляторных батарей емкостью 200 А*ч, необходимых для бесперебойной работы электрооборудования дома во время штиля или низкой скорости ветра.

Солнечная батарея

Электроустановка на основе солнечных модулей мощностью 7 кВт будет стоить ориентировочно 30000 долларов. Комплект будет состоять из 45 монокристаллических солнечных панелей мощностью 270 Вт, контроллера заряда, инвертора 48/220 в и 20 аккумуляторных батарей емкостью 200 А*ч, необходимых для бесперебойной работы в ночное время. Необходимо учесть, что помимо стоимости самой установки по выработке электрической энергии необходимо будет оплатить стоимость электромонтажных работ, составляющих порядка 20% стоимости оборудования.

Альтернативные источники электроэнергии имеют свои недостатки. Так, например, ветрогенератор начинает вырабатывать электроэнергию при скорости ветра от 3 м/с, а на номинальную мощность выходит при скорости ветра от 6 до 12 м/с в зависимости от модели и производителя. Солнечные элементы также зависят от погодных условий, в пасмурную погоду выработка электроэнергии у них снижается в разы.

В CLIMAG.RU всегда помогут произвести грамотный выбор оборудования для альтернативного источника электроэнергии, его установку и электромонтажные работы.

Альтернативные источники энергии. Овощи и фрукты

  • Участник: Сытенко Мария Александровна
  • Руководитель: Жеребцова Анна Ивановна

Цель данной работы — исследование электрических свойств овощей и фруктов.

I. Введение

Моя работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами.

Слово «энергия» прочно вошло в обиходный словарь начала XXI в. человечество в последнее время сталкивается с дефицитом энергоресурсов. Грядущее истощение запасов нефти и газа побуждает ученых искать новые возобновляемые источники энергии

Возобновляемые источники сырья и способы получения из них энергии – магистральная тема многих университетских исследований. Лаборатория в Нидерландах изучает возможность получения электричества из растений, точнее, из корневой системы растений и из бактерий, находящихся в почве.1

Энергия солнца, энергия ветра, энергия приливов и отливов возобновляемым источникам энергии в последнее время всё чаще причисляют и растения. Ведь только зеленое растение является той единственной в мире лабораторией, которая усваивает солнечную энергию и сохраняет ее в виде потенциальной химической энергии органических соединений, образующихся в процессе фотосинтеза.

Один из альтернативных источников энергии – процесс фотосинтеза. Процесс фотосинтеза, протекающий в клетке растения, является одним из главных процессов. В ходе него происходит не только разделение молекул воды на кислород и водород, но и сам водород в какой-то момент оказывается разделенным на составные части — отрицательно заряженные электроны и положительно заряженные ядра. Так что, если в этот момент ученым удастся «растащить» положительно и отрицательно заряженные частицы в разные стороны, то, по идее, можно получить замечательный живой генератор, топливом для которого служили бы вода и солнечный свет, а кроме энергии, он бы еще производил и чистый кислород. Возможно, в будущем такой генератор и будет создан. Но для осуществления этой мечты нужно отобрать наиболее подходящие растения, а может быть, даже научиться изготавливать хлорофилловые зерна искусственно, создать какие-то мембраны, которые бы позволили разделять заряды.

Данные исследований лаборатории молекулярной биологии и биофизической химии МФТУ по созданию таких мембран показали, что живая клетка, запасая электрическую энергию в митохондриях, использует ее для произведения очень многих работ: строительства новых молекул, затягивания внутрь клетки питательных веществ, регулирования собственной температуры.. С помощью электричества производит многие операции и само растение: дышит, движется (как это делают листочки всем известной мимозы-недотроги), растет.

Цель моей работы – исследование электрических свойств овощей и фруктов.

Задачи:

  1. Экспериментально измерить и проанализировать силу тока и напряжение таких батарей.
  2. Провести исследования с гальванических элементов, изменяя ширину пластин, глубину их погружений, и расстояний между электродами.
  3. Испытайте разные комбинации последовательно соединённых продуктов и проанализируйте полученные результаты.
  4. Собрать цепь, состоящую из нескольких таких батареек и постараться зажечь лампочку, запустить часы.
  5. Изготовить прибор гальванометр для определения напряжения.
  6. Исследовать электропроводность овощей и фруктов, разных сроков хранения, используя свой прибор.

Объект исследования: фрукты и овощи.

Предмет исследования: свойства овощных и фруктовых источников тока.

Гипотеза: Так как фрукты и овощи состоят из различных минеральных веществ (электролитов), то они могут стать природными источниками тока.

Методы исследования: изучение и анализ литературы, проведение эксперимента, анализ полученных данных.

II. Основная часть

2.1 История создания батарейки

Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым ЛуиджиГальвани. На самом деле целью изысканий Гальвани был совсем не поиск новых источников энергии, а исследование реакции подопытных животных на разные внешние воздействия. В частности, явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки.
Теоретическое объяснение наблюдаемому процессу Гальвани дал неверное2 истолкование. Опыты Гальвани стали основой исследований другого итальянского ученого — Алессандро Вольта. Он сформулировал главную идею изобретения. Причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Для подтверждения своей теории Вольта создал нехитрое устройство. Оно состояло из цинковой и медной пластин погруженных в емкость с соляным раствором. В результате цинковая пластина (катод) начинала растворяться, а на медной стали (аноде) появлялись пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток. Несколько позже ученый собрал целую батарею из последовательно соединенных элементов, благодаря чему удалось существенно увеличить выходное напряжение. Именно это устройство стало первым в мире элементом питания и прародителем современных батарей. А батарейки в честь Луиджи Гальвани называют теперь гальваническими элементами3.

2.2 Создание фруктовой батарейки

а) с использованием одного элемента

Для создания фруктовой батареи мы попробовали взять лимоны, яблоки, огурцы свежие и соленые, помидоры, картофель сырой и вареный. Положительным полюсом определили несколько блестящих медных пластин. Для создания отрицательного полюса решили использовать оцинкованные пластины. Конечно же, понадобились провода, с зажимами на концах. Ножом сделала в фруктах небольшие надрезы, куда вставила пластины (электроды). После соединения всех частей воедино у меня получилась фруктовая или овощная батарейка (рис. 1).


Рисунок 1

Название

Напряжение, В

Сила тока, А

Лимон

0,81

0,18

Яблоко

0,84

0,12

Огурец (свежий)

0,8

0,11

Огурец (соленый)

0,9

0,2

Картофель (сырой)

0,5

0,25

Картофель (вареный)

0,75

0,5

Вывод: Исследования показали, что наибольшее значение силы тока наблюдается у соленого огурца, сырого картофеля и лимона. Значения напряжения и силы тока в варёном картофеле в два раза больше, чем в сыром.

б) разные комбинации последовательного соединения элементов

Исследовала разные комбинации последовательного соединения элементов, фруктов и овощей (рис. 2).


Рисунок 2

Название

Напряжение, В

Сила тока, А

Лимон + огурец

1,68

0.7

Два лимона

1,4

0,5

Две картошки

1,62

0,5

Три картошки

2,2

0,5

2 огурца

1,01

0.6

Вывод: соединяя последовательно объекты исследования, выяснила, что вареный картофель, лимон-огурец, дают наибольшую разность потенциалов.

2.3. Исследования электропроводности овощей и фруктов во время хранения

Название

Ноябрь
I, мкА / m, г

Январь
I, мкА / m, г

картофель

50-45 /150

40-36/150

свекла

33-25 /208

23-20 /208

Давно известно, что все плоды растений представляют собой открытые системы биологического происхождения сложного физико-химического состава с характерными особенностями функционирования в течение всего их развития и хранения, а преобладающим компонентом является вода.

Следовательно в процессе хранения овощи и фрукты «усыхают», т.е. количество жидкости в них уменьшается, а содержание газов увеличивается, в результате чего электpопpоводность их тоже должна уменьшаться, в чем я убедилась проверяя в январе этого года. Считаю, что используя такие данные, легко отличить плоды нового урожая текущего года от плодов и овощей прошлого.

Вывод: Экспериментально было выявлено, что постепенно сила тока и напряжение уменьшаются. Оказалось, что величины силы тока и напряжения связаны с кислотностью продукта.

2.4. Возможность практического применения электрических свойств овощей

а) источник тока для часов

В ходе измерений попытались оценить возможность практического применения электрических свойств овощей.

От четырех последовательно соединенных вареных картофелин стали работать часы маленькие (рис. 3) и большие (рис. 4).



Рисунок 3

Рисунок 4

б) освещение

Зажглась лампочка (рис. 5).


Рисунок 5

в) зарядка телефона

Разряженный телефон я подключила к пяти, последовательно соединенным вареным картофелинам, телефон заработал (рис. 6).


Рисунок 6

г) подключение калькулятора

Вытаскивая медную и цинковую пластины из овощей и фруктов, мы обратили внимание на то, что они сильно окислились. Это значит, что кислота вступала в реакцию с цинком и медью. За счет этой химической реакции и протекал очень слабый электрический ток.

III. Создание прибора для определения свежести фруктов и овощей

а) самодельный гальванометр

Кусочек картона, обмотала 30 витками медного провода и расположила его таким образом, чтобы стрелка компаса находилась под витками, была им параллельна — это нулевое положение прибора. К концам проволоки я припаяла медную и цинковую пластину, их я буду погружать в исследуемый фрукт или овощ. Если к ним подсоединить источник тока, то вокруг витков проволоки, по которым пойдет ток, возникнет магнитное поле, взаимодействующее с полем магнитной стрелки, в результате чего она будет отклонятся от своего положения. Поворот стрелки пропорционален силе тока. Затем, шкалу этого прибора я проградуировала и в единицах напряжения, так как сила тока прямо пропорциональна напряжению, приложенному к выводам этого прибора. Поэтому для градуировки нашего прибора подсоединила новую батарейку с ЭДС = 1.5 В, стрелка отклонилась на 80 град, на 8 делений нашего компаса, одному делению компаса соответствует напряжение 0,188 В (рис. 7)


Рисунок 7

б) использование самодельного прибора

С помощью прибора я дважды проверяла картофель, свеклу и лук в погребе.

Показания моего прибора уменьшились.

Разные сорта картофеля показали различные изменения. Прибор можно использовать для определения качества овощей и фруктов. Возможно на рынке (рис. 8).


Рисунок 8

IV. Об использовании фруктов и овощей для получения электричества

Недавно израильские ученые изобрели новый источник экологически чистого электричества. В качестве источника энергии необычной батарейки исследователи предложили использовать вареный картофель, так как мощность устройства в этом случае по сравнению с сырым картофелем увеличится в 10 раз. Такие необычные батареи способны работать несколько дней и даже недель, а вырабатываемое ими электричество в 5-50 раз дешевле получаемого от традиционных батареек и, по меньшей мере, вшестеро экономичнее керосиновой лампы при использовании для освещения.

Индийские ученые решили использовать фрукты, овощи и отходы от них для питания несложной бытовой техники. Батарейки содержат внутри пасту из переработанных бананов, апельсиновых корок и других овощей или фруктов, в которой размещены электроды из цинка и меди. Новинка рассчитана, прежде всего, на жителей сельских районов, которые могут сами заготавливать фруктово-овощные ингредиенты для подзарядки необычных батареек. В Индии создали батарейку на пасте из фруктов и овощей. В Австралии в 2003 году запущена электросиловая установка на ореховой скорлупе.4

Советы любознательным

Как добыть электричество из картошки?

У вас на даче нет электричества, но есть мешок картофеля. Из клубней картошки можно получить электричество бесплатно, все что нам понадобится, это соль, зубная паста, провода и картофелина.

Разрежьте её пополам ножом, через одну половинку проведите провода, в то время как в другой сделайте по центру углубление в форме ложки, после чего наполните её зубной пастой, смешанной с солью.

Соедините половинки картошки (к примеру зубочистками ), причем провода должны контачить с зубной пастой, а их самих лучше зачистить. Все! Теперь вы можете при помощи вашего генератора электричества устраивать пытки, зажигать костры от электрической искры и зажигать импровизированные лампочки с обугленными волокнами бамбука вместо нитей накаливания.

Как добыть электричество из фруктов?

Апельсины, лимоны и т.д., все это идеальный электролит для выработки электричества на халяву бесплатно, особенно если экстремальная ситуация застала вас недалеко от экватора. Помимо уже известных алюминия и меди, можно использовать более эффективные золото и серебро, доведя напряжение вашего электричества аж до целых 2 Вольт.

Если вы занимаетесь получением электроэнергии с целью освещения, то в качестве лампочки может служить стеклянная колба с кусочком обугленного бамбукового волокна в качестве нити накаливания. Эту кустарную нить накаливания использовал для первой лампочки в мире сам Эдиссон.

V. Выводы

Подводя итоги нашей работы можно с уверенностью сказать, что проведя эксперименты, мы, с одной стороны, убедились в том, что даже привычные нам предметы питания могут выступать в необычной роли. С другой стороны, мы убедились в выполнении законов физики.

  1. Фрукты и овощи могут служить источниками тока, если ввести в них медный и цинковый электроды.
  2. Экспериментально установлено, что величина тока в фрукте или овоще не зависит от его размера, а определяется наличием в нем растворов минеральных солей, видом электродов.
  3. Величины силы тока и напряжения связаны с кислотностью продукта и с разными комбинациями последовательно соединённых продуктов.
  4. В процессе хранения овощи и фрукты «усыхают», т. е. количество жидкости в них уменьшается, а содержание газов увеличивается, в результате чего электpопpоводность их тоже уменьшается.
  5. Фруктовые и овощные батарейки могут заменять карманные батарейки для освещения холодильника, погреба (банка с огурцами и электроды), а также в экстремальных ситуациях (отключение электричества).

1http://ru.euronews.com/2013/04/29/heats-shoots-and-leaves-electricity-from-living-plants

2Кириллова И.Г. Книга для чтения по физике. 6–7 кл. – М.: Просвещение, 1978, с. 198

3ru.wikipedia.org›Гальванический элемент

4http://energetiku.jimdo.com/


Альтернативные источники энергии — урок. Физика, 8 класс.

Выделяют следующие альтернативные источники энергии:

Биотопливо — топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов.

Различают жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель),

 

 

твёрдое биотопливо (дрова, брикеты, топливные гранулы, щепа, солома, лузга) и

 

 

газообразное (синтез-газ, биогаз, водород).

\(54\) — \(60\) % биотоплива составляют его традиционные формы: дрова, растительные остатки и сушёный навоз для отопления домов и приготовления пищи. Их используют \(38\) % населения Земли. Основной формой биотоплива в электроэнергетике являются пеллеты, производимые из древесины.

 

 

Транспортное биотопливо существует в основном как этанол и биодизель. Основными видами сырья для производства биодизеля являются соя и рапс.

В Бразилии большая часть транспорта заправляется этанолом, а самым крупным производителем и потребителем биодизельного топлива является Германия.

  • Солнечные батареи.

Идея использования солнечной энергии появилась много лет назад. Но лишь с 1970-х годов появились технологии, позволяющие воплотить её в жизнь. В основе лежит простой принцип. Солнечный свет, падая на коллектор, концентрируется и превращается в энергию.

 

 

Основное препятствие — это стоимость установки. Специальное оборудование стоит значительно дороже традиционных систем. При этом вложения окупятся лишь через много лет.

Несмотря на стоимость, солнечная энергия подходит для энергоснабжения в городах. В сельских районах, где возрастает стоимость прокладки силовых кабелей, солнечная энергия — хороший вариант электроснабжения.

  • Гидроэлектростанции.

На гидроэлектростанциях для вращения турбин используется энергия падающей воды. Такой способ получения электричества требует управления потоком воды, к примеру, рекой, с помощью дамбы.

 

 

У гидроэлектростанций есть множество преимуществ (источник энергии возобновляемый, нет выбросов в атмосферу).

В мире из этого источника получают около \(20\) % электричества. Лидируют в использовании гидроэлектростанций Норвегия, Россия, Китай, Канада, США и Бразилия.

  • Энергия ветра.

Маленькие мельницы были распространены в мире до тех пор, пока их не вытеснили сначала паровые, а позже электрические двигатели. Интерес к большим ветряным турбинам возрос во время нефтяного кризиса в 1970-м году.

 

 

Гигантские ветряные турбины генерируют электричество, когда ветер вращает их огромные лопасти. Лопасти подключены к генератору, вырабатывающему электричество. Как и в случае с солнечными батареями, постройка ветряной электростанции требует значительных начальных инвестиций, которые не обязательно быстро окупаются.

  • Геотермальная энергия.

В геотермальных источниках энергии естественные свойства природных горячих источников и паровых кратеров используются для получения электричества или обеспечения жителей горячей водой. Геотермальные электростанции направляют пар, выходящий из поверхности земли, в турбины.

 

  • Ядерная энергия.

В 70-х годах ядерная энергия стала альтернативой ископаемому топливу. На ядерной станции проводится контролируемый ядерный распад, выделяется энергия. Недорогое топливо уравновешивает инвестиции, необходимые для строительства ядерных электростанций, в результате электричество становится дешевле.

 

 

Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках.

Несмотря на происшествия на АЭС Три-Майл-Айленд (США), Чернобыльской АЭС (Украина) и на АЭС Фукусима (Япония), ядерное топливо всё ещё является хорошим источником энергии для многих регионов.

Сейчас единственной проблемой остаётся утилизация ядерных отходов.

Источники:

http://img.inforico.com.ua/a/kuplyu-pokupaem-na-eksport-kaminnye-drova-brikety-pilety-palety-i-drugoe—1739-1459425305332940-1-big.jpg

http://ru.alternative-energy.com.ua/wp-content/uploads/2016/10/биодизель.jpg

http://teplowood.ru/wp-content/uploads/2015/03/solnichnie-batarei-9-600×443.jpg

http://img-fotki.yandex.ru/get/9743/30348152.18b/0_7efc0_6f645a75_orig

http://clean-energy-now.com/wp-content/uploads/2014/06/wind-energy.jpgветер

http://4.bp.blogspot.com/-RjM1ACPDnik/UTpUXIn_gGI/AAAAAAAADSk/959Z4TZ4h68/s1600/geothermal.jpg

http://doseng.org/uploads/posts/2016-02/1455090127_acdc-09.jp

http://fbm.ru/wp-content/uploads/2017/04/wood_pellets_EREC.jpg

https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BE%D1%82%D0%BE%D0%BF%D0%BB%D0%B8%D0%B2%D0%BE

виды и принципы функционирования – тема научной статьи по электротехнике, электронной технике, информационным технологиям читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка

GEOLOGICAL AND MINERALOGICAL SCIENCES

Alternative energy sources: types and principles of operation Ivanova A. (Russian Federation)

Альтернативные источники в энергетике: виды и принципы функционирования Иванова А. Ю. (Российская Федерация)

Иванова Анна Юрьевна / Ivanova Anna- магистрант, программа «Международная экономика»,

Институт магистратуры,

Санкт-Петербургский государственный экономический университет (СПБГЭУ),

г. Санкт-Петербург

Аннотация: приводятся виды и принципы функционирования альтернативных источников в энергетике, основные направления альтернативной энергетики, выявлена причина поиска альтернативных источников энергии.

Abstract: the views and principles of functioning of alternative sources of energy, the basic direction of alternative energy, found the cause of the search for alternative energy sources.

Ключевые слова: альтернативный источник, энергия, энергетика, нетрадиционный источник.

Keywords: alternative source of energy, energy, non-conventional sources.

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например, ветряные, геотермальные, либо источники, находящиеся в стадии освоения, например, топливные элементы или источники, которые могут найти применение в перспективе, например, термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например, для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км2) и малая единичная мощность. Направления нетрадиционной энергетики представлены на рисунке 1.

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины: локальная энергетика, распределённая энергетика,

автономная энергетика и др.1 Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. 1

1 А. Михайлов, д. т. н., проф., А. Агафонов, д. т. н., проф., В. Сайданов, к. т. н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники: Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.

29

Малые гидроэлектростанции

Ветровая энергетика

Геотермальная энергетика

Солнечная энергетика

Биоэнергетика

Установки на топливных элементах

Водородная энергетика

Термоядерная энергетика.

Ветроэнергетика

Биотопливо

Гелиоэнергетика

Альтернативная гидроэнергетика

Геотермальная энергетика

Мускульная сила человека

Грозовая энергетика

Рис. 1. Виды нетрадиционной энергетики1

К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например, в России — примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Рассмотрим более подробно классификацию источников энергии:

1) Ветроэнергетика.

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их используют в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25 % энергии из ветра.

2) Солнечные электростанции (СЭС) работают более чем в 80 странах.

Солнечный коллектор, в том числе Солнечный водонагреватель, используется как

для нагрева воды для отопления, так и для производства электроэнергии.

3) Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае.

4) Аэро ГЭС (конденсация влаги из атмосферы, в том числе из облаков) — работают опытные установки. 1

1 Составлено автором на базе: Под общей редакцией чл.-корр. РАН Е.В. Аметистова. том 2 под редакцией проф. А. П. Бурмана и проф. В. А. Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008.

30

5) Геотермальная энергетика.

Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанциях вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

6) Мускульная сила человека.

Хотя мускульная сила является самым древним источником энергии, и человек всегда стремился заменить её чем-то другим, в настоящее время её значение растёт вместе с ростом использования велосипеда.

7) Грозовая энергетика.

Грозовая энергетика — это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings 11 октября 2006 года объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученной с помощью современных источников, окупаться такая установка будет за 4-7 лет.

8) Управляемый термоядерный синтез.

Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.

Также важным аспектом исследования являются направления альтернативной энергетики помимо использования нетрадиционных источников энергии.

1) Распределённое производство энергии — новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.

2) Водородная энергетика. На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.

3) Водородные двигатели (для получения механической энергии).

4) Топливные элементы (для получения электричества).

5) Биоводород.

6) Космическая энергетика. Получение электроэнергии в фотоэлектрических элементах, расположенных на околоземной орбите или на Луне. Электроэнергия будет передаваться на Землю в форме микроволнового излучения. Может способствовать глобальному потеплению. До сих пор не применяется.

7) Приливная энергетика использует энергию морских приливов. Распространению этого вида электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды на Чёрном море в прилив и отлив минимальны.

8) Волновая энергетика при внимательном рассмотрении может оказаться наиболее перспективной. Волны представляют собой сконцентрированную энергию того же солнечного излучения и ветра. Мощность волнения в разных местах может превышать 100 кВт на погонный метр волнового фронта. Волнение есть практически всегда, даже в штиль («мёртвая зыбь»). На Чёрном море средняя мощность волнения примерно 15 кВт/м. Северные моря России — до 100 кВт/м. Использование волн может обеспечить энергией морские и прибрежные поселения. Волны могут приводить в движение суда. Мощность средней качки судна в несколько раз превышает мощность его силовой установки. Но пока волновые электростанции не вышли за рамки единичных опытных образцов.

31

Итак, можно сделать вывод, что альтернативная энергетика — совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.

Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии — «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию». Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению.

Причина поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.

Литература

1. Айхбергер С. Прогноз мирового рынка солнечной энергетики до 2019 года, 2015. // Электронное научное издание «НАУКОВЕДЕНИЕ» Том 7, № 4 (2015) [Электронный ресурс] — Режим доступа. — URL: http://naukovedenie.ru/PDF/10EVN415.pdf (дата обращения 10.01.2016).

2. Канн Ш., Кимбис Т. Обзор солнечной энергетики США. Нью-Йорк, 2015. //

Официальный сайт поисковой системы Polpred.com [Электронный ресурс] — Режим доступа. — URL: http://energo.polpred.com/news/?&page=451 (дата

обращения 08.12.2015).

3. Кеннинг Т. Обзор перспектив солнечной энергетики Индии. Лондон, 2015. // Официальный сайт поисковой системы Polpred.com [Электронный ресурс] — Режим доступа. — URL:

http://energo.polpred.com/news/?ns=1&searchtext=%FD%ED%E5%F0%E3%E5%F2% E8%EA%E0&Mltext=on&period_count=1&page=5 (дата обращения 12.01.2016).

4. Михайлов А., д. т. н., проф., Агафонов А., д. т. н., проф., Сайданов В., к. т. н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники: Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.

32

10 удивительно простых источников альтернативной энергии

Конечно, вы слышали о ветровой и солнечной энергии, биотопливе, гидроэлектроэнергии, приливной энергии и энергии волн, но мать-природа предоставляет бесконечное изобилие альтернативных источников энергии помимо тех, которые мы используем сегодня. Чистая, зеленая энергия повсюду в мире природы, и ученые только начали отвечать на вопрос, как ее использовать. Вот список из 10 практических источников альтернативной энергии, о которых вы, вероятно, никогда не слышали.

Saltwater Power

Фото: Томаш Барановски / Flickr [CC by 2.0]

Его называют «соленой водой», «осмотической энергией» или «голубой энергией», и это один из самых многообещающих новых источников возобновляемой энергии, который еще не полностью задействован. Так же, как для опреснения воды требуется огромное количество энергии, энергия вырабатывается, когда происходит обратное, и соленая вода добавляется к пресной воде. Посредством процесса, называемого обратным электродиализом, силовые установки с голубой энергией могут улавливать эту энергию, поскольку она естественным образом выделяется в устьях рек по всему миру.

Гелиокультура

Фото: DM / Flickr [CC by ND-2.0]

Этот революционный процесс под названием гелиокультура был впервые разработан компанией Joule Biotechnologies и позволяет получать топливо на основе углеводородов путем объединения солоноватой воды, питательных веществ, фотосинтезирующих организмов, углекислого газа и солнечного света. В отличие от масел, приготовленных из водорослей, гелиокультура производит топливо напрямую — в виде этанола или углеводородов, — которое не нужно очищать. Этот метод по существу использует естественный процесс фотосинтеза для производства готового к употреблению топлива.

Пьезоэлектричество

Фотография: Bignai / Shutterstock

Поскольку человечество в мире приближается к колоссальным 7 миллиардам, использование кинетической энергии человеческого движения может стать источником реальной силы.Пьезоэлектричество — это способность некоторых материалов создавать электрическое поле в ответ на приложенное механическое напряжение. Размещая плитки из пьезоэлектрического материала вдоль оживленных пешеходных дорожек или даже на подошвах нашей обуви, электричество может вырабатываться с каждым нашим шагом, превращая людей в ходячие электростанции.

Преобразование тепловой энергии океана (OTEC)

Фото: Гленн Бельц / Flickr [CC by 2.0]

Преобразование тепловой энергии океана или сокращенно OTEC — это система преобразования гидроэнергии, которая использует разницу температур между глубокой и мелкой водой для питания теплового двигателя.Эту энергию можно использовать, строя платформы или баржи в море, используя термические слои, находящиеся между глубинами океана.

Человеческие сточные воды

Фотография: PJjaruwan / Shutterstock

Какая сила? Даже бытовые сточные воды можно использовать для производства электроэнергии или топлива. Уже реализуются планы по заправке общественных автобусов в Осло, Норвегия, бытовыми сточными водами. Электричество также можно вырабатывать из сточных вод с помощью микробных топливных элементов, в которых используется биоэлектрохимическая система, которая управляет током, имитируя бактериальные взаимодействия, встречающиеся в природе.Конечно, сточные воды также можно использовать в качестве удобрения.

Сила горячего камня

Фотография: «Я незнакомец» / Shutterstock

Энергия горячих горных пород — это новый тип геотермальной энергии, который закачивает холодную соленую воду в породу, нагретую теплопроводностью от мантии Земли и распадом радиоактивных элементов в коре. Когда вода нагревается, создаваемая энергия может быть преобразована в электричество с помощью паровой турбины. Преимущества энергии горячего камня заключаются в том, что выходную мощность можно легко контролировать, и она может обеспечивать энергию 24 часа в сутки, 7 дней в неделю.

Энергия испарения

Фото: Дэйв Накаяма / Flickr [CC by 2.0]

Вдохновленные растениями, ученые изобрели синтетический «лист», который может поглощать электроэнергию из испаряющейся воды. Пузырьки воздуха могут закачиваться в «листья», генерируя электричество, генерируемое разницей в электрических свойствах воды и воздуха. Это исследование может открыть путь к более грандиозным способам улавливания энергии, создаваемой испарением.

Колебания, вызванные вихрями

Фото: Омар Джамиль

Эта форма возобновляемой энергии, которая черпает энергию из медленных течений воды, была вдохновлена ​​движением рыб.Энергию можно уловить, когда вода протекает мимо сети стержней. Вихри или водовороты образуются в чередующемся порядке, толкая и притягивая объект вверх, вниз или из стороны в сторону, создавая механическую энергию. Это работает так же, как рыбы изгибают свои тела, чтобы скользить между вихрями, сбрасываемыми телами рыб перед ними, по сути, следуя друг за другом.

Добыча луны

Фото: Крис Ишервуд / Flickr [CC by SA-2.0]

Гелий-3 — это легкий нерадиоактивный изотоп, обладающий огромным потенциалом для выработки относительно чистой энергии за счет ядерного синтеза.Единственная загвоздка: это редкость на Земле, но в изобилии на Луне. Осуществляется множество проектов по добыче на Луне этого ресурса. Например, российская космическая компания РКК Энергия объявила, что считает лунный гелий-3 потенциальным экономическим ресурсом, который будет добываться к 2020 году.

Солнечная энергетика космического базирования

Фото: NASA / Wikimedia Commons [CC by 1.0]

Поскольку на солнечную энергию в космосе не влияет 24-часовой цикл дня и ночи, погоды, времен года или фильтрующий эффект атмосферных газов Земли, в настоящее время разрабатываются предложения по выводу солнечных панелей на орбиту и передаче энергии для использования на Земле. .Технологический прорыв здесь заключается в беспроводной передаче энергии, которая может осуществляться с использованием микроволновых лучей.

Центр обработки данных по альтернативным видам топлива: производство и распределение электроэнергии

Подключаемые гибридные электромобили (PHEV) и полностью электрические транспортные средства (EV) — собирательно именуемые подзаряжаемыми электромобилями (PEV) — накапливают электричество в батареях для питания одного или нескольких электродвигателей. Батареи заряжаются в основном путем подключения к внешним источникам электроэнергии, произведенной из природного газа, угля, ядерной энергии, энергии ветра, гидроэнергии и солнечной энергии.

Электромобили

, а также PHEV, работающие в полностью электрическом режиме, не производят выхлопных газов. Однако существуют выбросы, связанные с производством большей части электроэнергии в Соединенных Штатах. См. Раздел о выбросах для получения дополнительной информации о местных источниках электроэнергии и выбросах.

Производство

По данным Управления энергетической информации США, в 2019 году большая часть электроэнергии в стране была произведена за счет природного газа, угля и ядерной энергии.

Электроэнергия также производится из возобновляемых источников, таких как гидроэнергия, биомасса, ветер, геотермальная энергия и солнечная энергия.В совокупности возобновляемые источники энергии произвели около 17% электроэнергии страны в 2019 году.

За исключением фотоэлектрической (PV) генерации, первичные источники энергии используются прямо или косвенно для перемещения лопаток турбины, подключенной к электрическому генератору. Турбогенератор преобразует механическую энергию в электрическую. В случае природного газа, угля, ядерного деления, биомассы, нефти, геотермальной энергии и солнечной энергии выделяемое тепло используется для создания пара, который перемещает лопасти турбины.В случае ветроэнергетики и гидроэнергетики лопасти турбины перемещаются непосредственно потоком ветра и воды соответственно. Солнечные фотоэлектрические панели преобразуют солнечный свет напрямую в электричество с помощью полупроводников.

Количество энергии, производимой каждым источником, зависит от сочетания видов топлива и источников энергии, используемых в вашем районе. Чтобы узнать больше, см. Раздел о выбросах. Узнайте больше о производстве электроэнергии в Управлении энергетической информации Министерства энергетики США.

Передача и распределение электроэнергии

Электроэнергия в Соединенных Штатах часто перемещается на большие расстояния от генерирующих объектов до местных распределительных подстанций через сеть высоковольтных электропередач протяженностью почти 160 000 миль.Генерирующие объекты обеспечивают энергоснабжение сети при низком напряжении от 480 вольт (В) на малых генерирующих объектах до 22 киловольт (кВ) на более крупных электростанциях. Когда электричество покидает генерирующую установку, напряжение повышается или «повышается» с помощью трансформатора (типичные диапазоны от 115 кВ до 765 кВ), чтобы минимизировать потери мощности на больших расстояниях. Поскольку электричество передается по сети и поступает в зоны нагрузки, напряжение понижается трансформаторами подстанции (диапазоны от 69 кВ до 4.16 кВ). Чтобы подготовиться к подключению клиентов, напряжение снова снижается (бытовые клиенты используют 120/240 В; коммерческие и промышленные клиенты обычно используют 208/120 В или 480/277 В).

Подключаемые к электросети автомобили и инфраструктура электроснабжения

Полностью электрические автомобили и гибридные электромобили с подзарядкой от электросети представляют собой новый спрос на электроэнергию, но они вряд ли в ближайшем будущем перегрузят большую часть наших существующих генерирующих ресурсов. Значительное увеличение количества этих транспортных средств в Соединенных Штатах не обязательно потребует добавления новых мощностей по выработке электроэнергии в зависимости от того, когда, где и на каком уровне мощности заряжаются транспортные средства.

Спрос на электроэнергию растет и падает в зависимости от времени суток и времени года. Мощности по производству, передаче и распределению электроэнергии должны удовлетворять спрос в периоды пикового использования; но большую часть времени электроэнергетическая инфраструктура не работает на полную мощность. В результате электромобили и PHEV могут практически не создавать необходимости в дополнительных мощностях.

Согласно исследованию Тихоокеанской северо-западной национальной лаборатории, существующая электроэнергетическая инфраструктура США обладает достаточной мощностью, чтобы удовлетворить около 73% потребностей в энергии легковых автомобилей страны.Согласно моделям развертывания, разработанным исследователями из Национальной лаборатории возобновляемых источников энергии (NREL), разнообразие бытовых электрических нагрузок и электрических нагрузок должно позволить введение и рост рынка PEV при расширении сетей «умных сетей». Интеллектуальные сетевые сети обеспечивают двустороннюю связь между коммунальным предприятием и его потребителями, а также контроль линий электропередачи с помощью интеллектуальных счетчиков, интеллектуальных приборов, возобновляемых источников энергии и энергоэффективных ресурсов. Интеллектуальные сетевые сети могут предоставить возможность контролировать и защищать жилую распределительную инфраструктуру от любых негативных воздействий из-за увеличения спроса на электроэнергию со стороны транспортных средств, поскольку они способствуют зарядке в непиковые периоды и сокращают расходы для коммунальных предприятий, операторов сетей и потребителей.

Анализ NREL также продемонстрировал потенциал синергии между PEV и распределенными источниками возобновляемой энергии. Например, маломасштабные возобновляемые источники энергии, такие как солнечные панели на крыше, могут как обеспечить чистую энергию для транспортных средств, так и снизить спрос на распределительную инфраструктуру за счет выработки электроэнергии вблизи точки использования.

Коммунальные предприятия, производители транспортных средств, производители зарядного оборудования и исследователи работают над тем, чтобы обеспечить плавную интеграцию PEV в U.S. электроэнергетическая инфраструктура. Некоторые коммунальные предприятия предлагают более низкие тарифы в непиковое время, чтобы стимулировать зарядку бытовых транспортных средств, когда спрос на электроэнергию самый низкий. Транспортные средства и многие типы зарядного оборудования (также известного как оборудование для подачи электромобилей или EVSE) можно запрограммировать так, чтобы зарядка была отложена до непиковых периодов. «Умные» модели даже способны связываться с сетью, агрегаторами нагрузки или владельцами объектов / домов, что позволяет им автоматически взимать плату, когда спрос на электроэнергию и цены на нее наиболее благоприятны; например, когда цены самые низкие, соответствуют потребностям местного распределения (например, температурным ограничениям) или соответствуют требованиям возобновляемой генерации.

Альтернативные источники энергии

Различные типы альтернативных источников энергии

В течение нескольких десятилетий ведется немало дискуссий об ущербе, наносимом окружающей среде засорением и выбросом вредных газов в атмосферу. Многие идеи о том, как защитить окружающую среду, были реализованы либо общественным сознанием, либо законом, чтобы помочь очистить землю и уменьшить загрязнение в будущем. Эти идеи варьируются от переработки до вывоза мусора и использования альтернативных источников энергии.Мы собираемся сосредоточиться на преимуществах, возможностях и препятствиях, которые возникают при использовании альтернативной энергии.

Альтернативная энергия лучше всего определяется как использование источников энергии, отличных от традиционных ископаемых видов топлива, которые считаются экологически вредными и дефицитными. Ископаемое топливо состоит из природного газа, угля и нефти. В настоящее время ископаемое топливо является наиболее используемым источником энергии для обогрева наших домов и питания наших автомобилей. Чтобы использовать это топливо в качестве энергии, его необходимо сжечь, а при сжигании этого топлива в атмосферу выделяются вредные газы, вызывая загрязнение.Еще одна проблема, связанная с ископаемыми видами топлива, — это их запасы: неясно, как долго хватит запасов нефти и угля при наших текущих темпах потребления или будут ли новые запасы открыты до того, как текущие запасы закончатся. По оценкам, на сколько хватит текущих запасов, от 20 до 400 лет. Из-за опасений по поводу ископаемого топлива все больше людей начинают использовать альтернативные источники энергии. Некоторыми популярными альтернативными источниками энергии являются энергия ветра, гидроэлектроэнергия (гидроэнергетика), солнечная энергия, биотопливо и водород.Все эти виды топлива имеют две общие черты: их небольшое воздействие на окружающую среду на Земле и их устойчивость (бесконечные поставки) в качестве источника энергии.

Итак, если предполагается, что альтернативные источники энергии решат наши проблемы с окружающей средой и снабжением, почему мы не перешли на использование исключительно альтернативных источников энергии? Что ж, простой ответ заключается в том, что альтернативные источники энергии, как правило, имеют общие препятствия для их использования в качестве широко распространенных источников энергии. Эти препятствия включают местоположение, хранение, высокую стоимость производства и использования и нестабильное энергоснабжение.

Энергия ветра

Энергия ветра — не новый источник энергии. На протяжении сотен лет люди использовали силу ветра для отправки своих кораблей через океаны и использовали ветряные мельницы для измельчения зерна, перекачивания воды и пиления древесины. Сила ветра легче всего увидеть, используя детскую ветряную мельницу. Основная концепция заключается в том, что, когда ветряная мельница задерживается встречным потоком ветра, ветер захватывает изгиб лопастей, заставляя ветряную мельницу вращаться. Это энергия ветра в действии.

Ветряная турбина работает очень похоже на старинную ветряную мельницу, поскольку она также использует кинетическую энергию ветра (энергия, вызванная движением) для вращения лопастей. Лопасти вращают вал, который соединен с генератором . Генератор — это устройство, преобразующее механическую энергию в электрическую. Внутри генератора медная катушка перемещается через магнитное поле валом, который соединен с движущимися лопастями. Это движение заставляет электрический ток течь через медную катушку.Когда генератор механически приводится в движение ветром через ветряную турбину, он может производить электричество.

Энергия ветра считается экологически чистым источником энергии, потому что в ее производстве отсутствуют химические процессы. Побочные продукты, такие как углекислый газ, не вызывают загрязнения воздуха или воды. Ветровая генерация — это возобновляемый ресурс, который никогда не иссякнет, и это отличный источник энергии для людей, живущих в отдаленных районах, где может быть трудно обеспечить их энергией с помощью проводов, подключенных к электростанции, которая находится далеко.Фактическое пространство, занимаемое ветряной турбиной, относительно невелико по сравнению с другими альтернативными источниками энергии. Диаметр основания должен составлять всего около шести футов, что делает стоимость ветряной турбины относительно дешевой.

Проблема с использованием энергии ветра заключается в том, что это не всегда гарантированный источник энергии. Когда ветер не дует, электричество не вырабатывается, и приходится полагаться на резервный источник энергии. Ветряные электростанции необходимы для коммерческой генерации, что поднимает вопрос о препятствиях на фоне ландшафта, вызванных множеством ветряных турбин, выстроенных рядом друг с другом.Многие люди не хотят видеть несколько ветряных турбин за окнами своей кухни. Еще одна проблема — это опасность, которую эти движущиеся лезвия создают для птиц, пролетающих по местности. Ветряные турбины новой конструкции имеют более крупные лопасти, которые вращаются с меньшей скоростью, чтобы птицы могли их видеть и не цепляться за лопасти.

Гидроэлектроэнергия

Термин « гидроэлектроэнергия» относится к производству электроэнергии за счет энергии воды. «Гидро» происходит от греческого слова «гидра», что означает вода.Как и энергия ветра, использование воды для производства энергии также имеет более ранние корни, чем в наши дни. Водяные колеса были впервые использованы для улавливания энергии воды и механического измельчения зерна. Позже они использовались для перекачивания воды, орошения сельскохозяйственных культур, привода лесопильных заводов и текстильных фабрик. Сегодня мы используем водяные турбины так же, как ветряные, для выработки электроэнергии.

Самым распространенным источником энергии воды сегодня является гидроэлектростанция. Для гидроэлектростанций обычно требуется плотина, построенная на реке, которая создает резервуар с водой.Плотина удерживает воду до тех пор, пока ворота не откроются, чтобы вода могла протекать через нее. Под действием силы тяжести вода течет по трубопроводу, называемому напорный трубопровод , к турбине. Изменение высоты за счет напорного трубопровода помогает воде создавать давление по мере приближения к турбине. Движущаяся вода достигает турбины и вращает лопасти турбины. Над турбиной расположен генератор, который валом соединен с турбиной. Подобно генератору в ветряной турбине, генератор в водяной турбине также вырабатывает электричество, перемещая ряд медных катушек мимо магнитов.Затем трансформатор принимает электричество, произведенное генератором, и преобразует его в ток более высокого напряжения. Электричество теперь готово для питания предприятий и домов по линиям электропередачи.

Гидроэлектроэнергия — это возобновляемый источник, не образующий отходов и не загрязняющий окружающую среду. В отличие от энергии ветра, гидроэлектроэнергия более надежна. Энергия может накапливаться для использования плотиной, сдерживающей воду, до тех пор, пока не потребуется больше энергии. Однако гидроэнергетика требует большой электростанции, строительство которой очень дорогое.Эти электростанции также требуют строительства плотин на реках, что изменяет экосистему местности. Вместо реки в районе над плотиной теперь есть большое озеро, которое простирается над местами обитания наземных животных. Количество и качество воды, вытекающей из плотины, может иметь неблагоприятное (отрицательное) влияние на растения, живущие на земле и в воде внизу.

Солнечная энергия

Солнечная энергия просто использует солнечный свет в качестве энергии. Это можно сделать, используя солнечную батарею для преобразования солнечного света в электричество, используя солнечные тепловые панели, которые используют солнечный свет для нагрева воздуха и воды, или пассивно используя солнечную энергию, позволяя солнечному свету проникать через окна для обогрева здания.Общая энергия, которую мы получаем от солнца каждый год, примерно в 35000 раз больше, чем энергия, которую использует человечество, а это означает, что этот источник энергии, вероятно, является одним из лучших источников для будущего. Проблема заключается в том, чтобы использовать и хранить эту энергию экономичным способом.

Одним из самых популярных способов использования солнечной энергии является использование фотоэлектрических элементов, которые также известны как солнечные элементы. Фотоэлементы работают, поглощая частицы солнечной энергии, из которых состоит солнечный свет.Эти частицы называются фотонами. Поглощенные фотоны переносятся на полупроводниковый материал, обычно кремний. (Полупроводники — это вещества, которые проводят электричество легче, чем изоляторы, но не так легко, как проводники, такие как медь.) Электроны в полупроводнике отбрасываются входящими фотонами, оставляя промежутки между связями атомов. И свободные электроны, и открытые пространства могут нести электрический ток. Фотоэлектрические элементы построены с одним или несколькими электрическими полями для управления потоком электронов, таким образом контролируя поток тока.Когда металлические контакты размещаются сверху и снизу фотоэлемента (во многом как батарея), мы можем извлечь этот электрический ток, чтобы использовать его в повседневной жизни.

Подобно вышеуказанным альтернативным источникам энергии, солнечная энергия является возобновляемой и не загрязняет окружающую среду. В отличие от ветряных турбин и гидроэлектроэнергии, фотоэлектрическое преобразование в электричество является прямым, что означает, что не требуется дорогостоящий и громоздкий генератор. Подобно ветровым турбинам, солнечная энергия также может использоваться в удаленных местах, где было бы экономически невозможно обеспечить энергией удаленную электростанцию.Солнечная энергия также может быть очень эффективной для обеспечения тепла и света за счет использования солнечных печей, солнечных водонагревателей, солнечных домашних обогревателей и использования световых люков.

Солнечная энергия имеет общий недостаток с ветряными турбинами: их непредсказуемость. Солнечная энергия работает только тогда, когда светит солнце, что делает фотоэлементы неэффективными в ночное время, а в пасмурный день они не работают. В настоящее время необходимо использовать накопители энергии, чтобы солнечная энергия стала основным источником энергии. Многие формы солнечной энергии по-прежнему экономически нецелесообразны.Фотоэлектрические электростанции дороги в строительстве, и их эффективность в производстве энергии составляет всего около 10%. Электростанции требуется около пяти лет, чтобы произвести такое же количество энергии, которое было затрачено на первоначальное здание электростанции. При современных технологиях солнечную энергию лучше всего использовать в меньших масштабах, например в частных домах.

Биотопливо

Есть много источников энергии, которые подпадают под категорию биотоплива: биомасса, биодизель, этанол и метанол — лишь некоторые из них.Основная идея здесь — использовать органические вещества (обычно получаемые из растений) в качестве источника топлива. Биомасса относится к использованию мусора и растительности в качестве источника топлива. Когда мусор разлагается (распадается), он производит газ, называемый метаном, который можно улавливать, а затем сжигать для получения энергии, которая может быть преобразована в электричество. Растительность можно сжигать напрямую, как ископаемое топливо, для получения энергии. Хотя эти методы действительно помогают с точки зрения затрат и устойчивости, они по-прежнему оказывают значительное воздействие на окружающую среду, как и ископаемое топливо.

Этанол и метанол — два спирта, которые производятся из биомассы. Этанол обычно производится из кукурузы, но его также можно получить из отходов сельского хозяйства, лесозаготовок и бумаги. Метанол также известен как древесный спирт, потому что его можно производить из дерева; однако большая часть метанола производится с использованием природного газа, поскольку он дешевле. В то время как биодизель является альтернативой дизельным двигателям, этанол и метанол являются альтернативой бензиновым двигателям. Большинство частных автомобилей имеют бензиновые двигатели и могут использовать смеси этанола с незначительной модификацией двигателя или без него.Этанол также горит чище и производит меньше выбросов парниковых газов, чем бензин. Однако сравнивать цену этанола с ценой на бензин немного сложно. Один галлон чистого этанола содержит на 34% меньше энергии, чем один галлон чистого бензина. Обычная смесь этанола, E85, представляет собой смесь 85% этанола и 15% бензина и дает на 27% меньше топлива, чем 100% бензин. Таким образом, для того, чтобы E85 стоил дешевле бензина, он должен иметь более чем 27% -ное снижение цены, чем бензин. Бензин стоит 3 доллара.00 галлон имеет такую ​​же экономию топлива, как E85, который стоит 2,19 доллара за галлон.

Биодизель производится путем смешивания растительного масла, такого как рапсовое или соевое масло, и спирта, такого как метанол или этанол. Катализатор часто добавляют для увеличения скорости реакции между растительным маслом и спиртом. Этот процесс производства биодизеля называется переэтерификацией (для получения дополнительной информации о переэтерификации щелкните здесь). Этот химический процесс заставляет глицерин отделяться от жира в растительном масле, оставляя после себя два продукта: метиловый эфир или этиловый эфир (химическое название биодизеля) и глицерин.Глицерин — ценный побочный продукт, который часто используется для производства мыла и других продуктов.

Биодизель считается идеальным топливом, потому что он экологически чистый и может использоваться в любом дизельном двигателе. Его часто смешивают с обычным дизельным топливом, чтобы избежать осложнений при использовании в холодную погоду. Чистый биодизельный гель при более высокой температуре, чем нефтяное дизельное топливо. (Соевый биодизель, закупленный в США, начинает превращаться в гель при температуре около 40 ° F.) Это означает, что грузовик, работающий на биодизельном топливе, при минусовых температурах сложнее запустить, чем грузовик, работающий на нефтяном дизельном топливе.Производство биодизеля обходится дороже, и, следовательно, его дороже покупать, чем нефтяное дизельное топливо. В противном случае биодизель работает так же, как нефтяное дизельное топливо. Чистый биодизель и смеси биодизеля выделяют меньше парниковых газов, являются биоразлагаемыми (способны разлагаться естественными процессами) и могут продлить срок службы дизельных двигателей. Некоторые заправочные станции, которые поставляют дизельное топливо, также поставляют биодизельное топливо. Эти розничные торговцы более распространены в штатах Среднего Запада. Вот карта розничных продавцов биодизеля в Соединенных Штатах.

Водород

Одним из самых многообещающих альтернативных видов топлива будущего является водород. Его большие запасы и чистое горение заставляют многих ученых и экологически сознательных граждан рассматривать его как решение для замены ископаемого топлива без радикального изменения нашего нынешнего образа жизни и зависимости от личных транспортных средств. В отличие от ископаемого топлива, это неуглеродное топливо, поэтому при его сжигании не образуется больше углекислого газа. Водород — самый простой и самый распространенный элемент на Земле, он содержится в воде, воздухе и всех органических веществах.Однако даже с учетом всех этих положительных моментов на пути к использованию водорода в качестве основного источника топлива стоят две основные проблемы: его производство и хранение.

Есть два основных способа производства водорода: электролиз и риформинг природного газа. Электролиз включает использование электрического тока для разделения молекулы воды на водород и кислород. (Чтобы отделить водород дома с помощью электролиза, нажмите здесь.) В процессе реформинга природного газа метан (который является основным компонентом природного газа, используемого для производства водорода) нагревается с помощью пара, вызывая реакцию между метаном и водой. пар, выделяющий водород, диоксид углерода и следовые количества оксида углерода.В настоящее время оба метода используют природный газ для производства водорода. Для риформинга метана требуется расщепление водорода от углерода в метане, но для электролиза требуется источник энергии для производства электричества для расщепления молекулы воды. В качестве источника топлива для производства электроэнергии чаще всего используется природный газ. Поскольку оба этих метода требуют потребления природного газа для производства водорода, использование водорода обходится дороже, чем природный газ.

Водород может использоваться в транспортных средствах двумя способами: для выработки электроэнергии в топливном элементе или непосредственно в двигателе внутреннего сгорания.Использование водорода в топливном элементе — более чистый метод. Топливный элемент — это электрохимическое устройство, которое объединяет водород и кислород для производства электроэнергии. Его единственными побочными продуктами являются тепло и вода, которые не загрязняют окружающую среду. При использовании водорода непосредственно в двигателе внутреннего сгорания водород сжигается с окружающим воздухом (который составляет около двух третей азота), образуя оксидные газы на основе азота, которые вызывают некоторое загрязнение, и водяной пар. Независимо от того, используется ли водород непосредственно в двигателе внутреннего сгорания или в топливном элементе, оба метода требуют хранения водорода для использования во время движения транспортного средства.В пересчете на вес водород производит больше энергии при сжигании по сравнению с любым другим топливом — один фунт водорода производит в 2,6 раза больше энергии, чем один фунт бензина. Однако водород — это газ, поэтому один фунт водорода занимает в четыре раза больше места, чем один фунт бензина. Например, автомобиль, вмещающий 15 галлонов бензина, должен содержать эквивалентное количество водорода 60 галлонов для производства того же количества энергии. Бак в транспортном средстве должен быть размером с две средние ванны для хранения водорода, необходимого для того, чтобы проехать разумное расстояние без дозаправки.Однако 15 галлонов бензина будут весить 90 фунтов, тогда как 60 галлонов водорода будут весить всего 34 фунта.

Чтобы решить эту проблему с пространством, водород можно превратить в жидкость, которая занимает меньше места, чем водород в виде газа, но для того, чтобы превратить водород в жидкость, его необходимо охладить и поддерживать температуру -423,2 ° по Фаренгейту. Хранить водород в виде газа или жидкости очень дорого и обременительно. Тем не менее, на горизонте есть надежда. Министерство энергетики США предоставило гранты ученым, чтобы найти способы улучшить хранение водорода в небольших транспортных средствах за счет улучшения сжатия и сжижения водорода, использования гидридов металлов для хранения большего количества водорода без увеличения веса транспортного средства и улучшения его характеристик. использование адсорбирующих материалов для сбора и удержания газообразного водорода на поверхности твердого тела.Однако даже если мы преодолеем проблему хранения, мы все равно столкнемся с препятствиями и расходами, связанными с заменой всех автомобилей с бензиновым двигателем на автомобили с водородным двигателем и заменой бензозаправочных станций на водородные, чтобы превратиться в Америку, основанную на водороде.

Источники энергии: сравнение

Если вы хотите быть экологически чистыми, вам следует водить электромобиль. Верно?

К сожалению, не все так просто. Хотя электромобили не загрязняют воздух вокруг себя, как двигатель внутреннего сгорания, их необходимо заряжать, что вызывает вопросы, например, из какого источника энергии поступает электричество и является ли этот источник энергии чистым.

Общая оценка источника энергии основана не только на том, насколько он чист; он также должен быть надежным, доступным и доступным. Не все эти факторы можно однозначно классифицировать. Например, нефть, как правило, относительно доступна в Соединенных Штатах, но отчасти это связано с тем, что правительство субсидирует отрасли, производящие ископаемое топливо. Точно так же, хотя энергия ветра имеет тенденцию быть относительно дорогой, ее стоимость неуклонно снижается в течение многих лет по мере увеличения ее использования.

Чтобы оценить доступные варианты, полезно понять фундаментальные факты о том, какие типы энергии доступны и какие компромиссы каждый представляет.

Существует три основных категории источников энергии: ископаемое топливо, альтернативные и возобновляемые источники энергии. Возобновляемые источники энергии иногда, но не всегда, включаются в альтернативу.

Ископаемое топливо образовалось более миллионов лет назад, когда мертвые растения и животные подверглись воздействию сильной жары и давления в земной коре. Этот естественный процесс превращал кости и другие органические вещества в богатые углеродом вещества, которые при сгорании генерируют энергию. Есть три основных вида ископаемого топлива.

  • Нефть — это общий термин, который включает такие продукты, как сырая нефть, которая перерабатывается в более привычные виды топлива, такие как бензин, реактивное топливо, керосин и дизельное топливо. Petroleum и oil часто используются как взаимозаменяемые. Его добывают путем бурения или гидроразрыва пласта (также известного как гидроразрыв).
  • Уголь — это горная порода, обнаруженная недалеко от поверхности земли, и это одно из самых распространенных ископаемых видов топлива в мире. Его добывают путем открытых горных работ (с использованием машин для очистки самых верхних слоев горных пород и почвы) и подземных горных работ (с использованием машин и горняков для удаления угля глубоко под землей).
  • Природный газ , смесь газов, находящихся под поверхностью земли, добывается аналогично нефти.Достижения в области бурения и гидроразрыва пласта открыли огромные запасы природного газа.

Ископаемые виды топлива часто называют грязными источниками энергии, поскольку их использование сопряжено с высокими, а зачастую и необратимыми последствиями для окружающей среды. Выбросы углерода или количество углекислого газа, выделяемого этим топливом в атмосферу, складываются из поколения в поколение и не могут быть возвращены. Более того, на Земле есть лишь конечное количество этих ресурсов.

К формам энергии, не полученным из ископаемого топлива, относятся как возобновляемые источники энергии , так и альтернативные источники энергии , термины, которые иногда используются взаимозаменяемо, но не означают одно и то же.Альтернативная энергия в широком смысле относится к любой энергии, которая не извлекается из ископаемого топлива, но не обязательно только из возобновляемых источников. Например, в ядерной энергетике чаще всего используется уран — широко распространенное, но технически не возобновляемое топливо. Возобновляемая энергия, с другой стороны, включает в себя такие источники, как солнце и ветер, которые возникают естественным образом и непрерывно.

Существует пять основных возобновляемых и альтернативных видов топлива.

  • Энергия ветра создается, когда ветер вращает турбину или ветряную мельницу, которая может быть расположена на суше или на море.
  • Солнечная энергия использует солнечную энергию двумя способами: путем преобразования солнечного света непосредственно в электричество, когда солнце отсутствует (например, солнечные панели), или солнечной тепловой энергии, которая использует солнечное тепло для создания электричества, метод, который работает даже когда солнце село.
  • Гидроэнергетика создается, когда быстро текущая вода вращает турбины внутри плотины, вырабатывая электричество.
  • Атомная энергия вырабатывается на электростанциях в процессе ядерного деления.Энергия, образующаяся во время ядерных реакций, используется для производства электричества.
  • Биотопливо , также называемое биомассой, производится с использованием органических материалов (древесины, сельскохозяйственных культур и отходов, пищевых отходов и навоза), которые содержат накопленную энергию солнца. Люди использовали биомассу с тех пор, как открыли, как сжигать дрова для разведения огня. Жидкое биотопливо, такое как этанол, также выделяет химическую энергию в виде тепла.

Возобновляемые и альтернативные источники энергии часто относятся к категории экологически чистых источников энергии, поскольку они производят значительно меньше выбросов углерода по сравнению с ископаемым топливом.Но они не лишены воздействия на окружающую среду.

Производство гидроэлектроэнергии, например, выбрасывает меньше углерода, чем электростанции, работающие на ископаемом топливе. Однако строительство плотин для строительства водохранилищ для гидроэлектростанций затопляет долины, нарушая местные экосистемы и источники средств к существованию. В другом случае биотопливо является возобновляемым, но культивируется на огромных участках земли и иногда вызывает больше выбросов углерода, чем ископаемое топливо.

Другие соображения, такие как безопасность, также имеют значение. Вероятность аварии на ядерном объекте чрезвычайно мала, но если она произойдет, последствия будут катастрофическими.Фактически, опасения по поводу опасностей, связанных с эксплуатацией атомных электростанций, ограничили распространение ядерной энергетики.

Какие возобновляемые источники энергии используются чаще всего в мире?

Гидроэнергетика

Гидроэнергетика является наиболее широко используемым возобновляемым источником энергии, с глобальной установленной мощностью гидроэлектростанций, превышающей 1 295 ГВт, что составляет более 18% от общей установленной мощности по выработке электроэнергии в мире и более 54% от общемировой мощности по производству возобновляемой энергии.

Самый распространенный метод производства гидроэлектроэнергии включает строительство плотин на реках и выпуск воды из водохранилища для привода турбин. Гидроаккумуляторы представляют собой еще один метод производства гидроэлектроэнергии.

В Китае самая большая в мире гидроэлектростанция, а также крупнейшая в мире гидроэлектростанция «Три ущелья» (22,5 ГВт). На долю страны приходилось примерно 40% от общей добавленной в мире гидроэнергетической мощности в 2018 году.В Бразилии, США, Канаде и России также находятся одни из крупнейших гидроэнергетических комплексов в мире.

«Китай имеет самую большую гидроэнергетическую мощность в мире».

Гидроэнергетические проекты, однако, вызвали споры в последние годы из-за экологических и социальных последствий, связанных с биоразнообразием и переселением людей.

Энергия ветра

Ветер является вторым наиболее широко используемым возобновляемым источником энергии, поскольку глобальная установленная мощность ветроэнергетики превысила 563 ГВт в 2018 году, что составляет примерно 24% от общей мировой мощности по производству возобновляемой энергии.

Китай с установленной мощностью более 184 ГВт является крупнейшим производителем ветровой энергии в мире, за ним следуют США (94 ГВт к концу 2018 года). Более половины из 49 ГВт ветроэнергетических мощностей, добавленных во всем мире в 2018 году, приходилось на Китай (20 ГВт) и США (7 ГВт).

Германия, Испания, Индия, Великобритания, Италия, Франция, Бразилия, Канада и Португалия — другие крупные страны-производители ветровой энергии, на которые вместе с Китаем и США приходится более 85% всей ветроэнергетики. производственные мощности в мире.

База ветроэлектростанций Цзюцюань мощностью 8 ГВт в Китае в настоящее время считается крупнейшей береговой ветроэлектростанцией в мире, а морская ветряная электростанция Walney Extension 659 МВт, расположенная в Ирландском море, Великобритания, является крупнейшей оффшорной ветроэлектростанцией.

Солнечная энергия

Более 486 ГВт установленной мощности делают солнечную батарею третьим по величине возобновляемым источником энергии в мире с преобладающей фотоэлектрической (PV) технологией. Использование технологии концентрирования солнечной энергии (CSP) также растет, при этом глобальная установленная мощность CSP достигает 5.5 ГВт к концу 2018 года. Китай, США, Германия, Япония, Италия и Индия обладают крупнейшими солнечными фотоэлектрическими мощностями в мире, в то время как Испания имеет 42% мировых мощностей CSP.

Годовой темп роста совокупной мощности солнечной энергии в течение последних пяти лет составлял в среднем 25%, что делает солнечную энергию самым быстрорастущим возобновляемым источником энергии.

«В Испании сосредоточено более 75% мировых мощностей CSP».

На долю

Азия приходилось примерно 70% от общих 94 ГВт глобального расширения солнечной энергетики в 2018 году, в то время как США, Австралия и Германия добавили 8.4 ГВт, 3,8 ГВт и 3,6 ГВт в новых проектах солнечной энергетики в течение года.

Солнечная электростанция в Нур-Абу-Даби мощностью 1,17 ГВт в Объединенных Арабских Эмиратах (ОАЭ) в настоящее время является крупнейшей в мире однопроцентной солнечной электростанцией.

Биоэнергетика

Биоэнергетика — четвертый по величине возобновляемый источник энергии после гидро-, ветровой и солнечной энергии. Чистая мировая мощность производства электроэнергии из биомассы в настоящее время превышает 117 ГВт, в то время как мировое производство биоэнергии увеличилось с 317 ТВтч в 2010 году до более чем 495 ТВтч в 2018 году.

Современная биомасса, особенно биотопливо и древесные гранулы, все чаще используется для производства тепла и электроэнергии наряду с традиционными источниками биомассы, такими как побочные продукты сельского хозяйства.

США, Бразилия, Китай, Индия, Германия и Швеция в настоящее время являются ведущими производителями биоэнергии в мире. В 2018 году на Китай, Индию и Великобританию пришлось более половины общего прироста биоэнергетических мощностей в мире.

Электростанция Ironbridge мощностью 740 МВт, расположенная в ущелье Северн, Великобритания, является крупнейшей в мире электростанцией, работающей на биомассе, а электростанция Vaskiluodon Voima мощностью 140 МВт в Финляндии — крупнейшая биогазовая установка в мире.

Геотермальная энергия

В 2018 году мировая мощность геотермальной энергии превысила 13,2 ГВт, что сделало ее пятым по величине возобновляемым источником для производства электроэнергии. В 2018 году выработка геотермальной электроэнергии превысила 85 ТВтч.

Одна треть зеленой энергии, вырабатываемой с использованием геотермальных источников, составляет электричество, а оставшиеся две трети — это прямое тепло. США, Филиппины, Индонезия, Мексика и Италия входят в пятерку крупнейших мировых производителей геотермальной энергии.

В 2018 году мировые геотермальные мощности увеличились на 539 МВт, из которых на долю Турции приходилось примерно 40%.

«В 2018 году мировое производство геотермальной электроэнергии превысило 85 ТВтч».

Геотермальный комплекс Гейзерс, расположенный к северу от Сан-Франциско в Калифорнии, США, с активной производственной мощностью 900 МВт, является крупнейшей геотермальной электростанцией в мире, за которой следует геотермальная электростанция Cerro Prieto мощностью 820 МВт в Мексике.

Связанный отчет

Загрузите полный отчет из хранилища отчетов GlobalData

Получить отчет

Последний отчет от Посетить GlobalData Store

Связанные компании

Promecon

АСУ ТП для энергетики

Связанные компании

Promecon

АСУ ТП для энергетики

28 августа 2020

5 альтернативных источников энергии для ускорения перехода от ископаемого топлива

Прекращение зависимости планеты от ископаемого топлива имеет решающее значение для сдерживания климатического кризиса, но Виджай Моди, профессор машиностроения Колумбийского университета, сказал, что еще есть препятствия, которые необходимо преодолеть. прежде чем мы сможем полностью перейти на возобновляемые источники энергии: хранение энергии, общественное признание линий электропередачи и внедрение электромобилей и альтернативного отопления домов.

«Как только население начнет понимать, что можно (жить) без ископаемого топлива, это будет легче, потому что тогда они будут требовать, чтобы местные округа или местные органы настаивали на более чистых источниках», — сказал Моди CNN. «Я лично считаю, что при низкой стоимости солнечной и ветровой энергии, большой площади суши в США и соответствующей политике правительства этот переход может произойти быстро».

CNN поговорила с экспертами по энергетическому переходу о наиболее надежных источниках энергии — и их проблемах — чтобы заменить уголь, нефть и газ и остановить климатический кризис.

Люди использовали солнечную энергию примерно с 7 века до нашей эры, когда они использовали солнечный свет и стекло для разжигания огня. Но современные солнечные батареи были изобретены только в середине 1900-х годов. В отличие от ископаемого топлива, солнечные энергетические системы не выделяют парниковые газы и не загрязняют воздух, что делает солнечную энергию одним из лучших возможных решений климатического кризиса.

Моди сказал, что в США солнечная энергия может доминировать в электросетях уже через 10 лет.

В сентябре в отчете Министерства энергетики США был намечен путь, который приведет к экспоненциальному увеличению использования солнечной энергии в стране, при этом солнце вырабатывает почти половину электроэнергии в США.Министерство энергетики заявляет, что для выработки 40% солнечной электроэнергии к 2035 году США потребуется ежегодно в течение следующих четырех лет устанавливать 30 гигаватт новых солнечных мощностей — этого достаточно, чтобы обеспечить электричеством около 3 миллионов домов, в зависимости от их местоположения, и вдвое больше. число ежегодно до 2030 года.

По словам К. Макса Чжана, инженера и директора факультета Центра устойчивого развития Аткинсона Корнельского университета, в США более чем достаточно земли для поддержки использования солнечной энергии, что также создаст рабочие места.

«Если у вас достаточно земли для солнечной фермы, вам нужно будет построить солнечные панели», — сказал Чжан CNN об экономических выгодах. «И чтобы построить их, они должны быть изготовлены, и для того, чтобы установить эти конструкции, вам понадобится рабочая сила для их установки».

Ветер

Как и в случае с солнечной энергией, энергия ветра также может вырасти в ближайшие 10 лет, сказал Моди. По данным Управления энергетической информации США, производство ветровой электроэнергии в США значительно выросло за последние три десятилетия — с примерно 6 миллиардов киловатт-часов в год в 2000 году до примерно 338 миллиардов в 2020 году.

Энергия ветра вырабатывается турбинами. Ветер приводит в движение лопасти турбин, которые связаны с приводным валом, который вращает электрогенератор, вырабатывающий электричество.

Как и солнечная энергия, Моди и Чжан заявили, что в США достаточно земли для строительства ветряных электростанций. А на шельфе есть обширная территория с высоким потенциалом ветроэнергетики.

«Если вы посмотрите на весь путь от Мэна до Нью-Гэмпшира, Массачусетса, Коннектикута, Нью-Йорка, Нью-Джерси, у нас есть действительно удивительный морской ветроэнергетический ресурс, который является очень высококачественным ресурсом в этой части страны», — сказал Моди.

«Хорошая новость о Соединенных Штатах в том, что мы наделены двумя вещами», — добавил он. «Мы благословлены землей, и мы благословлены хорошим ветром и солнцем».

Геотермальная энергия

Геотермальная энергия использует подземное тепло. Это постоянно производимый возобновляемый источник энергии. Сегодня люди используют геотермальное тепло для купания, обогрева зданий зимой и для выработки электроэнергии.

Исландия была пионером в использовании геотермальной энергии из-за ее обильного источника горячей и легкодоступной подземной воды, которая может быть преобразована в энергию.В США, по словам Моди, задача состоит в том, чтобы найти точное местоположение этих геотермальных горячих точек и насколько близко магма или высокие температуры находятся к поверхности.

«Вопрос, на который мы все пытаемся ответить, заключается в том, можем ли мы использовать те же методы бурения, которые используются в нефтегазовой отрасли, чтобы пойти немного глубже», — сказал он. «Тогда мы сможем использовать этот более глубокий источник. Если бы мы смогли это осуществить, то преимущество в том, что мы могли бы получать от него непрерывное круглогодичное тепло. Из этого тепла мы могли бы создать разводку труб с горячей водой.«

Но есть риски. Согласно исследованиям, добыча геотермальной энергии была связана с возникновением землетрясений — области, в которой геофизики в настоящее время находят решения. Согласно недавнему отчету Международного энергетического агентства, нынешний вклад геотермальной энергии в США энергоемкость составляет менее 1%, но потенциал превышает 8% к 2050 году.

Атомная промышленность

По мере того, как общественное мнение изменилось в отношении климатического кризиса, возникли и взгляды на переход к чистой энергии.В частности, использование ядерной энергии вызывает споры в Соединенных Штатах.

«Различие между 100% возобновляемыми источниками и 100% чистотой наблюдается в атомной энергетике», — сказал Чжан. «Ядерная энергия невозобновляема, но она представляет собой смесь чистой электроэнергии».

Многие республиканцы отдают предпочтение ядерной энергии выше всех других источников энергии, не связанных с ископаемым топливом, в то время как некоторые законодатели-демократы, такие как сенаторы Берни Сандерс и Элизабет Уоррен, призвали к постепенному отказу от ядерной энергии. «Мы не собираемся строить атомные электростанции, и мы собираемся начать отказываться от атомной энергии и заменять ее возобновляемым топливом», — сказал Уоррен во время президентской ратуши CNN в 2019 году.По данным EIA, с 1990 года атомные электростанции производили около 20% электроэнергии в стране. По состоянию на декабрь 2020 года 94 ядерных реактора работали на 56 атомных электростанциях в 28 штатах, что сделало США крупнейшим ядерным производителем электроэнергии в мире. . Несмотря на его способность заменять ископаемое топливо, многие обеспокоены хорошо известными проблемами, связанными с производством ядерной энергии, включая радиоактивные отходы, которые вредны для окружающей среды и населения, если они не утилизируются должным образом.

Проблема с гидроэнергетикой

Гидроэнергетика является одним из старейших источников энергии, используемых для производства электроэнергии, и до 2019 года, согласно EIA, она была крупнейшим источником общего годового производства электроэнергии из возобновляемых источников в США. Единственная причина, по которой зависимость страны от гидроэнергетики со временем уменьшилась, — это рост интереса к другим формам источников электроэнергии.

В то время как эксперты прогнозируют продолжение использования гидроэнергетики, Моди сказал, что не видит роста гидроэнергетики в ближайшем будущем, потому что мы уже воспользовались преимуществами лучших мест для гидроэнергетики.

«Мы уже использовали хорошие источники гидроэлектроэнергии в США», — сказал он.

Кроме того, климатический кризис усугубляет засуху, истощающую водохранилища на Западе и вызывающую нехватку воды. В Калифорнии из-за низкого уровня воды этим летом была вынуждена закрыть крупную гидроэлектростанцию, впервые с момента ее открытия в 1967 году.

Каковы основные заменители энергии из нефти и газа?

Основные альтернативы энергии нефти и газа включают ядерную энергию, солнечную энергию, этанол и энергию ветра.Ископаемые виды топлива по-прежнему превосходят эти альтернативы на мировом и внутреннем энергетических рынках, но существует значительный общественный импульс для увеличения их использования по мере того, как отрасли переходят к устойчивости и более экологически чистым методам ведения бизнеса.

На ископаемое топливо, состоящее в основном из источников энергии из угля, нефти, пропана и природного газа, в 2020 году будет приходиться 79% от общего потребления энергии в Соединенных Штатах. неэкономичные заменители; они менее эффективны и более дороги (или, в случае ядерной энергетики, их расширение полностью ограничено), чем ископаемое топливо.В результате правительство в настоящее время предоставляет множество субсидий потребителям, которые выбирают более чистые формы возобновляемой энергии для своего дома или для своих автомобилей. Множество альтернативных видов нефти растет по мере того, как в этой сфере проводятся все больше исследований и разработок, а законы экономики спроса и предложения в конечном итоге приводят к снижению цен, чтобы они были конкурентоспособными с традиционными ископаемыми видами топлива.

Атомная энергетика

По состоянию на конец 2020 года в США было 94 действующих ядерных реактора, которые обеспечивали примерно 20% всей внутренней выработки электроэнергии.Многие другие страны имеют более высокую концентрацию ядерной энергии; Франция, например, является крупнейшей ядерной державой в мире и вырабатывает с ее помощью почти 80% своей электроэнергии.

По данным Министерства энергетики США, ядерная энергетика является наиболее надежным источником энергии по сравнению с другими источниками энергии по состоянию на март 2021 года.

Что еще более важно, ядерная энергия может работать намного дешевле, чем другие чистые формы энергии, такие как солнечная, ветровая или гидроэнергетика. Тем не менее, в U.S. (и многих других стран) правительства на десятилетия остановили ядерную экспансию — отчасти из опасений за общественную безопасность, а отчасти по политическим причинам. Такие события, как Чернобыль, по-прежнему являются шрамом примеров того, как ядерная энергетика пошла не так, как надо, в умах многих людей, из-за чего перспектива использования ядерной энергии в качестве альтернативы нефти психологически трудна для восприятия.

Однако по мере развития исследований в области безопасной ядерной энергетики вполне возможно, что в конечном итоге чистая ядерная энергия станет источником энергии для целых городов.Билл Гейтс, например, уже основал компанию под названием TerraPower, которая изучает способы использования ядерной энергии в долгосрочной перспективе.

Солнечная и ветровая энергия

Солнечная и ветровая энергия также являются двумя популярными возобновляемыми источниками энергии. Сторонники утверждают, что эти заменители предлагают полный отказ от ископаемого топлива и полагаются на энергию из природных источников.

Как отмечает Институт энергетических исследований, это не совсем так. Большинство современных солнечных и ветряных электростанций нуждаются в постоянных резервных источниках энергии.Обычно электричество, вырабатываемое на угольной электростанции, по-прежнему используется для поддержания работы этих альтернативных видов нефти на случай, если станет облачно или ветер стихнет. Кроме того, солнечные панели и ветряные электростанции также требуют огромных предварительных капитальных затрат. Международное энергетическое агентство (МЭА) сообщило в своем отчете о топливе за октябрь 2019 года, что «мощность возобновляемых источников энергии вырастет на 50% в период с 2019 по 2024 год» за счет роста солнечной фотоэлектрической энергии.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *