Альтернативная электроэнергетика: Альтернативная энергетика | Ассоциация «НП Совет рынка»

Содержание

Альтернативная энергетика | Ассоциация «НП Совет рынка»

Полезные разделы

Альтернативная энергетика

Альтернативная энергетика

Альтернативная энергетика —  к  альтернативной энергетике  относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения.
Основными видами альтернативной энергетики являются:Ветроэнергетика  — использование кинетической энергии ветра для получения электроэнергии;Гелиоэнергетика  — получение электрической энергии из энергии солнечных лучей;Геотермальная энергетика  — использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, т. е., там, где естественные источники тепла наиболее доступны;Водородная энергетика  — использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода).
Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода;Альтернативные виды гидроэнергетики: приливная и волновая энергетика. В этих случаях используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. 

Альтернативная энергетика

Почему нужна альтернативная энергетика

Рост потребления энергии в мире

Мировое потребление энергии растет. Хотя традиционные производства и сервисы становятся все более энергоэффективными, рост населения планеты и появление новых сервисов приводит к увеличению общего энергопотребления. В 2015 году мировое энергопотребление составило 20,76 трлн кВт*ч, по данным Международного энергетического агентства, прогноз на 2030 год — 33,4 трлн кВт*ч, а к 2050 — до 41,3 трлн кВт*ч.

На «цифровую экономику» приходится примерно десятая часть глобального потребления энергии, но эта доля возрастает.

Например, пару лет назад майнинг криптовалют был уделом гиков, а сейчас это направление в глобальном масштабе потребляет больше энергии, чем многие страны. Например, майнинг Bitcoin «съедает» за год 14,6 ТВт*ч, а потребление Таджикистана pа год составляет всего лишь 13 ТВт*ч, по данным DigiEconomist, а ведь есть еще и другие криптовалюты, например, на майнинг Ethereum за год уходит около 5 ТВт*ч[1].

Миру нужно больше энергии, причем, по возможности, за меньшие деньги. Чтобы обеспечить растущие глобальные запросы, энергетике нужны качественные изменения. Использование восстанавливаемых источников энергии (ВИЭ), децентрализация генерации и широкое внедрение «умных сетей» (smart grid) приведут к радикальному снижению стоимости электроэнергии.

Изменение климата

Основная статья: Изменения климата на Земле

Место альтернативных источников в электрогенерации

Структура электроэнергетики по типу 2000-2019 гг

Страны лидеры по установленной мощности

Структура энергогенерации в странах Латинской Америки в 2019 г. Динамика увеличения мощности электрогенерации в странах Латинской Америки

Направления альтернативной энергетики

Использование восстанавливаемых источников энергии (ВИЭ) общественное мнение чаще всего рассматривает в контексте «зеленой энергетики», которая в процессе работы минимально влияет на окружающую среду, и считает это весьма инновационным направлением, которое появилось совсем недавно. Однако, это не совсем верно.

Классическим примером генерирующих мощностей, использующих ВИЭ, являются гидроэлектростанции, которые по всему миру строят более века. Ветряные, приливные, солнечные, геотермальные и другие электростанции на ВИЭ также разработаны многие десятилетия назад, причем в основу таких решений могут быть положены самые разные технологические подходы. Например, солнечные могут быть оснащены полупроводниковыми панелями, которые напрямую «конвертируют» свет в электричество, а могут представлять собой систему зеркал, которые фокусируют свет на резервуаре и нагревают содержащуюся там жидкость, которая крутит турбину.

Вариаций приливных электростанций тоже множество.

ВИЭ-решения, принципы действия которых разработаны десятилетия назад, создают с использованием новых материалов и современных инженерных подходов, благодаря чему станции обходятся дешевле и становятся более эффективными. На примере солнечных батарей, в совершенствование которых вложены астрономические средства, такое развитие наиболее заметно, но для увеличения эффективности соответствующих решений есть и другие подходы. Например, в Южной Корее будет построена плавающая солнечная электростанция, батареи которой будут поворотными, чтобы в течение всего дня сохранять оптимальную ориентацию на Солнце. По заявлению компании Solkiss, которая уже испытала прототипы, такой простой подход новому решению позволит увеличить выработку солнечной энергии на 22% по сравнению с наземными электростанциями, использующими стационарные батареи. Размещение батарей на водной поверхности упрощает изменение ориентации панелей, аналогичное решение можно создать и наземное, только оно окажется сложнее и дороже.

Напомним, что размещение панелей на воде позволяет избежать нагрева, который сильно уменьшает эффективность солнечных батарей. Как видно, для получения существенного прироста эффективности не понадобилось открывать новые физические эффекты, создавать новые технологии производства полупроводниковых панелей и т.д., а достаточно оказалось традиционных инженерных подходов. Подобных примеров много, внимание инженеров привлечено к «зеленым электростанциям», поэтому изящные решения для этих систем создают десятками.

Электростанции на ВИЭ работают нестабильно. По понятной причине в темное время суток солнечные электростанции не генерируют электричество, построенные на других принципах «зеленые» решения в большинстве случаев также сильно зависят от капризов погоды: например, наступает штиль — ветряные электростанции простаивают, а мощность волновых падает на порядки.

Сезонные явления тоже способны существенно изменить эффективность ВИ-станций по причинам, известным из школьного курса природоведения и физической географии. В зимнее время уменьшается световой день, становится меньше ясных дней и солнце ниже над горизонтом — и выработка электричества солнечными батареями снижается не на проценты, а в разы.

Это означает, что «зеленые электростанции» будут эксплуатировать параллельно с генерирующими объектами традиционной энергетики. Получаемый синтез обеспечивает снижение цены электричества при сохранении стабильности энергопитания. Но для смягчения ситуации, вызываемой нестабильностью электростанций на ВИЭ все чаще используют и другие решения. Ситуацию могут несколько смягчить энергонакопители.

Гидроэнергетика

Самый надежный в мире возобновляемый источник энергии — не ветер и не солнечный свет, а вода. В 2019 году мировые гидроэнергетические мощности достигли рекордных 1308 гигаватт. Гидроэлектроэнергия дешевая, легко хранится и отправляется, производится без сжигания топлива, следовательно, экологична. Водная энергетика была очень востребована во время пандемии Covid-19, поскольку производство электроэнергии было мало затронуто из-за степени автоматизации современных объектов.

Однако, как и в случае с другими источниками энергии, гидроэнергетика не обходится без экологических издержек, может нанести ущерб местным водным экосистемам[2].

Ветроэнергетика

Солнечная энергетика

Биоэнергетика

Источники биоэнергетики в Бразилии, мегаватт

Электричество испарением воды

Испарение — это процесс, с помощью которого вещество переходит из жидкого состояния в газообразное. Как правило, испарение является следствием нагревания вещества до определенной температуры. Именно благодаря испарению на Земле поддерживается круговорот воды, и испарителем в данном случае выступает Солнце. Масштабы энергии, которая тратится на процесс испарения по всей планете, на самом деле весьма велики, хоть мы в повседневной жизни и не замечаем этого

[3].

По словам Озгура Сахина (Ozgur Sahin) и его коллег из Колумбийского университета, вода, которая испаряется из всех рек, озер и плотин на территории современных США (за исключением Великих озер) может обеспечить до 2,85 миллиона мегаватт-часов электроэнергии в год. Для сравнения, это эквивалентно двум третьим электроэнергии, произведенной во всех штатах США за 2015 год! И это при том, что в 15 из 47 штатов потенциальная мощность электростанций превышает реальный спрос на энергию.

Двигатели будущего: все дело в воде

Исследователи предлагают установить на пресноводных водоемах двигатели[4], которые не только вырабатывали бы электроэнергию, но и вдвое уменьшили бы интенсивность самого испарения, что во многих ситуациях позволило бы сохранить огромные запасы питьевой воды. Однако подобная технология предполагает, что водный массив будет накрыт поглощающими панелями — что крайне нежелательно. Для начала, впрочем, необходимо построить сам испарительный двигатель, но здесь ученые уже продемонстрировали всю мощь науки и создали несколько миниатюрных, но вполне рабочих прототипов установки.

Тестовые двигатели основаны на материалах, которые при высыхании сжимаются — к примеру, в конструкции задействована лента, покрытая бактериальными спорами. Теряя воду, споры ссыхаются и сжимаются, сокращая при этом ленту. Сахин сравнивает принцип работы этой конструкции с мышечной системой, поясняя, что микроскопические споры могут натягивать ленту с довольно большой силой. Чтобы избежать загрязнения почвы из-за многократного вымачивания и обилия химических веществ, прототипы регулируют свою работу в зависимости от изменения общего уровня влажности. К примеру, в одной из версий двигателя «мышца» расположена чуть выше водного слоя. Когда испаряющаяся влага поднимается вверх, то ленты, натянутые по принципу жалюзи, расправляются и создают щели, благодаря которым в них поступает воздух и помогает лентам снова высохнуть и избежать переувлажнения.

Достоинства и недостатки изобретения

Научное сообщество согласно с тем, что потенциал этого изобретения огромен. На сегодняшний день основные проблемы заключаются в его использовании. Кен Калдейра из Института Карнеги по науке в Стэнфорде, штат Калифорния, сомневается, что можно эффективно преобразовать энергию испарения в электрическую энергию. По его мнению, промышленная разработка двигателей в той степени, когда их производство станет массовым, а использование — повсеместным, является чрезвычайно трудоемкой задачей.

Основным конкурентом новых двигателей выступают хорошо знакомые всем солнечные батареи, поскольку все более распространенным явлением для плавучих солнечных ферм является их размещение на водохранилищах. Однако испарительные двигатели могут быть изготовлены из дешевых биоматериалов, которые легче утилизировать, чем солнечные батареи — а это немаловажно.

Если технология получит распространение, то ее использование повлияет и на локальный климат за счет изменения степени испарения воды. Но это будет иметь хоть какое-то значение лишь в том случае, если площадь закрытой поверхности составит 250 000 км2 и более. Впрочем, когда речь идет о таких масштабах, то любая энергетическая установка, какой бы экологически чистой она не была, будет оказывать воздействие на окружающую среду. Более того, в дождливых районах, где частые осадки вызывают множество проблем, снижение интенсивности испарения воды будет крайне полезным.

«Дождевые батареи»

В мире появятся не только солнечные, но и «дождевые батареи». В феврале 2020 года стало известно о разработке способа получения электричества благодаря падению дождевой воды, который позволяет увеличить энергоэффективность процесса в тысячи раз. Первый электрогенератор на основе новой технологии могут создать через пять лет[5].

Группа ученых сразу из нескольких научных организаций Китая и США разработала принципиально новый способ получения электричества с помощью падения дождевой воды на поверхность. Об этом пишет РИА Новости со ссылкой на научную статью в журнале Nature. Этот способ позволяет увеличить мощность подобных установок в тысячи раз по сравнению с существующими прототипами.

«Наше исследование показывает, что капля объемом 100 микролитров воды, падающая с высоты 15 сантиметров, может генерировать напряжение свыше 140 вольт. А за счет ее мощности могут питаться 100 небольших светодиодных ламп», — приводятся в пресс-релизе слова руководителя научной группы Ван Цуанкая из Городского университета Гонконга.

Скачкообразного роста мощности подобных генераторов удалось добиться благодаря идее накрыть их специальной пленкой из политетрафторэтилена (ПТФЭ). Она способна накапливать поверхностный заряд при непрерывном попадании капель воды, пока он не достигнет насыщения. В подобном устройстве капли действуют как резисторы, а поверхностное покрытие — как конденсатор, отмечается в публикации агентства.

Первый прототип «дождевого» электрогенератора для практического применения будет создан в ближайшие пять лет, считают в научной группе. Если его испытания завершатся успехом, в мире могут появиться аналоги солнечных батарей для использования в условиях сильного дождя. Например — инновационные зонты с функцией зарядки телефонов. Или «дождевые батареи», рассчитанные на применение в отдельных регионах в период сезона сильных дождей.

Что интересно, в уникальном научном исследовании были задействованы сразу 13 ученых из пяти научных организаций. Помимо Городского университета Гонконга это университет Небраски-Линкольна в США, Университет науки и технологий КНР, Университет электронных наук и технологий Китая, а также Институт наноэнергии и наносистем пекинского отделения Китайской академии наук.

Энергонакопители — от насосов до аккумуляторов

Выработанную электрическую энергию надо потреблять сразу, но такая возможность есть далеко не всегда. Ситуации, когда в силу каких-либо причин образовался избыток электричества, зачастую приводят к необходимости утилизации энергии. Фирма Google, купившая избыточные мощности, был вынуждена закупать промышленные калориферы, которые грели атмосферу. С экономической точки зрения совершенно непозволительно, но иногда другого выхода просто нет.

Электроэнергия очень плохо поддается «консервированию», но энергонакопители все же существуют, причем довольно разнообразные. Заметим, что энергонакопители также не являются продуктом последней пятилетки, подобные решения существовали давно, еще в доцифровую эпоху. Например, энергонакопителем является система, которая при избытке энергии насосами перекачивает воду в гидросистеме с нижнего уровня на верхний, а в последствии эта вода может быть использована для вращения генераторов, вырабатывающих электричество, когда оно нужно потребителям. Разумеется, потери будут огромными — КПД и у насосов, и у турбин далеки от стопроцентных, а также нужно обслуживать сложные и дорогостоящие гидросооружения — но в ряде случаев применение таких систем оказывается экономически обоснованным.

Все чаще в качестве энергонакопителей применяют аккумуляторы. Аккумуляторная батарея для дома, которую предлагает Элон Маск, по понятной причине является наиболее известным продуктом такого плана. Одна из компаний Маска предлагает домохозяйствам систему из солнечных батарей и аккумулятора. Батареи в светлое время суток обеспечивают домашние электроприборы энергией и заряжают домовой аккумулятор, а когда солнца нет — электричество дом получает уже от аккумулятора. Конечно, это не единственное такое решение, аналогичные системы предлагают и российские компании, например, «Эковольт».

Австрийская компания Luna создает накопителей энергии общей мощностью 100 МВт на основе литий-ионных аккумуляторов. Согласно планам, в 2016 году будут построены системы хранения энергии — они будут расположены в Австрии и в Германии — общей мощностью 60 МВт, а первой половине следующего года должны быть введены в строй оставшиеся 40 МВт. Разработчиком систем является японская Nidec, батареи поставляет LG. Накопители представляют собой сорокафутовые контейнеры, каждый из которых может хранить около 3 МВт. По заявлению компании, создаваемая система энергонакопителей будет позволять в течение часа обеспечивать электроэнергией примерно 350 тысяч домохозяйств.

Эффективность всех типов существующих сегодня накопителей оставляет желать лучшего, но все же лучше использовать их, чем попусту греть атмосферу, как в рассмотренном выше примере. Проблема нестабильной работы «зеленых электростанция» приводит к росту значимость и, соответственно, популярность решений собственной генерации.

Собственная генерация

Собственные генерирующие мощности — по сути, маленькие электростанции — давно присутствуют на большом количестве объектов. В первую очередь это, разумеется, удаленные от централизованных сетей электроснабжения площадки — строительные, геологоразведочные, промысловые, туристические и т.д. Но существует и большое количество ситуаций, когда собственные генерирующие мощности актуальны и на территориях с развитой инфраструктурой, в том числе, и электрическими сетями.

Иногда наличие решений собственной генерации — требование нормативов ГО и ЧС, предписывающих наличие таких решений на объектах, которые не могут остаться без электричества в любой ситуации. Централизованное электроснабжение по какой-либо причине — от стихийного бедствия до техногенных аварий — может пропасть, а без энергии даже на короткое время не могут остаться больницы, родильные дома аварийные службы, убежища и т.д. Иногда наличие мощностей собственной генерации — требование бизнеса. Любой бизнес-центр, оставшийся без электричества, понесет убытки, но существует множество площадок, на которых перебои с энергопитанием: дата-центры, узлы связи и т.д. Практически на всех перечисленных объектах есть дизель-генераторы, запуск которых в аварийных условиях обеспечит электричеством палаты интенсивной терапии, серверы, боксы для новорожденных и другие элементы инфраструктуры.Если в отдаленных от цивилизации районах мощности собственной генерации нагружены постоянно, в городах их чаще всего используют как резервные источники питания на случай аварийных ситуаций, но существует и другой вариант — когда их используют для снижения затрат на электричество. В ряде случаев такой подход экономически оправдан.

Часто в инфраструктуре — развернутой или создаваемой — есть элементы, которые можно заставить заодно крутить генераторы. Простейший пример — котельные, создающие достаточно количество потоков воды и пара, которые можно использовать для вращения генераторов. Такие решения, способные кроме тепла давать еще и электричество, и называют системами когенерации. Решения для собственной генерации не сводятся к упомянутым «дизелям» и котельным «двойного назначения», способным заодно с отоплением выдавать и электричество. Иногда, например, генераторы крутят сточные воды и это пример того, как собственная генерация может быть «зеленой».

Все чаще в решениях собственной генерации используют солнечные батареи. Наиболее выразительный пример — кампус Apple (ISpaceship (офис Apple)), крыша которого покрыта солнечными батареями, вырабатывающими столько энергии, что хватает и самому «яблочному» офису, и даже на продажу. Но этот пример не единственный — солнечные батареи все активней применяют в студенческих кампусах, дачных поселках и даже в отдельных офисах и жилищах. Решения, развернутые в масштабах дачного участка, квартиры, дома или жилого квартала относят к микрогенерации. Разумеется, мощность каждого отдельного такого решения невелика, но их очень много и их количество растет, соответственно, увеличиваются вырабатываемые ими мощности. Системы микрогенерации начинают конкурировать с традиционными электростанциями, с которыми успешно сосуществуют.

В России

Основная статья: Альтернативная энергетика в России

В мире

2020

Вода, ветер и вода впервые обошли уголь и газ в электроэнергетике ЕС

В 2020 году впервые в истории доля возобновляемых источников энергии (ветер, солнце, вода) в генерации электричества в Европе превысила долю ископаемого топлива (угля и природного газа) — 38% против 37% соответственно. Об этом свидетельствуют данные отчета британского аналитического центра Ember и немецкого института Agora Energiewende. Подробнее здесь.

Снижение объема ввода новых мощностей из-за COVID-19

Международное энергетическое агентство прогнозирует, что из-за коронакризиса COVID-19 возобновляемая энергетика в 2020 году прибавит мощностей на 167 гигаватт, что на 13% ниже, чем в 2019-м, однако уже в 2021 году прирост мощностей будет примерно таким же, как в 2019-м.

Все большее число корпораций увеличивает долю возобновляемых источников энергии в своем общем профиле энергопотребления. Эта тенденция особенно заметна в Европе, Азии и Северной Америке, но и развивающиеся рынки постепенно нагоняют тренд. Согласно исследованию Международного агентства по возобновляемой энергии, активнее прочих возобновляемыми источниками пользуются производители разного рода материалов – химическая промышленность, целлюлозно-бумажная и деревообрабатывающая промышленность, сектор добычи и обработки полезных ископаемых и металлургия.

Ученые заявили об опасности возобновляемых источников энергии для биоразнообразия

Согласно выводам нового исследования, ветряные, солнечные и гидроэнергетические установки представляют угрозу для важных районов биоразнообразия, в том числе природных заповедников[6].

Команда ученых из Университета Квинсленда (Австралия) проанализировала расположение 12,5 тысячи источников возобновляемой энергии, которую получают из природных ресурсов, — солнечных, ветровых и гидроэнергетических сооружений. Как оказалось, более 2000 таких объектов могут оказывать негативное влияние на биоразнообразие районов, в которых они построены. При этом порядка 169 из них обнаружились на особоохраняемых природных территориях.

«Помимо того, что свыше 2200 объектов возобновляемой энергии уже работают в важных районах биоразнообразия, еще 900 находятся на стадии строительства. <…> Энергетические объекты и инфраструктура вокруг них, например дороги, и повышенная активность человека (люди, работающие на таких объектах, порой строят рядом поселения. — Прим. ред.) могут нанести невероятный ущерб окружающей среде. Эти события несовместимы с усилиями по сохранению биоразнообразия», — объяснил ведущий автор исследования, опубликованного в Global Change Biology, Хосе Ребейн[7].

Авторы работы отмечают, что переход от ископаемого топлива — нефти, угля, горючего сланца, природного газа, торфа, а также прочих горючих минералов и веществ, добываемых под землей или открытым способом — к возобновляемой энергии, источники которой, по мнению человека, неисчерпаемы, служит основополагающим фактором для замедления хода нынешнего антропогенного изменения климата.

Однако, подчеркивают исследователи, количество объектов «зеленой» энергии за последние 20 лет утроилось и зачастую они превращаются в территории с интенсивным землепользованием и могут воздействовать на охраняемые близлежащие районы. Подобные сооружения чаще всего превосходят по площади те же электростанции, работающие на ископаемом топливе, и им требуются в десять раз большие территории, чтобы производить такое же количество энергии.

2019

Стоимость киловатта энергии в альтернативных системах
В зеленую энергетику инвестировано $300 млрд

Всего в мире инвестиции в «зеленую» энергетику в 2019 году составили около $300 млрд, а к 2030 году этот показатель может увеличиться до $1,9 трлн.

С начала XXI века возобновляемые источники энергии завоевали существенную нишу в мировой энергетической промышленности. Если в 2000 году на них приходилось около 21,8% от вводимых в эксплуатацию электрогенерирующих мощностей, то в 2019 году — уже 34,7% (согласно данным исследования Международного агентства по возобновляемой энергии – IRENA). Этому во многом поспособствовала растущая озабоченность международного сообщества вопросами экологии и изменения климата. Стоит также отметить и перераспределение долей рынка между сегментами внутри самой отрасли возобновляемой энергетики. Например, на гидроэнергетику в 2000 году приходилось примерно 93% от общего объема энергии, генерируемой за счет возобновляемых источников, а уже к 2019 году эта доля упала до 47%. Это произошло за счет увеличения объемов выработки энергии солнечными и ветряными электростанциями.

Источники финансирования проектов в сфере альтернативной энергетики, по данным на сентябрь 2020 г
Правительства стран Азиатского региона начали сокращать субсидии

Расширение генерирующих мощностей, использующих возобновляемые источники, продолжалось непрерывно с 2003 года. В 2019 году правительства почти всех стран в Азиатском регионе начали сокращать субсидии в развитие этой отрасли. Как результат, в 2019 году годовой прирост «зелёных» генерирующих мощностей впервые за 17 лет снизился, хотя сокращение составило всего 2 %. В 2020 году возобновляемую энергетику ждёт удар со стороны пандемии коронавируса, который ещё сильнее затормозит развитие отрасли[8].

По данным Международного агентства по возобновляемым источникам энергии, которые приводит издание Nikkei, в 2019 году во всем мире было добавлено 176 ГВт возобновляемых генерирующих мощностей, из которых 97,68 ГВт составили солнечные электростанции. По первой позиции годовое сокращение составило 2 %, по второй ― 2,5 %.

Основной вклад в замедление роста «зелёных» мощностей внесла Азия. В 2019 году в регионе добавилось на 12 % меньше возобновляемых генерирующих мощностей, чем в 2018 году. В Китае и Японии произошло снижение на 15  % и 40 % соответственно. Стимулы закончились, и интерес инвесторов пропал. За все прошедшие годы японским налогоплательщикам льготные тарифы обошлись в 2 трлн иен ($18,6 млрд). Тем не менее, правительство Японии планирует внедрить механизм премиальных надбавок производителям «зелёной» энергии сверх рыночных ставок. Китай же сократил государственные субсидии на возобновляемые источники энергии.

Проект по использованию камней в качестве накопителей энергии

Немецкий энергоконцерн Siemens презентовал летом 2019 года пилотный проект по использованию камней в качестве накопителей энергии.

При ветровой электростанции в Гамбурге открыто пилотное хранилище, где находится 1000 тонн вулканической породы. С помощью выработанной лопастями электроэнергии камни нагреваются до 750 градусов по Цельсию. Камни могут сохранять до 130 МВт·ч тепловой энергии в течение недели. При необходимости с помощью паровой турбины ее можно переводить обратно в электрическую. Задача инженеров – довести этот показатель до 1 ГВт·ч, что позволит сутки обеспечивать электрической энергией город на 50 тысяч домохозяйств.

«Каменная» идея Siemens – решение одной из самых актуальных проблем в «зеленой» энергетике: как хранить выработанные солнцем и ветром гигаватты. И делать это дешево: камни коммерчески гораздо более привлекательны, чем гидроаккумулирующие устройства и просто мощные батареи. Еще одно преимущество – практически неограниченные возможности для масштабирования[9].

Гамбургское камнехранилище – часть совместного проекта концерна Siemens, Института инженерной термодинамики при Гамбургском технологическом университете и местной коммунальной компании Hamburg Energie GmbH. Финансирует Future Energy Solutions правительство Германии.

2018

Солнце и ветер снова уступили углю

В 2018 году во всем мире в очередной раз увеличился спрос на электроэнергию — по оценкам нефтегазовой компании BP, рост составил 3,7%, что стало одним из самых высоких показателей за последние 20 лет[10].

Об этом заявил главный экономист BP Спенсер Дейл, представляя ежегодный обзор мировой энергетики компании в ИМЭМО РАН. Главным образом рост обеспечили потребности развивающихся рынков, прежде всего Китая и Индии, а также США.

Как отмечают в компании, с точки зрения способа получения электроэнергии рост обеспечили источники возобновляемые (ВИЭ). Так, за счет последних во всем мире в прошлом году уже вырабатывалось на 14,5% больше электроэнергии. И значительно меньшими темпами росло производство электроэнергии за счет угля и природного газа. Больше всего электроэнергии из возобновляемых источников было произведено в Китае, а активнее всего росло использование ветряных электростанций.

Однако, несмотря на, казалось бы, все более активное использование ВИЭ, доля последних в производстве электричества практически не меняется на протяжении последних 20 лет. Крайне значимую роль здесь по-прежнему играет природный газ, а главное, уголь. Так, именно за счет угля, уточняется в докладе, производится 38% электроэнергии в мире, а за счет возобновляемых источников — 36%. Оборотной стороной такой структуры рынка остается высокий уровень углеродных выбросов.

Исследование EWG: 100% переход на возобновляемую энергию в 2050 году рентабельнее нынешней энергосистемы

Переход на 100%-ное использование возобновляемой энергии во всех странах Европы более рентабельный по сравнению с нынешней энергетической системой и ведет к сокращению выбросов до нуля к 2050 году. К такому выводу пришли исследователи EWG в своём исследовании, результаты которого были опубликованы в декабре 2018 г. Исследование моделирует полномасштабный переход на возобновляемую энергию в электроэнергетическом, теплоснабжающем и транспортном секторе. Подробнее здесь.

В Ирландии планируется довести долю регулируемой ВИЭ-генерации в общем объеме потребления до 75%

После успешного завершения пятимесячных испытаний системные операторы Ирландии EirGrid и Северной Ирландии SONI объявили о том, что имеющаяся в составе энергосистемы острова генерация на базе ВИЭ (прежде всего ветровая), управление режимами работы которой осуществляется системными операторами, способна удовлетворить до 65% от всего электропотребления на острове. В дальнейшем планируется довести долю управляемой системными операторами ВИЭ-генерации в общем объеме потребления до 75%[11].

Системные операторы отметили, что в период испытаний зафиксирован исторический максимум нагрузки ветровой генерации в размере 3 655 МВт (14 марта 2018 г. ).

Одновременно EirGrid и SONI приняли решение о переносе на 1 октября 2018 г. запуска новой структуры энергорынка (Integrated Single Electricity Market, I-SEM) из-за задержек с проведением тестирования. Ввод в эксплуатацию программного обеспечения I-SEM, разрабатываемого специально для рынков мощности, а также рынка на сутки вперед и внутрисуточного изначально был намечен на 1 мая 2018 г.

40 городов по всему миру полностью перешли на возобновляемую энергию

Более 40 городов по всему миру полностью перешли на возобновляемую энергию, и по меньшей мере сотня городов обеспечивает 70% запроса на электроэнергию с помощью чистых источников. С момента подписания Парижского соглашения, количество городов, которые работают над сокращением углеродных выбросов, выросло с 308 до 572, сообщает Fast Company[12].

В список городов США, которые на 70% перешли на возобновляемые источники, входят Сиэттл, Юджин и Аспен. Берлингтон перешел на чистую энергетику в полном объеме. Аналогичную цель поставили Атланта и Сан-Диего. Именно города больше всех влияют на загрязнение окружающей среды, поэтому их курс на возобновляемые источники сможет внести самый весомый вклад в борьбу с изменением климата. В частности, они могут выделять субсидии для предприятий, готовых отказаться от ископаемого топлива и вводить финансовые стимулы организаций, чьи новые объекты будут изначально оборудованы солнечными панелями.

Если же поощрительные меры не возымеют эффекта, можно ужесточить строительные нормы и правила. Например, в Сан-Франциско 15-30% крыш вновь построенных домов должны быть оборудованы либо солнечными панелями, либо — зелеными насаждениями. Само собой, ограничения должны касаться и выбросов с предприятий, которые используют уголь и природный газ.

В Европе к 2030 году разрешения на выбросы CO2 будут стоить €31 за тонну — это в три раза дороже, чем сейчас. Закрывать угольные электростанции будет выгоднее, чем модернизировать их в соответствии с новыми экологическими стандартами. Поэтому все угольные электростанции Европейского Союза и Великобритании станут убыточными в ближайшие десять лет. Их будет субсидировать государство, отведя им роль страховочного варианта на случай, если солнечные и ветровые электростанции не будут справляться в периоды пикового спроса на электричество.

Франция собирается стать крупным игроком на рынке приливной энергии

В начале 2018 года стало известно, что Франция запускает исследования побережья Бретани и Нормандии на наличие потенциала для производства приливной электроэнергии. В конечном итоге, страна хочет стать европейским лидером в этой отрасли, пишет Renewable Energy World[13].

Об этом заявил генеральный директор аналитического центра Ocean Energy Europe Реми Груэ, выступая на ежегодной конференции Союза возобновляемой энергетики в Париже. По его словам, этот шаг призван позиционировать Францию как мирового лидера в области приливной энергии. «У Франции есть один из крупнейших приливных ресурсов в мире, ведущие технологии в области приливной энергетики и сформированная цепочка поставок на море», — говорит он. Исследования будут сосредоточены на побережьях Бретани и Нормандии.

Северное побережье Франции уже много лет обсуждается в качестве серьезного источника приливной энергии. В 2013 году местные власти встречались с представителями Европейского морского энергетического центра Шотландии (EMEC) с целью создания испытательных полигонов в этом районе.

С предложениями провести испытания в Нормандии выступали компании Alstom и GDF Suez, а Fortum, DCNS и AW-Energy — в Бретани. DCNS — теперь Naval Energies — объявила о планах по строительству первой приливной турбины в Шербуре стоимостью $146 млн.

Ocean Energy Europe не раскрывает, какова будет экономическая выгода для Франции от строительства приливных электростанций. Тем не менее, аналогичные усилия, предпринимаемые в Великобритании, показывают, что это весьма выгодное направление. К 2050 году мировой рынок приливной энергии может составить $6,8 млрд, а по данным Marine Energy Pembrokeshire, инвестиции в этот рынок только в Уэльсе составили около $52 млн. Приливную энергетику также собирается развивать Шотландия.

2017

Общий объём инвестиций в возобновляемые источники энергии в мире составил $ 279,8 млрд

Согласно данным совместного отчета «Общие тенденции инвестирования в возобновляемую энергетику 2018», подготовленного офисом Программы ООН по окружающей среде (UNEP) и компанией Bloomberg New Energy Finance (BNEF), объем инвестиций в ВИЭ за последние восемь лет превысил $ 200 млрд.

Общий объём инвестиций в ВИЭ в течение 2017 г. составил $ 279,8 млрд (без учёта инвестиций в крупные гидрогенерирующие объекты) и обеспечил рекордный объем ввода в эксплуатацию ВИЭ-генерации, составил 157 ГВт. Для сравнения в 2016 г. объем ввода в эксплуатацию ВИЭ-генерации составил 143 ГВт (+9.7%). При этом объем вводов генерации на ископаемом топливе в 2017 г. составил 70 ГВт.

Крупнейшим инвестором в ВИЭ, как и в предшествующие годы, стал Китай — $ 126,6 млрд (+31% в сравнении с 2016 г.), из которых две трети было направлено на развитие солнечной энергетики. В 2017 г. в КНР было введено в эксплуатацию 53 ГВт СЭС.

В то же время в США объем инвестиций в ВИЭ снизился на 6% и составил $ 40,5 млрд. В Европе также наблюдается снижение на 36% (до $ 41 млрд) инвестирования в ВИЭ. В Великобритании объем инвестиций в ВИЭ снизился на 65% (до $ 7,6 млрд), а в Индии — на 20% (до $ 10,9 млрд).

Инвестиции в солнечную энергетику в целом по миру достигли $ 160,8 млрд, что на 18% больше, чем в 2016 г. Инвестиции в строительство СЭС составили 57% от всех инвестиций в ВИЭ, произведённых в 2017 г. (за исключением инвестиций в сооружение крупных ГЭС), и превосходят глобальные инвестиции в угольную и газовую генерацию.

В отчете отмечается чрезвычайно мощный рост вложений в ВИЭ в 2017 г.: в Австралии на 147% (до $ 8,5 млрд), в Мексике на 810% (до $ 6 млрд) и в Швеции на 127% (до $ 3,7 млрд). В Египте инвестиции в ВИЭ выросли в шесть раз и составили $ 2,6 млрд.

В то же время на «старых» европейских и азиатских энергорынках, таких как рынки Великобритании, ФРГ или Японии, наблюдается снижение инвестирования в ВИЭ. Частично это связано с изменением тарифного регулирования ВИЭ-генерации (Великобритания), а частично — со снижением удельных капитальных затрат на сооружение объектов генерации на базе ВИЭ, что позволяет строить тот же объем новой генерации при прежнем уровне расходов.

Треть электричества в Британии обеспечивают возобновляемые источники

В то же время доля безуглеродной генерации в общем объеме производимой в Британии электроэнергии достигла отметки 54,4%, благодаря ветровым и солнечным фермам, а также атомной энергетике, пишет Independent[14].

В третьем квартале 2017 года возобновляемые источники энергии произвели треть электричества в Великобритании. Их доля в энергопотреблении выросла на 5% по сравнению с аналогичным периодом прошлого года, достигнув 30%. По словам аналитика Energy and Climate Intelligence Unit Джонатана Маршала, такие цифры «забили последний гвоздь в гроб утверждения, что чистая энергетика не может быть полноправным участником рынка».

В целом, доля неуглеродной генерации в общем объеме производимой электроэнергии возросла до 54,4%, благодаря ветровым и солнечным электростанциям, а также АЭС. При этом, доля атомной энергетики стремительно падает, в то время, как инвестиции в ветровую и солнечную генерацию растут.

Энергетический сектор составил 17,5% от общего потребления топлива в Великобритании в 2016 году. По мнению Маршала, декарбонизация именно этой сферы позволит впоследствии произвести революцию и в других областях. В частности, электрифицировать транспорт.

Этого можно будет достичь за счет увеличения мощностей ветровых электростанций. Недавние ограничения на строительство наземных ветровых электростанций заставили британцев перейти на морские ветрогенераторы.

В Германии электроэнергия из возобновляемых источников также составит 33% от общего потребления на конец 2017 года. Разрыв между углем и возобновляемыми источниками в выработке электроэнергии в Германии сократился с 11% до 4% всего за один год. На самом деле, доля энергии из чистых источников была в Германии в этом году еще выше — почти 36%, просто ФРГ экспортирует излишки в соседние страны.

20 стран откажутся от угольных электростанций к 2030 году

Отказаться от использования угля для получения электроэнергии пообещали в ноябре 2017 года 20 стран с разных континентов. Ожидается, что в 2018 году количество противников углеводородов увеличится более чем в три раза. Однако самые активные потребители угля пока не стали присоединяться к альянсу.

На конференции ООН по климатическим изменениям в Бонне (Германия) 20 государств присоединились к альянсу Powering Past Coal. Он выступает за прекращение использования угля в электроэнергетике. Реализовать этот план страны намерены до 2030 года, сообщает ABC News.

К проекту присоединились такие европейские державы, как Дания, Италия, Финляндия, Франция, Португалия, Нидерланды, Великобритания, Люксембург, Австрия, Швейцария и Бельгия. Также отказаться от угля для выработки электроэнергии решили Канада, Новая Зеландия, Ниуэ, Эфиопия, Ангола, Мексика, Сальвадор, Фиджи и Маршалловы острова.

Однако главными потребителями угля в мире остаются Китай, Индия, Россия, США и Германия, которые пока не стали вступать в союз.

ООН предполагает, что на климатическом саммите в Катовице (Польша) в 2018 году число стран-участниц альянса вырастет до 50. Юридически участие в Powering Past Coal ни к чему не обязывает, соглашение лишь подчеркивает намерения государств. Также предполагается, что участницы объединения будут делиться друг с другом технологиями сокращения выбросов CO2.

Многие страны, вошедшие в состав Powering Past Coal, уже объявили о планах полностью отказаться от угля. К 2025 году такой план реализует Италия, к 2030 — Финляндия. К 2030 году Нидерланды закроют все угольные электростанции в стране, Франция сделает это к 2023 году, а Британия — к 2025. Избавиться от угольной энергетики к 2030 году также планирует Канада.

Крупнейшие потребители углеводородов Китай и США пока планируют только сокращение добычи угля. В 2017 году КНР сократит этот показатель на 150 млн тонн, а Америка к концу следующего года урежет потребление на 30 млн тонн в год.

Узбекистан: Пользователей альтернативных источников энергии освободят от налогов

Законопроект, согласно которому в Узбекистане для граждан, которые используют альтернативные источники энергии, хотят отменить налог на землю и налог на имущество, подготовил осенью 2017 года Государственный налоговый комитет республики Узбекистан. Документ доступен для обсуждения общественности на портале нормативно-правовых актов[15].

По проекту закона, освобождение от уплаты налогов будет действовать в течении трех лет, начиная с месяца, в котором установлены источники альтернативной энергии. Для того, чтобы воспользоваться этим правом, нужно будет взять в энергосберегающей организации справку, подтверждающую использовании альтернативных источников электрической энергии.

В текущей версии документа есть и один минус – льгота будет предоставляться в том случае, когда домохозяйство будет полностью отключено от действующих сетей энергоресурсов.

Программа мер по дальнейшему развитию возобновляемой энергетики и повышения энергоэффективности в отраслях экономики и социальной сфере на 2017–2021 годы была утверждена главой государства в конце мая этого года. Правительством запланированы в ее рамках 28 мероприятий, направленных как на разработку нормативно-правовых актов, так и адресных программ.

Большинство стран могут полностью перейти на возобновляемую энергию к 2050 году

Международная группа ученых под руководством Марка Джейкобсона (Mark Z. Jacobson) из Стэнфордского университета подготовила «дорожную карту» мер, которые позволят 139 странам мира к середине века получать всю необходимую электроэнергию из возобновляемых источников. По оценкам ученых, использование альтернативной энергетики не только позволит сократить использование невозобновляемых ресурсов, но и создаст десятки миллионов рабочих мест[16].

Авторы работы оценили, каким количеством потенциальных источников «зеленой энергии» обладает каждая из стран. Учитывалась энергия, получаемая с помощью воды, ветра и солнечного света. Ученые подсчитали, сколько «зеленых» генераторов потребуется каждой из стран для перехода на возобновляемые источники и сколько места для них понадобится. По оценке экспертов, большинству стран будет достаточно всего 1% доступных площадей земли и искусственных поверхностей (например, крыш зданий). Также были подсчитаны затраты, которые понесут промышленность и бизнес.

В исследовании рассматривались страны, данные о которых доступны Международному энергетическому агентству. Этим странам принадлежит 99% выбросов углекислого газа в атмосферу. Ученые определили, каким странам легче и труднее всего будет перейти на возобновляемые источники энергии. Проще всего эта задача окажется для стран со средней плотностью населения, например для некоторых стран Евросоюза. Сложнее всего переход пройдет для жителей небольших, но густо населенных стран, окруженных морем, — таких как Сингапур.

По мнению ученых, «зеленая энергетика» способна решить множество современных проблем. Снижение выбросов в атмосферу позволит избежать миллионов преждевременных смертей из-за заболеваний, вызванных загрязнением воздуха. В связи с этим уменьшатся и затраты на здравоохранение. Также ученые прогнозируют изменения рынка труда. По их оценке, переход к возобновляемой энергии уничтожит около 28 миллионов рабочих мест, но создаст 52 миллиона новых.

Впрочем, у таких «дорожных карт» есть и критики. Они отмечают, что изменение основных источников энергии потребует больших затрат[17].

Япония впервые в истории смогла получить энергию из океанских течений

Японская IHI Corporation и Организация по развитию новой энергетики и промышленных технологий (NEDO) успешно завершили тестирование первой в мире системы получения электроэнергии от океанских подводных течений, сообщает телеканал NHK.

По данным телеканала, в ходе эксперимента, который проходил в районе течения Куросио недалеко от острова Кутиносима, на глубину от 20 до 50 метров была погружена установка, состоящая из металлических цилиндров. Длина каждого цилиндра составляет около 20 метров, по бокам двух из них установлены генераторы с лопастями диаметром 11 метров.

За время эксперимента специалистам удалось добиться выработки электроэнергии мощностью до 30 киловатт. Разработчики надеются начать практическое использование установки уже к 2020 году.

Азербайджан намерен продавать альтернативную энергию

Экспортный потенциал планирует повысить Азербайджан с помощью альтернативной и возобновляемой энергетики. К 2020 году в стране этот сегмент должен занять 20% рынка.

В настоящее время, как сообщает в апреле 2017 года Trend[18] со ссылкой на замглавы Госагентства по альтернативным и возобновляемым источникам энергии Азербайджана Джамиля Меликова, альтернативная энергетика пользуется большим спросом во многих странах мира[19].

В Азербайджане, по словам эксперта, к 2020 году доля данных энергетических источников должна дойти до 20%. Преимущества налицо. Это положительное влияние на экологию, широкие возможности использования в аграрном секторе. Главный эффект, которого ждут от широкого распространения альтернативной и возобновляемой энергетики в прикаспийском государстве, это заметное повышение экспортного потенциала Азербайджана.

В настоящее время в стране в год в среднем производят 20 млрд кВт/ч электроэнергии. На это уходит примерно 6 млрд кубометров газа, что является настоящим ударом по экспорту, как считают эксперты.

Саудовская Аравия вложит $50 миллиардов в альтернативную энергетику

Власти Саудовской Аравии намерены инвестировать от 30 до 50 млрд долл. в строительство на территории страны ветряных и солнечных электростанций. Об этом пишет Bloomberg. В планах довести суммарную мощность альтернативной энергетики до 10 гигаватт уже к 2023 году.

Уже объявлен первый конкурс на строительство ветряных и солнечных электростанций суммарной мощностью в 700 мегаватт. Заявки от потенциальных участников принимаются до 20 марта, итоги конкурса объявят 10 апреля. Об этом объявил министр энергетики страны Халид аль-Фалих.

В апреле 2016 года член королевской семьи Саудовской Аравии принц Мухаммад ибн Салман рассказал о подготовке страны к «сумеркам нефтяного века». Он сообщил, что страна планирует создать суверенный фонд объемом 2 трлн долл. Средства фонда направят на избавление страны от нефтяной зависимости.

2016: В ООН зафиксировали рекорд мощности от «зеленой энергетики»

По данным организации ООН по охране окружающей среды (ЮНЕП), в условиях минимального инвестирования отрасли возобновляемой энергетики замечен максимальный прирост глобальной мощности.

По итогам года рекордный показатель мощности в области экоэнергетики составил 138,5 ГВт. За аналогичный период 2015 года эта цифра не превысила 127,8 ГВт.

Собранные в ЮНЕП данные доказывают: рост мощности произошел на фоне падения инвестиций. Инвестиционный климат отрасли возобновляемых источников энергетики «потерял» 23% в сравнении с 2015 годом.

Однако специалисты говорят, что вкладывать в «зеленую энергетику» перспективно и выгодно. Спад общей суммы инвестиций связан в первую очередь с доступностью установок. В среднем расходная часть на единицу МВт «упала» минимум на 10%. Цифры 2016 года засвидетельствовали, что на «зеленую энергетику» пришлось свыше половины (55%) от общих инновационных энергогенерирующих мощностей.

2015

2015 год является рекордным для мирового рынка альтернативной энергетики в целом и возобновляемых источников энергии в частности по объему установленных мощностей, по объему выработанной электроэнергии и по объемам инвестиций в ВИЭ. Тем не менее, на долю ВИЭ приходится всего 3% в общем объеме потребления первичной энергии. Наиболее развиты рынки альтернативной энергетики в Китае, США и Европе (особенно Германии). В 2015 году сильный рост продемонстрировал Китай, а также остальные развивающиеся страны, в частности, Индия. На развитие рынка ВИЭ в мире наибольшее влияние оказывает государственная поддержка альтернативной энергетики, также отмечается постоянно снижающиеся цены на солнечную и энергию ветра.

Смотрите также

Альтернативные источники энергии: почему они нужны всем

МОСКВА, 19 дек — ПРАЙМ. Использовать возобновляемые источники энергии (ВИЭ) человечество стало раньше, чем научилось добывать уголь, нефть и газ. Однако со временем потребление энергии росло — человеку индустриального общества требовалось уже в 100 раз больше энергии, чем в первобытную эпоху. И тогда обеспечить стабильную поставку таких мощностей стало возможным благодаря сжиганию ископаемого топлива. 

Сейчас человечество снова задумалось об использовании альтернативных источников энергии, так как запасы нефти и газа исчерпаемы, а их использование наносит большой вред окружающей среде, но уже на совершенно другом уровне. Ведь перемолоть муку на ветряной мельнице или обеспечить электроэнергией целый город с помощью ветрогенераторов — задачи разного масштаба. 

К основным видам ВИЭ сегодня относят гидроэнергетику, ветроэнергетику, гелиоэнергетику. В некоторых местах можно развивать волновую и геотермальную энергетику.

САМЫЕ РАСПРОСТРАНЕННЫЕ ВИЭ

Гидроэнергетика — самый распространенный способ добычи энергии из неисчерпаемого источника, теоретический потенциал которого оценивается в 30-40 ТВт·ч в год. Для ее работы необходимо построить плотину, разместить турбины, которые будет крутить вода. Явным преимуществом является стабильность выработки энергии и возможность ее контролировать, изменяя скорость потока воды. Среди недостатков — резкое изменение уровня воды в искусственных водохранилищах, нарушение нерестового цикла рыб и снижение количества кислорода в воде, что вредит флоре и фауне водоема.

Хитрости бизнеса. Как офшоры помогают компаниям экономить на налогах
 

Еще один перспективный источник — ветроэнергетика. Для добычи энергии таким способом необходимо установить специальные турбины, которые будет вращать ветер, за счет чего будет вырабатываться электричество. Ветряные турбины легко и дешево обслуживать, они не занимают много места, вращаются на высоте от 100 м, то есть, под ними можно, например, вести сельскохозяйственную деятельность. 

Иногда ветроэлектростанции (ВЭС) строят прямо в море. Такой проект в 2017 году разработали Дания, Нидерланды и Германия. Они собираются к 2050 году соорудить в море остров площадью 6 кв. км и разместить на нем турбины. Планируется, что такая станция сможет вырабатывать до 30 ГВт·ч в год энергии, а в перспективе — до 100 ГВт·ч в год.  

Однако у этого источника дешевой и чистой энергии есть несколько существенных недостатков — нестабильность и зависимость от места размещения. Ветер дует не везде и не всегда. А в местах, где ветер дует часто и с большой силой, как правило, не располагаются населенные пункты. Это повышает расходы на строительство линий электропередач и транспортировку энергии. Поэтому ветроэнергетика хороша именно как дополнительный источник энергии.

Альтернатива ВЭС — солнечные электростанции (СЭС), которые могут работать по нескольким принципам. В одном случае с помощью сфокусированных солнечных лучей нагревают резервуар с водой (температура пара в нем может доходить до 7000С), в другом — используются фотобатареи. Второй тип гораздо проще соорудить, устанавливать фотоэлементы можно практически везде, а стоимость их продолжает снижаться с развитием технологии производства. 

Что такое валютные войны и зачем их ведут

Главными недостатками СЭС является большая зависимость от места расположения, времени суток и сезона. Например, станция не будет вырабатывать энергию ночью, значительно меньше — в зимнее время года. Полностью обеспечить себя электричеством с помощью СЭС могут даже не все африканские страны. Поэтому солнечная энергетика на данном этапе тоже может служить только в качестве вспомогательного источника. 

КАК ИСПОЛЬЗУЮТ ДРУГИЕ ИСТОЧНИКИ ЭНЕРГИИ

В волновой энергетике используются специальные модули, которые качаются на волнах и таким образом приводят в действие специальные поршни. Потенциал этого вида ВИЭ оценивают более чем в 2 ТВт·ч в год. Волновые электростанции защищают берега и набережные от разрушения, уменьшают воздействие на опоры и мосты. При правильной установке они не вредят окружающей среде, к тому же практически незаметны в море.

Среди недостатков — нестабильность (то есть станция вырабатывает меньше энергии во время штиля), шум, незаметность для водного транспорта, из-за чего необходимо дополнительно устанавливать сигнальные элементы. 

В некоторых местах устанавливают геотермальные станции (ГеоТЭС). Общий потенциал геотермальной энергии оценивается в 47 ТВт·ч в год, что соответствует выработке примерно 50 тысяч АЭС, но сейчас технологии позволяют получить доступ только к 2% от него — 840 ГВт·ч в год. Чтобы это сделать, роют две скважины, по одной из них подается вода, которая, нагреваясь от тепла земли, превращается в пар. Затем пар по трубе направляется в турбины. На разных этапах происходит его очистка от примесей. 

Главное преимущество геотермальной энергетики — стабильность, которую не могут обеспечить многие ВИЭ, и компактность, что удобно для районов со сложным рельефом. С другой стороны, вода, которая проходит через скважины, несет большое количество тяжелых металлов и других вредных веществ. При неправильной эксплуатации станции или при возникновении чрезвычайной ситуации, попадание в атмосферу и в почву этих веществ, может привести к экологической катастрофе локального масштаба. 

Кроме того, стоимость энергии ГеоТЭС выше, чем у ВЭС и СЭС, а мощность довольно невысокая.

Основная проблема практически всех перечисленных выше источников заключается в их нестабильности. Современные аккумуляторы не позволяют накапливать такое количество энергии, чтобы без потерь мощности использовать ее в ночное время или во время штиля. Один из вариантов — во время пиковых нагрузок поднимать воду в верхнюю часть водохранилища и потом во время затишья использовать ее для выработки энергии на ГЭС. 

Зарабатываем и делимся: популярно о дивидендах

АЛЬТЕРНАТИВНАЯ ЭНЕРГИЯ В РОССИИ И В МИРЕ

На данный момент использование ВИЭ активно развивается в Европе, где страны вынуждены закупать топливо для работы традиционных электростанций. Но, по мнению некоторых экспертов, в развитии альтернативной энергетики заинтересованы и государства, чья экономика зависит от экспорта нефти и газа. Ведь если в некоторых регионах использовать ВИЭ вместо газа, это топливное сырье можно будет отправить на экспорт. 

Тем не менее, в России этот сектор энергетики развивается очень медленно. По данным аналитической компании Enerdata, в Норвегии около 97% электроэнергии добывается из альтернативных источников с учетом гидроэнергетики, около 80% — в Новой Зеландии и Бразилии. В Европе 30-40% энергии ВИЭ вырабатывается в Германии, Италии, Испании и Великобритании. В России этот показатель составляет всего 17,2%, из них доля СЭС и ВЭС — менее 1%.

Альтернативная энергетика в России не развивается из-за отсутствия стимулов | Россия и россияне: взгляд из Европы | DW

Мировые инвестиции в создание новых мощностей возобновляемой энергетики растут уже пять лет подряд, вдвое превышая инвестиции в генерирующие мощности на ископаемом топливе. Об этом сообщается в последнем «Глобальном отчете о состоянии возобновляемой энергетики REN21 2017». Россия в этом смысле пока находится не в тренде, поскольку делает ставку на углеводородные источники энергии.

Тем не менее, по словам экспертов, даже богатой на нефть и газ стране необходимо всерьез думать о так называемом «энергетическом переходе». DW выделила ключевые причины, по которым России имеет смысл обратить внимание на альтернативную энергетику.

Альтернативные источники энергии выгодны нефтяникам и экономике в целом

Как заявила на прошедшей в Москве первой международной конференции «Энергетический переход: новая парадигма», организованной Энергетическим центром бизнес-школы «Сколково» совместно с представительством Евросоюза в РФ, исполнительный секретарь агентства REN21 Кристин Линс, «страны переходят на альтернативную энергетику из соображений безопасности», стремясь диверсифицировать энергетический портфель.

Кристин Линс на конференции в Сколково

«В России особая ситуация, здесь много углеводородов. Однако их много и в Саудовской Аравии, которая, несмотря на это, ставит перед собой цели по развитию возобновляемых источников энергии (ВИЭ)», — отметила она. По словам Линс, для стран-производителей нефти и газа развитие ВИЭ означает как минимум возможность расширить объемы экспорта углеводородов, что несомненно даст позитивный эффект для национальных экономик в целом.

В странах с сырьевой зависимостью основными поставщиками налоговых поступлений в бюджет являются нефтегазовые компании. И как это ни странно, именно для них важно участие в развитии «зеленой» энергетики. «Крупнейшие нефтегазовые компании развивают альтернативную энергетику в рамках своей стратегии. Это продиктовано не только стремлением успеть повсюду, но и желанием сэкономить в тех регионах, где целесообразнее использовать локальную энергетику», — пояснил руководитель направления «Газ и Арктика» Энергетического центра бизнес-школы «Сколково» Роман Самсонов.

ВИЭ обеспечат энергией население в изолированных районах

Жизненно важными возобновляемые источники энергии становятся в удаленных районах России, в частности, в Арктике. По словам представителя посольства Нидерландов в России Иво Стоела, «далеко не вся территория России подключена к сетям — как электрическим, так и газовым. Люди зависят от неэффективных дизельных генераторов. И это дает широкую возможность для выхода на рынок ВИЭ».

Владимир Чупров выступает в Сколково

По словам заместителя гендиректора компании «Системный Консалтинг», доцента Российской академии народного хозяйства и госслужбы Александра Воротникова, «к энергетическому снабжению Арктики необходимо применить новый подход, ведь солнца за полярным кругом больше, чем во всей Германии». Эксперт предлагает развивать регион на основе государственно-частного партнерства, в рамках которого можно будет реализовать проекты по созданию так называемых микрогридов — локальных энергосистем, обладающая собственными источниками генерации энергии.

С помощью ВИЭ можно решить проблему утилизации отходов

Руководитель энергетической программы «Гринпис России» Владимир Чупров полагает, что одним из наиболее перспективных проектов в области альтернативной энергетики могла бы стать утилизация отходов сельского хозяйства, однако, по его словам, в этом сегменте «политические интересы и крупные игроки не присутствуют», поэтому он не развивается. Между тем, эксперт утверждает, что проект особенно актуален сегодня, когда из-за импортозамещения в стране активно развивается животноводство.

«Сейчас отходы не утилизируются. Если бы это делалось, на выходе мы бы имели биотопливо и воду», — отметил Чупров. К тому же, по его данным, на это решение имеется высокий социальный спрос. «Мы знаем о пяти горячих точках, где население жалуется на соседство с крупными агрофермами», — сообщил он. Впрочем, пока для развития проектов по утилизации отходов нет финансирования, хотя технологии и исполнители, готовые взяться за проект, есть.

Эксперты добавляют, что, помимо финансовых ресурсов, компаниям, работающим в сфере ВИЭ, не хватает более совершенного законодательства и стабильных правил игры. Как говорит Кристин Линс, «универсального стимулирующего инструмента не существует, однако самое главное для инвесторов — это предсказуемость правил игры. «В этом смысле  важно оказывать административную поддержку и убирать административные барьеры», — отметила она, отвечая на вопрос о том, чего именно не хватает в России для развития альтернативной энергетики.

Смотрите также:

  • Переход к альтернативной энергетике

    Уголь, нефть и газ — главные враги

    Парниковым газом номер один является СО2. Сжигание угля, нефти и газа — это причина образования 65 процентов всех парниковых газов. Вырубка лесов обуславливает выделение 11 процентов СО2. Главными причинами появления в атмосфере метана (16 процентов) и оксида азота (шесть процентов) на сегодня являются индустриальные методы в сельском хозяйстве.

  • Переход к альтернативной энергетике

    Требуется новый подход

    Если все останется, как и прежде, то, согласно данным Всемирного совета ООН по защите климата (IPCC), к 2100 году температура на Земле поднимется на 3,7-4,8 градуса. Однако еще можно добиться того, чтобы этот показатель не превышал 2 градуса. Для этого необходимо как можно скорее отказаться от использования ископаемого топлива — эксперты по климату говорят, что самое позднее к 2050 году.

  • Переход к альтернативной энергетике

    Энергия солнца как двигатель прогресса

    Солнце постепенно становится самым дешевым источником энергии. Цены на солнечные батареи за последние пять лет упали почти на 80 процентов. В Германии стоимость энергии, полученной в результате применения фотовольтаики, составляет уже 7 центов за киловатт-час, в странах с большим количеством солнечных дней — меньше 5 центов.

  • Переход к альтернативной энергетике

    Все больше и эффективнее

    Энергия ветра очень недорога, и в мире наблюдается бум в этой области. В Германии 16 процентов всей электроэнергии вырабатывается на ветряных установках, в Дании — почти 40 процентов. К 2020 году Китай планирует удвоить выработку на ветряках — сегодня они производят 4 процента всей электроэнергии страны. Типичная ветряная турбина покрывает потребности 1900 немецких домашних хозяйств.

  • Переход к альтернативной энергетике

    Дома без ископаемого топлива

    Хорошо изолированные дома требуют сегодня очень мало энергии, как правило, для электро- и теплоснабжения достаточно солнечных батарей, установленных на крыше. Некоторые дома производят даже слишком много энергии — она в дальнейшем может быть использована, к примеру, для зарядки электромобиля.

  • Переход к альтернативной энергетике

    Эффективное энергоснабжение экономит деньги и CO2

    Важный момент в деле защиты климата — это эффективное использование энергии. Качественные светодиодные лампы потребляют десятую часть энергии, по сравнению с традиционными лампами накаливания. Это позволяет сократить выбросы СО2 и сэкономить деньги. Запрет на продажу ламп накаливания в ЕС дал дополнительный толчок развития светодиодным технологиям.

  • Переход к альтернативной энергетике

    Экологически чистый транспорт

    Нефть имеет сегодня большое значение для транспорта, но ситуация может измениться. Альтернативы уже существуют — к примеру, этот рейсовый автобус в Кельне работает на водородном топливе, которое вырабатывается с помощью ветра и солнца путем электролиза. Такой транспорт не выделяет СО2.

  • Переход к альтернативной энергетике

    Первый серийный автомобиль на водороде

    С декабря 2014 года Toyota начала продажи первого серийного автомобиля, работающего на водородном топливе. Заправка длится всего несколько минут и «полного бака» хватит на 650 км пути. Эксперты полагают, что экологически чистый транспорт может использовать водород, биогаз или аккумуляторы.

  • Переход к альтернативной энергетике

    Топливо из фекалий и мусора

    Этот автобус из британского Бристоля ездит на биометане (СН4). Газ, который получают в результате переработки человеческих фекалий и пищевых отходов. Для того, чтобы автобус проехал 300 км необходимо столько отходов, сколько пять человек производят за год.

  • Переход к альтернативной энергетике

    Бум на рынке батарей

    Хранение электроэнергии до сих пор стоит немало. Но техника развивается стремительно, цены снижаются, а на рынке наблюдается настоящий бум. Электромобили стоят все меньше и для многих людей они становятся реальной альтернативой привычному транспорту.

  • Переход к альтернативной энергетике

    Прогресс в области «чистых» технологий

    На планете все еще два миллиарда человек живут без электричества. Однако, поскольку солнечные батареи и светодиодные лампы становятся все доступнее, их начинают активно применять жители сельской местности, как, например, здесь, в Сенегале. В специальном киоске, оборудованном солнечными батареями, заряжают переносные светодиодные лампы.

  • Переход к альтернативной энергетике

    Движение в защиту климата

    Движение в защиту климата приобретает все больше сторонников, как, к примеру, здесь — в центре германской угольной промышленности в городе Дюссельдорф. Немецкий энергоконцерн E.ON делает ставку на возобновляемые источники энергии; по всему миру инвесторы отзывают средства из проектов, связанных с ископаемыми источниками энергии.

    Автор: Максим Филимонов


Альтернативная энергия, альтернативная энергетика – новости, статьи, оборудование » AEnergy.ru

AEnergy.ru — интернет-ресурс компании ООО «АЭнерджи» о возможностях использования возобновляемых источников энергии (ВИЭ) и технологиях энергосбережения.

Деятельность ООО «АЭнерджи» включает следующие основные направления:
  • Аналитические услуги в области альтернативной энергетики и энергосбережения
  • Проект Biogas-energy — развитие биогазовой энергетики в РФ и СНГ
  • Проект Null-dom — применение энергосберегающих технологий и ВИЭ в строительстве
  • Проект ReInvest — инвестирование в проекты ВИЭ
  • Проект Energy-solar — развитие большой солнечной энергетики в РФ и СНГ
  • Проект Energy-wind — развитие большой ветроэнергетики в РФ и СНГ

Новости альтернативной энергетики

10.06.2014 8 американских штатов объявили о создании альянса, целью которого является появление более 3,3 млн. автомобилей на дорогах страны
09.06.2014 Соединенные Штаты вводят крупные пошлины для импортеров китайских солнечных панелей
08.06.2014 Египет намерен увеличить производство энергии из возобновляемых источников
07.06.2014 Solarcentury строит солнечный завод в Кении
06.06.2014 Более 7 ГВт крупномасштабных солнечных проектов будут реализованы в Европе в ближайший год
05.06.2014 Enel начинает строительство солнечной электростанции мощностью 100 МВт в Чили
04.06.2014 Смертельно опасное метановое озеро в Руанде сможет стать источником энергии
03.06.2014 Индия планирует обеспечить солнечной энергией 400 миллионов жителей
все новости »

Исследования

Внимание Акция! При заказе отчета «Альтернативная энергия 2010» второй отчет вы получаете бесплатно!

Альтернативная энергетика России 2010
Компания AEnergy.ru начала продажи отчета «Альтернативная энергетика России 2010». читать дальше »

Энергоэффективность в жилых и общественных зданиях: технологии и экономический эффект
AEnergy начала продажи отчета «Энергоэффективность в жилых и общественных зданиях: технологии и экономический эффект». Исследование было подготовлено в августе 2010 г. аналитическим отделом компании.
подробнее »

все исследования »

Статьи

Технический директор Tesla о будущем электрического транспорта и хранения энергии
Технический директор Tesla, господин Страубел (JB Straubel) стал основным докладчиком на ежегодном симпозиуме, посвященном хранению энергии, который провела организация Joint Venture Silicon Valley на прошлой неделе…. читать дальше »
Технический директор компании Tesla Motors о том, что происходит у компании под капотом
Автомобильные компании, лишь пытались продать электромобили — Tesla Motors является счастливым исключением. В прошлом году — первом полном году продаж люксового седана Model S, компания Tesla продала более чем в два раза больше автомобилей… читать дальше »
Как электромобили могут помочь снизить затраты на электроэнергию
Наверняка вы думаете, что ваш счет за электроэнергию вырастет, после покупки автомобиля, который заряжается с помощью электричества, не так ли? Однако, это не всегда так. … читать дальше »
Перспективы и трудности высотной ветроэнергетики
Ветровые турбины являются ядром ветроэнергетики, охватывая весьма значительные, участки земли. Лопасти, как правило расположены на высоте около 100 метров над землей. Высоко? Да, но тем не менее, скорость ветра на этой высоте не так велика, как на высотах в 6 000 — 15 000 метров над уровнем земли…. читать дальше »
Становятся ли корпорации энергетически ответственными?
Чтобы развить прочные отношения с потребителем, крупные корпорации все чаще демонстрируют заботу о территориях, на которых они ведут бизнес-активность. Они признают, что они оказывают влияние на жизнь городов и людей, которых они обслуживают. Корпорации взаимодействуют с сообществом, для того чтобы свести к минимуму негативные последствия потребления энергии…. читать дальше »

все статьи »

Альтернативная энергетика

Поиск источника энергии – пожалуй, древнейшая и важнейшая задача для человечества. Если вы читаете эту статью, вы – существо, во-первых, разумное, а во-вторых, теплокровное, и энергия вам нужна для поддержания необходимого температурного режима в холодные времена года, для приготовления пищи, отдыха и работы. Именно с последней самым тесным образом и связана энергия, ведь энергия определяет способность тел совершать работу.

В современном мире, в век космических полетов и высокотехнологичного производства, люди стали все чаще задумываться об «экологичности» используемой энергии. Людям свойственно ошибаться и ставить немедленную, «сегодняшнюю» выгоду выше последствий, вызванных этой выгодой. Яркий тому пример – Аральское море, площадь поверхности которого за 55 лет уменьшилась более, чем в 8 раз. Как это сравнимо с энергетикой?

Ни для кого не секрет, что выработка электрической и тепловой энергии, особенно в бедных странах, связана с тяжелыми последствиями для окружающей среды. К этому может относиться повышение температуры водоемов, ухудшение биоразнообразия, загрязнение воздуха и так далее. Более того, много электростанций работают на угле и продуктах переработки нефти, а количество этих природных ресурсов на земле ограниченно. В связи с этим возникла идея альтернативной энергетики, подразумевающей получение энергии для нужд человека путем использования возобновляемых источников энергии (ВИЭ), к которым относятся:

  • Солнечная энергия;
  • Энергия ветров;
  • Тепловая энергии Земли;
  • Энергия волн, течений и приливов;
  • Энергия биомассы.

Слово «возобновляемые» фактически означает «неисчерпаемые», в масштабах человечества, разумеется. Например, астрофизические расчеты показывают, что Солнце должно угаснуть, но повлиять на этот процесс человечество не в состоянии.

Фото 1. Солнечная электростанция

На данный момент развитие альтернативной энергетики в мире неоднозначно: хотя и существуют успешные примеры ее внедрения, в целом человечество на данном этапе истории не готово отказаться от традиционной энергетики. Помимо несомненных преимуществ, с которыми, однако, не устают спорить противники данной отрасли, есть потребности, которые альтернативная энергетика удовлетворить не может. К таким ее недостаткам могут относиться:

  • Зависимость от внешних условий, особенно ярко выражено это у солнечных и ветровых электростанций;
  • Невысокий КПД;
  • Сравнительно небольшая установленная мощность, а также мощность, выдаваемая с единицы площади (объема) занимаемого пространства;
  • По состоянию на конец 2018 года, альтернативные электростанции, в особенности ветровые, наносят ущерб окружающей среде, хоть и в гораздо меньших масштабах, чем традиционные.

Недостатками и преимуществами альтернативной энергетики обусловлены некоторые ее особенности: необходимость наличия накопителя энергии, отсутствие четко стандартизированной документации, сопротивление финансированию этой отрасли, высокая себестоимость альтернативной энергии. В связи с этим наибольшее распространение получили ветровые электростанции (ВЭС) и солнечные (СЭС), также к альтернативным можно отнести гидроэлектростанции (ГЭС). Несмотря на плавное снижение инвестиций в альтернативную энергетику, рост установленной мощности энергоблоков альтернативных электростанций – факт установленный.

Фото 2. Гидроэлектростанция

Как видно, альтернативная энергетика – интенсивно развивающаяся отрасль, имеющая явные успехи: например, в Германии четверть электроэнергии генерируется возобновляемыми источниками энергии. Соответственно, как у положительно развивающейся отрасли, существуют и определенные трудности. В связи с этим хочется вспомнить наглядный пример из истории энергетики: у переменного тока в XVIII веке было множество противников, и путь его к глобальному использованию был очень тернист до тех пор, пока не стали явными его очевидные преимущества. Хочется надеяться, что альтернативная энергетика избежит подобной участи и станет приносить глобальную пользу раньше того, как это станет острой необходимостью.

Всему свое время. Пока события идут своим чередом, мы в «ТМРсила-М» с радостью поможем вам в проведении электрофизических измерений.

 

 

Альтернативная энергетика для дома — особенности эксплуатации

Альтернативная энергетика – это отрасль мировой энергосистемы, занимающаяся разработкой, развитием и применением в жизни систем, которые имеют возможность добывать энергоресурс с «неисчерпаемых» источников. Сегодня науке известны два таких источника – это солнечное излучение и внутренняя энергия Земли. Оба этих источника можно и нужно использовать в повседневной жизни. Количество энергии, которую посылает на землю поверхность Солнца больше чем мощность, потребляемая населением планеты, во много раз.

Если бы всего 1 % площади земли покрыть солнечными элементами с КПД всего 10%, то этого бы хватило для обеспечения энергией всего человечества.

Геотермальная энергия имеет большой потенциал и свое применение в повседневной жизни человека.

Есть еще один неоспоримый плюс в «зеленой» энергетике – это абсолютная экологичность. Ни один из аппаратов, применяемых в этой системе, не выделяет такое количество вредных веществ, как тепловые или атомные предприятия, не говоря уже о масштабности аварий на солнечных и традиционных электростанциях.

 

Правильный подход к энергоэкономии и энергонезависимости должен начинаться не из установки на объекте энергогенерирующих мощностей, а с правильного подхода к использованию энергии. Необходимо до минимума снизить расход электричества на освещение, установить все оборудование в доме класса не ниже А+, утеплить помещение, установить низкотемпературную систему отопления. Построение системы с большой генерацией возможно и не противоречит законам физики, но не имеет экономической обоснованности.

 

Каким образом использовать солнечную энергию в быту?

Очень просто: с помощью специальных преобразующих приборов энергия элементарно преобразовывается в электрическую или тепловую в зависимости от потребностей каждого отдельного объекта.

Ветровая энергетика также относится к альтернативным способам добычи энергии и связана она с солнечной активностью косвенно. Солнце, освещая поверхность земли, неравномерно нагревает отдельные её участки. Вследствие, создаются области с разными давлением и возникает перетекание воздушных масс – ветер.

Солнечные системы могут разрабатываться на базе поликристаллических и монокристаллических фотомодулей.

Первый тип используется инженерами нашей компании для проектирования систем с круглогодичным использованием:
  • автономных объектах;
  • объектах с частым пропаданием сети;
  • объектах без ветроэнергетических установок.

Монокристаллические фотомодули используются при разработке:

  • коммерческих станций, которые «сливают» всю выработанную электроэнергию в городскую сеть;
  • сезонных объектов, таких как дачи, автокемпинги и прочие.

Ветрогенераторы

Ветрогенераторы используются в качестве основного источника энергии в зимний период времени и имеют целесообразность установки в случаях монтажа на полностью автономный объект (или при желании заказчика снизить потребление домом городской энергии до нуля) и только после анализа ветропотенциала на протяжении одного года в каждом конкретном случае.  

Солнечная энергия для электричества

Солнечное излучение может быть преобразовано в электрическую энергию при помощи фотогальванического модуля.

По системе утилизации электроэнергии системы бывают нескольких типов:

  1. Сетевая система представляет собой комплект оборудования (поле солнечных батарей + сетевой инвертор), который способен преобразовывать солнечную энергию от солнечных батарей в сетевой стандарт (220 или 380 В; 50 Гц) и передавать её во внешнюю сеть. Для применения данного типа систем необходимо иметь подключение к городской сети и оформить «зеленый» тариф.
  2. Система предназначена для экономии и резервирования сети. В комплект входит поле фотомодулей, банка аккумуляторов (АКБ), контроллер заряда АКБ, инвертор с функцией резервирования. Система применяется как в домах стремящихся к минимальному потреблению, так на автономных объектах.
  3. Гибридная система. Данный вариант построения системы идентичен предыдущему за исключением функций инвертора. Необходимо применение гибридного преобразователя, который способен и экономить, и резервировать, и продавать излишки в сеть. Данную систему можно построить с определенным приоритетом в пользу конкретной функции.

Ветровая энергия для электричества

Ветровая энергия может быть применена как дополнение к любой из солнечных систем или как неотъемлемая часть автономной системы. Если используется вместе с сетевой солнечной системой, тогда необходима установка дополнительного сетевого инвертора для ветряка, а в случае использования в паре с аккумуляторной системой – контроллер заряда аккумулятора для ветряка.

Солнечная энергия для тепла

Энергия солнечного излучения может быть эффективно преобразована в тепловую, с помощью гелиоколлектора. Сгенерированная энергия может быть использована как на горячее водоснабжение (ГВС), так и на отопление. Принцип действия вакуумного коллектора доступно изложен в этом видео. 

Геотермальная энергетика в быту

Этот вид энергетики имеет свое отдельное место в тематике возобновляемых источников энергии. Его отличие заключается в том, что источником энергии в данном случае является внутренняя температура земли. Тепловой насос использует энергию из окружающей среды (почва, грунтовые и поземные воды) и через теплоноситель отапливает помещение. Теплосборник выполняется в виде глубинных зондов, которые погружаются в грунт на участке. Тепловой насос типа «воздух-воздух», использует в качестве источника теплоты наружный воздух. Тепло, выделенное в процессе забора воздуха снаружи, преобразовывает в высокопотенциальную энергию и направляет в систему отопления. Недостаток такого варианта перед геотермальным – это его погодозасимость (плохо работает при температуре наружного воздуха ниже -15°С), а преимущество – доступная цена.

видов альтернативных источников энергии, которые вы можете использовать сегодня

Альтернативные источники энергии доступны не только тем, кто живет вне сети — альтернативные источники энергии сейчас составляют значительную часть энергии национальной энергосистемы, и они доступны всем нам.


Что такое альтернативные источники энергии?

Альтернативная энергия относится к источникам энергии, отличным от ископаемого топлива (например, уголь, нефть и дизельное топливо), и включает все возобновляемые и ядерные источники энергии.

Хотя ядерная энергия не так вредна для окружающей среды, как ископаемое топливо, она по-прежнему не классифицируется как возобновляемый источник энергии, поскольку ядерный материал не может быть восполнен за время жизни человека. Ядерная энергия производится с использованием таких элементов, как уран и торий, которые невозможно восполнить и которые существуют в ограниченном количестве.

В чем преимущество альтернативных энергетических технологий?

Главное преимущество альтернативных энергетических технологий в том, что они никогда не закончатся.Наши дни использования ископаемого топлива сочтены, и поэтому любые альтернативные источники энергии выгоднее традиционных. Еще одно огромное преимущество заключается в том, что многие из них не требуют таких же разрушительных и дорогостоящих методов извлечения, поскольку многие из них доступны нам здесь, на поверхности.

Если вы думали о снижении зависимости от ископаемого топлива и не знаете, с чего начать, вы можете узнать, как перейти на чистую энергию, с помощью нашего удобного руководства.

Какие бывают виды альтернативной энергии?

Существует удивительное количество форм альтернативной энергии, некоторые из которых хорошо известны, а другие относительно неслыханы.Их:

  1. Энергия ветра: Это один из самых чистых и доступных источников энергии. Ветроэнергетика является экологически безопасной и не вызывает выбросов углерода в качестве побочного продукта. Он также полностью возобновляемый, так как всегда будет ветер. Источники энергии, такие как ископаемое топливо, часто колеблются в цене. Типичная ветряная электростанция покрывает свой углеродный след примерно за шесть месяцев или даже быстрее [1], что обеспечивает десятилетия энергии с нулевым выбросом, которая вытесняет энергию ископаемого топлива.
  2. Солнечная энергия: Это, вероятно, наиболее известный источник альтернативной энергии, и не зря. Солнечная энергия является полностью возобновляемой, и затраты на установку могут быть возмещены за счет экономии на счетах за электроэнергию. Единственный потенциальный недостаток солнечных панелей заключается в том, что они склонны к ухудшению со временем и не являются полностью безопасными для погодных условий в странах с неустойчивыми погодными условиями.
  3. Ядерная энергия: Берется из ядра атома, которое необходимо расщепить, чтобы получить свою энергию. Этот процесс называется делением. Это используется на электростанции, где стержни из ядерного материала регулируют количество производимой электроэнергии.Чем больше стержней присутствует во время цепной реакции, тем медленнее и управляемее будет реакция. Удаление стержней позволит усилить цепную реакцию и произвести больше электричества [2]. Следует ли рассматривать ядерную энергию как возобновляемую или нет — это постоянные споры.
  4. Водородный газ: Это важный энергоноситель и потенциально альтернативное экологически чистое топливо с заметной долей на мировом топливном рынке. Однако сегодня газообразный водород в основном производится из ископаемого топлива, которое представляет угрозу для окружающей среды.Более устойчивая версия этого источника энергии была описана как биоводород, и есть надежда, что в будущем он будет производиться из органических, биоразлагаемых отходов.
  5. Приливная энергия: Этот метод производства энергии все еще является довольно новым и пока дает лишь небольшое количество энергии, поэтому пройдет много времени, прежде чем мы увидим реальные результаты от приливной энергии.
  6. Энергия биомассы: Этот вид энергии может быть в нескольких формах. Энергия биомассы может включать в себя все, от сжигания древесины до сжигания отходов, как это сейчас делают многие страны.При использовании биомассы в виде сжигаемой древесины выделяемое тепло часто эквивалентно теплу системы центрального отопления, и связанные с этим затраты, как правило, ниже, чем в домашнем хозяйстве или здании, использующем ископаемое топливо. Однако это не зеленый источник энергии, даже если он технически возобновляемый.
  7. Биотопливо: Биотопливо в чем-то похоже на биомассу, но биотопливо использует биологическое вещество (животное и растение) для создания энергии. Биотопливо является возобновляемым, когда используются растения, потому что, конечно, растения всегда можно выращивать.Однако им действительно требуется специальное оборудование для добычи, которое может косвенно способствовать увеличению выбросов, даже если самого биотоплива нет. Биотопливо все чаще применяется, особенно в США. По данным Министерства сельского хозяйства США, биотопливо составило около 7,1 процента [3] от общего потребления топлива на транспорте, или 13,8 миллиарда галлонов в 2012 году, что соответствует статистике предыдущего года.

Какие примеры альтернативной энергетики?

Помимо 7 источников энергии, перечисленных выше, другие альтернативные источники энергии включают геотермальную энергию, энергию волн, гидроэлектрическую энергию, солнечную тепловую энергию и даже космическую солнечную энергию.

Геотермальная энергия — это энергия, генерируемая землей и используемая, в то время как энергия волн и гидроэлектроэнергия используют силу воды. Конечно, солнечная тепловая энергия и космическая солнечная энергия — это другие способы использования солнечной энергии.

Есть ли компании, которые используют возобновляемые источники энергии для электроснабжения домов?

Да! Inspire — это экологически чистая энергетическая компания, которая предлагает экологически чистые и устойчивые источники энергии, такие как энергия ветра, для домов по всей территории США. Запущенный в 2014 году, мы с тех пор обеспечиваем наших клиентов простой и чистой энергией.

Мы стремимся создать преобразующий умный энергетический опыт, который лучше всего подходит для наших клиентов, наших партнеров, нашей команды и, конечно же, нашей планеты! Мы поможем вам спасти планету и максимально упростить вам задачу — что может быть лучше?

Почему альтернативные виды топлива называются зеленой энергией?

Альтернативные виды топлива часто называют «зелеными» или возобновляемыми источниками энергии, но это не всегда так. Альтернативная энергия — это более широкая категория, которая охватывает все источники и процессы энергии, не связанные с ископаемым топливом, из которых возобновляемые источники энергии являются лишь частью.

Каковы плюсы и минусы альтернативной энергетики?

Это может зависеть от конкретного источника энергии, которых много, например:

  • Биомасса образуется в результате сжигания органических веществ, что является эффективным использованием отходов. Однако этот процесс требует больших площадей для захоронения отходов и может привести к загрязнению из-за сжигания этого вещества.
  • Плюсы энергии ветра в том, что она экологична, ветряные турбины относительно безвредны для окружающей дикой природы и недороги в строительстве и обслуживании.
  • Солнечная энергия имеет те же плюсы и минусы, что и энергия ветра: солнце всегда будет светить в разной степени каждый день. Плюсы солнечной энергии в том, что есть неограниченное количество солнечного света. Однако он полностью полагается на солнечный свет, поэтому панели производят энергию только тогда, когда светит солнце. Это делает солнечные батареи практически бесполезными в пасмурные дни, ночью или если у здания есть крыша, выходящая на запад.

У каждого отдельного источника энергии есть свои плюсы и минусы, а также переменные, которые следует принимать во внимание, такие как местоположение, климат, финансовые выгоды и, что наиболее важно, общее снижение ущерба, наносимого окружающей среде.

Рентабельна ли альтернативная энергия?

Поскольку фраза «альтернативная энергия» — это общий термин, который учитывает более 10 различных источников, это зависит от конкретного источника энергии.

Ветер — один из примеров экономичного альтернативного источника энергии. Поскольку ветряные турбины относительно дешевы в изготовлении и требуют небольшого обслуживания, поставщики энергии могут предлагать более низкие цены, поскольку их затраты меньше.

Помимо ветряных электростанций, наиболее дешевыми альтернативными источниками энергии являются солнечные. Как упоминалось ранее, всегда будет светить солнце. Конечно, в некоторые дни солнечные часы будут дольше, а в некоторых странах — чаще.

Итак, как вы можете получить эти преимущества? Вот что мы делаем — помогаем обычным людям перейти на чистые источники энергии. Когда вы зарегистрируетесь, мы купим сертификаты возобновляемых источников энергии от вашего имени и сообщим вашему поставщику энергии, что вы сделали переход.

Почему нужно переходить на альтернативные источники энергии?

Наша зависимость от ископаемого топлива до сих пор была основной причиной ущерба окружающей среде, и постоянный ущерб от этого использования может быть остановлен, если мы перейдем на возобновляемые источники энергии, такие как ветер, солнце и гидроэнергия.

Проще говоря, если воспользоваться тем, что всегда будут солнце, вода и ветер. Если мы используем их энергию для производства электричества, мы сможем ежегодно снижать уровень загрязнения планеты. Таким образом, хотя термин «альтернативные источники энергии» технически включает некоторые источники, которые не являются экологически чистыми, переход на более устойчивые источники энергии серьезно поможет улучшить окружающую среду.

Готовы ли вы перейти на чистую энергию?

Источники:
[1] https: // www.aweablog.org/the-truth-about-wind-power/
[2] https://www.nationalgeographic.org/encyclopedia/nuclear-energy/
[3] https://www.ers.usda.gov/ данные-продукты / us-bioenergy-statistics.aspx

5 домашних вариантов возобновляемой энергии, о которых вы никогда не слышали

Что в первую очередь приходит на ум, когда вы думаете о возобновляемых источниках энергии для дома? Скорее всего, вы представляете себе большие солнечные батареи, установленные в чьем-то дворе или на крыше. Солнечные панели отлично подходят для выработки электроэнергии, но они всего лишь один из многих альтернативных источников энергии для дома.

Ветряная электростанция для жилых помещений

Мы видели эти массивные ветряные турбины, но также можно использовать энергию ветра в меньших масштабах для питания вашего дома. Малая энергия ветра является возобновляемой, чистой и рентабельной. В зависимости от вашего местоположения и типа установленной домашней ветряной системы вы обычно получаете окупаемость от шести до 30 лет. После этого электричество, производимое турбиной, будет практически бесплатным.

Если ваша главная цель — снизить счета за электроэнергию, вам может подойти ветровая система, подключенная к сети.Системы, подключенные к сети, дешевле, потому что вы можете установить меньшую систему, которая не обязательно должна удовлетворять все потребности вашего дома в электроэнергии. Когда ваши потребности в энергии слишком высоки для ваших ветряных турбин, дополнительная мощность, которая вам нужна, берется из сети. И если вы постоянно производите больше электроэнергии, чем вам нужно, вы можете получить деньги обратно от своей коммунальной компании.

Кроме того, инвестиции могут повысить стоимость вашего дома, и вы можете иметь право на некоторые налоговые льготы.Как и многие другие варианты использования возобновляемых источников энергии, небольшие ветряные турбины имеют право на получение федерального налогового кредита в размере 30 процентов в Соединенных Штатах. Другие финансовые стимулы могут быть доступны через ваше государство или отдельные коммунальные предприятия, некоторые из которых вы можете найти в Базе данных государственных стимулов для возобновляемых источников энергии и повышения эффективности.

Гибрид

Если жизнь вне сети — ваш идеальный сценарий, многие эксперты по возобновляемым источникам энергии рекомендуют гибридную систему энергии ветра и солнца. В гибридных системах используются как ветряные турбины, так и солнечные панели, чтобы удвоить генерирующую мощность.Эти системы являются наиболее эффективными и надежными, поскольку энергия ветра и солнца, как правило, наиболее доступна в разное время.

В зависимости от местоположения, скорость ветра обычно ниже летом, когда солнце светит наиболее ярко и долго, и выше зимой, когда доступно меньше солнечного света. Поскольку пиковая генерация для ветряных и солнечных систем часто происходит в разное время, гибридная система с большей вероятностью будет постоянно производить энергию, необходимую вашему дому.

Геотермальная энергия

Геотермальная энергия получается за счет тепла под поверхностью земли.Этот чистый источник энергии обеспечивает возобновляемую энергию круглосуточно и практически не выделяет парниковые газы — и все это требует небольшого воздействия на окружающую среду.

Геотермальные тепловые насосы потребляют на 25–50 процентов меньше электроэнергии, чем обычные системы отопления, вентиляции и кондиционирования воздуха, и их можно установить на существующие системы. Кроме того, поскольку для оборудования требуется меньше места, чем для типичной системы HVAC, помещения для оборудования могут быть меньше. А на компоненты часто предоставляется гарантия сроком от 20 лет или дольше.

Более того, геотермальный тепловой насос не имеет конденсаторной установки, такой как кондиционер, поэтому шум снаружи дома не играет роли. Иногда система работает настолько тихо, что жители даже не могут сказать, что она работает. Он также умеет поддерживать комфорт в доме, поскольку устройство поддерживает около 50 процентов относительной влажности в помещении.

Низкие температуры грунта довольно стабильны на всей территории США, поэтому геотермальные тепловые насосы можно установить в большинстве мест. Ваш установщик определит, что лучше всего для вашего дома, на основе конкретных геологических, гидрологических и пространственных характеристик вашей земли.

Микрогидроэнергетика

Для тех, у кого есть проточная вода, доступность и значительная отдача от микрогидрогенератора делают его совершенно легкой задачей. Даже небольшой ручей может производить стабильную, чистую, возобновляемую электроэнергию без плотин по цене ниже, чем солнечная или ветровая.

Система микрогидроэнергетики нуждается в водяном колесе, турбине или насосе для преобразования энергии воды в электричество. Во-первых, вода направляется к водопроводу — обычно трубопроводу, — который доставляет ее к водяному колесу (или другому подобному компоненту).Движущаяся вода вращает колесо, и это движение приводит в действие генератор или генератор для выработки электричества. Система может быть подключена к сети или отключена от нее и должна обеспечивать питание типичного большого дома.

Солнечная черепица

Попрощайтесь с гигантскими громоздкими солнечными батареями. Фотоэлектрическая черепица, или «солнечная черепица», стала отличным вариантом для домовладельцев, которые хотят снизить свои счета за электричество, не жертвуя эстетической ценностью своего дома.

Эту черепицу намного проще установить, чем традиционные солнечные панели с болтовым креплением, и они, безусловно, более приятны для глаз.Солнечная черепица почти безупречно сочетается с обычной черепицей и вносит свой вклад в защиту крыши от непогоды. Фактически, Tesla утверждает, что ее солнечная черепица в три раза прочнее традиционной черепицы, и компания гарантирует их на весь срок службы вашего дома.

Солнечная черепица стоит примерно на треть дороже, чем установка средней солнечной панели, но существуют налоговые льготы, которые помогают компенсировать эту цену. Аналогичным, менее дорогим вариантом может быть установка солнечных окон в крыше.Это прозрачные солнечные панели, которые выглядят как традиционные мансардные окна, но вырабатывают энергию для вашего дома.

Автор Джанель Соренсен — основатель и главный стратег Gro gud, а также главный контент-гуру Elemental Green. Узнайте больше об экологически чистом домостроении и ремонте (продукты, проекты и многое другое) на Elemental.Green.

Альтернативные источники электроэнергии и внесетевые источники энергии

Поскольку новые технологические инновации продолжают предлагать новые формы чистой и зеленой энергии, возможность жить с меньшим использованием альтернативных источников энергии стала реальностью.

Альтернативные источники энергии

Альтернативное электричество вне сети через солнечные панели

Кредит изображения: OFC Pictures / Shutterstock

Солнечные, ветровые, геотермальные и гидроэнергетические средства позволяют жить «вне сети», когда зависимость от природных источников энергии заменяет зависимость от более традиционных энергосистем. Независимо от того, живете ли вы в отдаленном районе или заинтересованы в экономии энергии, инновации в области автономных источников энергии естественного происхождения доступны во многих различных формах.

Солнечные энергетические системы

Автономные энергосистемы работают независимо от линий электропередач, генерируемая энергия которых может использоваться для питания устройств. Внесеточная солнечная система, например, использует только солнечную энергию, собираемую для питания устройств в этой системе. С другой стороны, автономная гибридная система использует комбинацию солнечной, гидро- и ветровой энергии в качестве основного источника энергии для системы.

Когда дело доходит до солнечных систем, доступно множество различных конфигураций в зависимости от типа необходимой мощности (переменное или постоянное напряжение).Большинство систем, независимо от их выхода энергии, поглощают солнечную энергию аналогичным образом. Солнечные батареи — один из наиболее часто используемых методов использования солнечной энергии.

Солнечные панели состоят из нескольких солнечных элементов, называемых фотоэлектрическими элементами, которые поглощают солнечную энергию и преобразуют ее в полезную энергию. Для этого фотоэлектрические элементы состоят из полупроводниковых материалов, таких как кремний или теллурид кадмия, которые поглощают солнечную энергию, которая, в свою очередь, высвобождает электроны.Металлические контакты на разных сторонах солнечной панели направляют свободные электроны в одном направлении, создавая ток. Ток в сочетании с напряжением, хранящимся в фотоэлектрических элементах, является конечным результатом и может использоваться для питания устройств.

Гидроэнергетические системы

Гидроэнергетическая система использует силу движущейся или падающей воды для выработки энергии. Эти системы различаются по размеру в зависимости от желаемой мощности: большая гидроэнергетическая система может производить достаточно энергии, чтобы обеспечить альтернативное электричество для миллионов домов, тогда как меньшие гидроэнергетические системы могут быть спроектированы для производства энергии, достаточной для обеспечения электроэнергией одного домашнего хозяйства.

Независимо от размера системы, большинство гидроэнергетических систем разделяют несколько элементов. Во-первых, должна быть создана плотина, которая является барьером, который существенно замедляет движущийся водоем, тем самым поднимая уровень воды — в результате образуется небольшой водопад или контролируемый излив воды на другой стороне плотины. Когда вода выпускается через плотину, она накапливает большую силу. Турбина, устройство, которое работает почти так же, как ветряная мельница, вращается, когда вода приводит в движение лопасти турбины, и преобразует энергию воды в механическую.Турбина соединена с генератором, который вращается в результате вращения турбины и преобразует механическую энергию в электрическую. Наконец, электричество подается в линии электропередач, по которым энергия передается в дома или устройства. Количество энергии, создаваемой гидроэнергетической системой, зависит от количества воды, проходящей через систему, и от того, насколько далеко вода падает.

Ветровые системы

Системы ветроэнергетики используют кинетическую энергию ветра и превращают ее в механическую или электрическую энергию, почти так же, как гидроэнергетические системы собирают энергию из воды.Основное устройство, используемое в ветровых системах, — это ветряная турбина, которая доступна как с вертикальной осью, так и с горизонтальной осью.

Наиболее часто используемый тип ветряной турбины — это турбина с горизонтальной осью, которая обычно используется в крупных ветровых системах мощностью 100 киловатт и выше. Большинство турбин включает в себя следующие элементы: ротор, гондолу, башню и некоторое электронное оборудование.

Точно так же, как гидротурбина зависит от вращения роторов, роторы ветряной турбины приводят в движение турбину при встрече с ветром.В гондоле находится генератор, который вращается вместе с роторами. Башня поддерживает ротор, narcelle и электронное оборудование, которое помогает подавать электричество, вырабатываемое ветряной турбиной, в линии электропередач. В зависимости от размера турбины может быть достигнута мощность до 5000 киловатт.

Прочие электрические изделия

Больше от компании Electric & Power Generation

Определение возобновляемых источников энергии и типы возобновляемых источников энергии

Перейти к разделу

Ветряные турбины и большая солнечная панель в Палм-Спрингс, Калифорния

Возобновляемая энергия переживает бум, поскольку инновации снижают затраты и начинают воплощать надежды на чистую энергию будущего.Американская солнечная и ветровая генерация бьет рекорды и интегрируется в национальную электросеть без ущерба для надежности.

Это означает, что возобновляемые источники энергии все больше вытесняют «грязное» ископаемое топливо в энергетическом секторе, предлагая выгоду от более низких выбросов углерода и других видов загрязнения. Но не все источники энергии, которые продаются как «возобновляемые», полезны для окружающей среды. Биомасса и крупные плотины гидроэлектростанций создают трудный компромисс при рассмотрении воздействия на дикую природу, изменения климата и других проблем.Вот что вам следует знать о различных типах возобновляемых источников энергии и о том, как вы можете использовать эти новые технологии у себя дома.

Что такое возобновляемая энергия?

Возобновляемая энергия, которую часто называют чистой энергией, поступает из природных источников или процессов, которые постоянно пополняются. Например, солнечный свет или ветер продолжают светить и дуть, даже если их наличие зависит от времени и погоды.

В то время как возобновляемая энергия часто рассматривается как новая технология, использование энергии природы уже давно используется для отопления, транспорта, освещения и многого другого.Ветер привел в движение лодки для плавания по морям и ветряные мельницы для измельчения зерна. Солнце согревало днем ​​и помогало разжигать костры до вечера. Но за последние 500 лет или около того люди все чаще обращались к более дешевым и грязным источникам энергии, таким как уголь и фракционный газ.

Теперь, когда у нас есть все более инновационные и менее дорогие способы улавливания и сохранения энергии ветра и солнца, возобновляемые источники энергии становятся все более важным источником энергии, на которые приходится более одной восьмой энергии.Поколение С. Расширение возобновляемых источников энергии также происходит в больших и малых масштабах, от солнечных панелей на крышах домов, которые могут продавать электроэнергию обратно в сеть, до гигантских оффшорных ветряных электростанций. Даже некоторые целые сельские общины полагаются на возобновляемые источники энергии для отопления и освещения.

Поскольку использование возобновляемых источников энергии продолжает расти, ключевой целью будет модернизация энергосистемы Америки, сделав ее более умной, безопасной и более интегрированной в разных регионах.

Грязная энергия

Невозобновляемая или «грязная» энергия включает ископаемые виды топлива, такие как нефть, газ и уголь.Невозобновляемые источники энергии доступны только в ограниченном количестве, и их восполнение занимает много времени. Когда мы перекачиваем газ на станцию, мы используем ограниченный ресурс, полученный из сырой нефти, которая существует с доисторических времен.

Невозобновляемые источники энергии также обычно встречаются в определенных частях мира, поэтому в одних странах их больше, чем в других. Напротив, в каждой стране есть солнечный свет и ветер. Приоритет невозобновляемых источников энергии может также повысить национальную безопасность за счет уменьшения зависимости страны от экспорта из стран, богатых ископаемым топливом.

Многие невозобновляемые источники энергии могут представлять опасность для окружающей среды или здоровья человека. Например, для бурения нефтяных скважин может потребоваться вскрытие бореальных лесов Канады, технология, связанная с гидроразрывом, может вызвать землетрясения и загрязнение воды, а угольные электростанции загрязняют воздух. В довершение всего, все эти действия способствуют глобальному потеплению.

Виды возобновляемых источников энергии

Солнечная энергия

Люди использовали солнечную энергию на протяжении тысяч лет — чтобы выращивать урожай, сохранять тепло и сушить пищу.По данным Национальной лаборатории возобновляемых источников энергии, «за один час на Землю падает больше энергии, чем потребляется всем в мире за один год». Сегодня мы используем солнечные лучи по-разному — для обогрева домов и предприятий, для подогрева воды или питания устройств.

Солнечные панели на крышах Восточного Остина, Техас

Солнечные или фотоэлектрические элементы изготавливаются из кремния или других материалов, которые преобразуют солнечный свет непосредственно в электричество.Распределенные солнечные системы вырабатывают электроэнергию на месте для домов и предприятий, либо через панели на крышах, либо через общественные проекты, которые питают целые кварталы. Солнечные фермы могут генерировать электроэнергию для тысяч домов, используя зеркала для концентрации солнечного света на акрах солнечных элементов. Плавучие солнечные фермы — или «плавучие гелиоэлектрики» — могут быть эффективным средством использования очистных сооружений и водоемов, которые не являются экологически уязвимыми.

Solar поставляет чуть более 1 процента США.производство электроэнергии . Но почти треть всех новых генерирующих мощностей в 2017 году приходилась на солнечную энергию, уступая только природному газу.

Солнечные энергетические системы не производят загрязнителей воздуха или парниковых газов, и, пока они правильно расположены, большинство солнечных панелей оказывают незначительное воздействие на окружающую среду за пределами производственного процесса.

Энергия ветра

Мы далеко ушли от старых ветряных мельниц. Сегодня турбины высотой с небоскребы — с турбинами почти такого же диаметра — привлекают внимание во всем мире.Энергия ветра вращает лопасти турбины, которая питает электрический генератор и производит электричество.

Ветер, на который приходится чуть более 6 процентов выработки в США, стал самым дешевым источником энергии во многих частях страны. В число ведущих штатов ветроэнергетики входят Калифорния, Техас, Оклахома, Канзас и Айова, хотя турбины можно размещать в любом месте с высокими скоростями ветра — например, на вершинах холмов и открытых равнинах — или даже на открытом море в открытом море.

Другие альтернативные источники энергии

Hydroelectric Power

Гидроэнергетика — крупнейший возобновляемый источник электроэнергии в США, хотя вскоре ожидается, что энергия ветра выйдет на первое место.Гидроэнергетика полагается на воду — обычно быстро движущуюся воду в большой реке или быстро спускающуюся воду с высокой точки — и преобразует силу этой воды в электричество, вращая лопасти турбины генератора.

На национальном и международном уровнях крупные гидроэлектростанции или мегаплотины часто считаются невозобновляемой энергией. Мегаплотины отводят и сокращают естественные потоки, ограничивая доступ животных и людей, которые зависят от рек. Небольшие гидроэлектростанции (установленная мощность ниже примерно 40 мегаватт), тщательно управляемые, не причиняют такого большого ущерба окружающей среде, поскольку они отвлекают лишь часть потока.

Энергия биомассы

Биомасса — это органический материал, который поступает из растений и животных и включает сельскохозяйственные культуры, древесные отходы и деревья. Когда биомасса сжигается, химическая энергия выделяется в виде тепла и может генерировать электричество с помощью паровой турбины.

Биомассу часто ошибочно называют чистым возобновляемым топливом и более зеленой альтернативой углю и другим ископаемым видам топлива для производства электроэнергии. Однако недавняя наука показывает, что многие формы биомассы, особенно лесной, производят более высокие выбросы углерода, чем ископаемое топливо.Также существуют негативные последствия для биоразнообразия. Тем не менее, при определенных обстоятельствах некоторые формы энергии биомассы могут служить альтернативой с низким содержанием углерода. Например, опилки и щепа с лесопильных заводов, которые в противном случае быстро разлагались бы и выделяли углерод, могут быть источником энергии с низким содержанием углерода.

Геотермальная энергия

Геотермальная электростанция Сварценги недалеко от Гриндавика, Исландия

Даниэль Снаер Рагнарссон / iStock

Если вы когда-нибудь отдыхали в горячем источнике, значит, вы использовали геотермальную энергию.Ядро Земли примерно такое же горячее, как поверхность Солнца, из-за медленного распада радиоактивных частиц в породах в центре планеты. Бурение глубоких скважин выводит на поверхность очень горячую подземную воду в качестве гидротермального ресурса, который затем прокачивается через турбину для производства электроэнергии. Геотермальные станции обычно имеют низкие выбросы, если они закачивают пар и воду, которые они используют, обратно в резервуар. Есть способы создать геотермальные электростанции там, где нет подземных резервуаров, но есть опасения, что они могут увеличить риск землетрясения в районах, которые уже считаются геологическими горячими точками.

Океан

Энергия приливов и волн все еще находится в стадии развития, но океаном всегда будет управлять гравитация Луны, что делает использование ее силы привлекательным вариантом. Некоторые подходы к приливной энергии могут нанести вред дикой природе, например, приливные заграждения, которые работают так же, как плотины и расположены в океанском заливе или лагуне. Как и приливная сила, сила волн зависит от плотинных структур или устройств, закрепленных на дне океана, на поверхности воды или чуть ниже нее.

Возобновляемые источники энергии в доме

Солнечная энергия

В меньшем масштабе мы можем использовать солнечные лучи для питания всего дома — будь то с помощью фотоэлементов или пассивной солнечной конструкции дома.Пассивные солнечные дома предназначены для приема солнечных лучей через окна, выходящие на юг, а затем сохранения тепла через бетон, кирпич, плитку и другие материалы, которые сохраняют тепло.

Некоторые дома на солнечной энергии производят более чем достаточно электроэнергии, что позволяет домовладельцу продавать излишки электроэнергии обратно в сеть. Батареи также являются экономически привлекательным способом хранения избыточной солнечной энергии, чтобы ее можно было использовать в ночное время. Ученые усердно работают над новыми достижениями, сочетающими форму и функцию, такими как солнечные световые люки и кровельная черепица.

Геотермальные тепловые насосы

Геотермальная технология — это новый взгляд на узнаваемый процесс: змеевики в задней части холодильника представляют собой мини-тепловой насос, отводящий тепло изнутри, чтобы продукты оставались свежими и прохладными. В доме геотермальные или геообменные насосы используют постоянную температуру земли (на несколько футов ниже поверхности) для охлаждения домов летом и обогрева домов зимой — и даже для нагрева воды.

Геотермальные системы могут быть изначально дорогими в установке, но обычно окупаются в течение 10 лет.Они также тише, требуют меньшего количества проблем с обслуживанием и служат дольше, чем традиционные кондиционеры.

Малые ветряные системы

Ветряная электростанция на заднем дворе? Лодки, владельцы ранчо и даже компании сотовой связи регулярно используют небольшие ветряные турбины. Дилеры теперь помогают размещать, устанавливать и обслуживать ветряные турбины и для домовладельцев, хотя некоторые энтузиасты DIY устанавливают турбины сами. В зависимости от ваших потребностей в электроэнергии, скорости ветра и правил зонирования в вашем районе ветряная турбина может снизить вашу зависимость от электросети.

Продажа энергии, которую вы собираете

Дома, работающие на ветряной и солнечной энергии, могут быть автономными или подключаться к более крупной электросети, которую предоставляет их поставщик электроэнергии. Электроэнергетические компании в большинстве штатов позволяют домовладельцам оплачивать только разницу между потребляемой электроэнергией, поставляемой в сеть, и тем, что они произвели — процесс, называемый чистым счетчиком. Если вы производите больше электроэнергии, чем потребляете, ваш провайдер может заплатить вам розничную цену за эту мощность.

Возобновляемые источники энергии и вы

Пропаганда возобновляемых источников энергии или их использование в домашних условиях может ускорить переход к экологически чистой энергии будущего.Даже если вы еще не можете установить солнечные батареи, вы можете выбрать электричество из экологически чистых источников энергии. (Обратитесь в свою энергетическую компанию, чтобы узнать, предлагает ли она такой выбор.) Если возобновляемая энергия недоступна через ваше коммунальное предприятие, вы можете приобрести сертификаты возобновляемой энергии для компенсации вашего использования.

7 типов возобновляемых источников энергии: будущее энергетики

Что такое возобновляемая энергия?

Возобновляемая энергия — это энергия, полученная из природных ресурсов Земли, которые не являются конечными или исчерпаемыми, таких как ветер и солнечный свет.Возобновляемая энергия — это альтернатива традиционной энергии, основанной на ископаемом топливе, и она, как правило, гораздо менее вредна для окружающей среды.

7 видов возобновляемой энергии

Солнечная

Солнечная энергия получается путем улавливания лучистой энергии солнечного света и преобразования ее в тепло, электричество или горячую воду. Фотогальванические (PV) системы могут преобразовывать прямой солнечный свет в электричество с помощью солнечных элементов.

Льготы

Одним из преимуществ солнечной энергии является то, что солнечный свет функционально бесконечен .Благодаря технологиям для его сбора существует неограниченный запас солнечной энергии, а это означает, что ископаемое топливо может стать устаревшим. Использование солнечной энергии, а не ископаемого топлива, также помогает нам улучшить здоровье населения и состояние окружающей среды. В долгосрочной перспективе солнечная энергия также может снизить затраты на электроэнергию, а в краткосрочной перспективе снизить ваши счета за электроэнергию. Многие местные федеральные власти, правительства штатов и федеральные органы власти также стимулируют инвестиции в солнечную энергию, предоставляя скидки или налоговые льготы.

Ограничения по току

Хотя солнечная энергия сэкономит вам деньги в долгосрочной перспективе, она, как правило, требует значительных первоначальных затрат и является нереальным расходом для большинства домашних хозяйств.В личных домах домовладельцам также необходимо иметь достаточно солнечного света и места для размещения своих солнечных панелей, что ограничивает круг лиц, которые могут реально применить эту технологию на индивидуальном уровне.

Ветер

Ветряные электростанции улавливают энергию ветрового потока с помощью турбин и превращают ее в электричество. Есть несколько форм систем, используемых для преобразования энергии ветра, и каждая из них различается. Промышленные ветроэнергетические установки могут обеспечивать энергией множество различных организаций, в то время как одинарные ветряные турбины используются в дополнение к уже существующим энергетическим организациям.Другая форма — это ветряные электростанции, которые закупаются по контракту или оптом. Технически энергия ветра — это форма солнечной энергии. Явление, которое мы называем «ветром», вызвано разницей температуры в атмосфере в сочетании с вращением Земли и географией планеты. [1]

источник

Льготы

Энергия ветра — это чистый источник энергии, а это означает, что он не загрязняет воздух, как другие виды энергии. Энергия ветра не производит углекислый газ и не выделяет каких-либо вредных продуктов, которые могут вызвать ухудшение окружающей среды или негативно повлиять на здоровье человека, например, смог, кислотный дождь или другие улавливающие тепло газы.[2] Инвестиции в технологии ветроэнергетики также могут открыть новые возможности для создания рабочих мест и профессионального обучения, поскольку турбины на фермах необходимо обслуживать и поддерживать, чтобы продолжать работать.

Сделайте следующий шаг, выбрав лучший план энергопотребления для своего дома! justenergy.com/

Ограничения по току

Поскольку ветряные электростанции, как правило, строятся в сельских или отдаленных районах, они обычно находятся далеко от шумных городов, где больше всего требуется электричество.Энергия ветра должна транспортироваться по переходным линиям, что ведет к увеличению затрат. Хотя ветряные турбины производят очень мало загрязнения, некоторые города выступают против них, поскольку они доминируют над горизонтом и создают шум. Ветровые турбины также угрожают местной дикой природе, например птицам, которых иногда убивают, ударяя по лопастям турбины во время полета.

Гидроэлектростанция

Плотины — это то, что у людей больше всего ассоциируется с гидроэнергетикой. Вода течет через турбины плотины для производства электроэнергии, известной как гидроаккумулирующая энергия.Русловая гидроэнергетика использует канал для отвода воды, а не через плотину.

Льготы

Гидроэнергетика очень универсальна и может быть произведена как с помощью крупномасштабных проектов, таких как плотина Гувера, так и небольших проектов, таких как подводные турбины и нижние плотины на небольших реках и ручьях. Гидроэлектроэнергия не вызывает загрязнения окружающей среды и поэтому является гораздо более экологически чистым вариантом энергии для нашей окружающей среды.

Ограничения по току

Мост-У.Сооружения гидроэлектростанции используют больше энергии, чем они могут произвести для потребления. В системах хранения может потребоваться использование ископаемого топлива для перекачки воды. [3] Хотя гидроэлектроэнергия не загрязняет воздух, она нарушает водные пути и отрицательно влияет на животных, которые в них живут, изменяя уровень воды, течения и пути миграции многих рыб и других пресноводных экосистем.

Геотермальные источники

Геотермальное тепло — это тепло, которое удерживается под земной корой в результате образования Земли 4.5 миллиардов лет назад и от радиоактивного распада. Иногда большое количество этого тепла уходит естественным путем, но все сразу, что приводит к знакомым явлениям, таким как извержения вулканов и гейзеры. Это тепло можно улавливать и использовать для производства геотермальной энергии с помощью пара, который поступает из нагретой воды, перекачиваемой под поверхность, которая затем поднимается вверх и может использоваться для работы турбины.

Льготы

Геотермальная энергия не так распространена, как другие виды возобновляемых источников энергии, но имеет значительный потенциал для энергоснабжения.Поскольку его можно построить под землей, он оставляет очень мало следов на суше. Геотермальная энергия восполняется естественным образом и поэтому не подвержена риску истощения (в человеческом масштабе времени).

Ограничения по току

Стоимость играет важную роль, когда речь идет о недостатках геотермальной энергии. Мало того, что строительство инфраструктуры обходится дорого, еще одной серьезной проблемой является ее уязвимость к землетрясениям в определенных регионах мира.

Океан

Океан может производить два типа энергии: тепловую и механическую.Тепловая энергия океана зависит от температуры поверхности теплой воды для выработки энергии с помощью множества различных систем. Механическая энергия океана использует приливы и отливы для выработки энергии, которая создается вращением Земли и гравитацией Луны.

Льготы

В отличие от других видов возобновляемой энергии , энергия волн предсказуема, и легко оценить количество энергии, которое будет произведено. Вместо того чтобы полагаться на различные факторы, такие как солнце и ветер, энергия волн гораздо более последовательна.Этот тип возобновляемой энергии также широко распространен, наиболее густонаселенные города, как правило, расположены вблизи океанов и гаваней, что облегчает использование этой энергии для местного населения. Потенциал волновой энергии является поразительным, но пока еще неиспользованным энергетическим ресурсом с оценочной способностью производить 2640 ТВтч / год. Всего 1 ТВтч / год энергии может обеспечить электричеством около 93850 домов в США в год, что примерно вдвое превышает количество домов, существующих в настоящее время в США [4].

Ограничения по току

Те, кто живет у океана, определенно извлекают выгоду из энергии волн, но те, кто живет в государствах, не имеющих выхода к морю, не будут иметь доступа к этой энергии.Еще один недостаток энергии океана состоит в том, что она может нарушить многие хрупкие экосистемы океана. Хотя это очень чистый источник энергии, поблизости необходимо построить крупное оборудование, чтобы помочь улавливать энергию этой формы, которая может вызвать нарушения дна океана и морской жизни, которая его обитает. Еще один фактор, который следует учитывать, — это погода: когда наступает ненастная погода, она меняет плотность волн, тем самым производя меньшую отдачу энергии по сравнению с обычными волнами без штормовой погоды.

Водород

Водород необходимо объединить с другими элементами, такими как кислород, чтобы получить воду, поскольку он не встречается в природе как газ сам по себе.Когда водород отделяется от другого элемента, его можно использовать как для топлива, так и для электричества.

Льготы

Водород можно использовать в качестве чистого горючего, что приводит к меньшему загрязнению и более чистой окружающей среде. Он также может использоваться для топливных элементов, которые похожи на батареи, и может использоваться для питания электродвигателя.

Ограничения по току

Поскольку для производства водорода нужна энергия, он неэффективен для предотвращения загрязнения.

Биомасса

Биоэнергетика — это возобновляемая энергия, получаемая из биомассы . Биомасса — это органическое вещество, которое поступает из недавно появившихся растений и организмов. Использование дров в вашем камине — это пример биомассы, с которым знакомо большинство людей.

Существуют различные методы, используемые для выработки энергии за счет использования биомассы. Это можно сделать путем сжигания биомассы или использования газа метана, который образуется в результате естественного разложения органических материалов в прудах или даже на свалках.

Льготы

Использование биомассы в производстве энергии создает углекислый газ, который попадает в воздух, но регенерация растений потребляет такое же количество углекислого газа, которое, как говорят, создает сбалансированную атмосферу. Биомассу можно использовать по-разному в нашей повседневной жизни, не только для личного пользования, но и для бизнеса. В 2017 году энергия биомассы составляла около 5% от общей энергии, используемой в США. Эта энергия поступала из древесины, биотоплива, такого как этанол, и энергии, полученной из метана, улавливаемого со свалок или сжигания городских отходов.(5)

Ограничения по току

Хотя новым растениям для роста необходим углекислый газ, растениям нужно время, чтобы вырасти. У нас также пока нет широко распространенной технологии, позволяющей использовать биомассу вместо ископаемого топлива.

источник

Возобновляемые источники энергии: что вы можете сделать?

Как потребитель, у вас есть несколько возможностей улучшить окружающую среду, выбрав более экологичное энергетическое решение. Если вы домовладелец, у вас есть возможность установить в доме солнечные батареи.Солнечные панели не только снижают ваши затраты на электроэнергию, но и помогают повысить уровень жизни с помощью более безопасного и экологически чистого варианта энергии , который не зависит от ресурсов, наносящих вред окружающей среде. Есть также альтернативы более экологичному образу жизни, предлагаемые вашими электрическими компаниями. Just Energy позволяет потребителям выбирать варианты экологически чистой энергии, которые помогут вам уменьшить воздействие на окружающую среду за счет компенсации энергопотребления. Добавьте JustGreen в свой план электроснабжения или природного газа, чтобы снизить воздействие уже сегодня!

Привезено к вам от justenergy.com

Источники:

  1. Energy.gov, Преимущества и проблемы ветроэнергетики, Источник: https://www.energy.gov/eere/wind/advantages-and-challenges-wind-energy
  2. Energy.gov, Преимущества и проблемы ветроэнергетики, Источник: https://www.energy.gov/eere/wind/advantages-and-challenges-wind-energy
  3. Управление энергетической информации США, Что такое производство электроэнергии в США по источникам энергии?, Источник: https: // www.eia.gov/tools/faqs/faq.php?id=427&t=3
  4. Bureau of Ocean Energy Management, Ocean Wave Energy, Источник: https://www.boem.gov/Ocean-Wave-Energy/
  5. Управление энергетической информации США, объяснение биомассы, получено с: https://www.eia.gov/energyexplained/?page=biomass_home

Центр обработки данных по альтернативным видам топлива: основы электроэнергетики

Электроэнергия считается альтернативным топливом в соответствии с Законом об энергетической политике 1992 года. Электроэнергия может производиться из различных источников энергии, включая природный газ, уголь, ядерную энергию, энергию ветра, гидроэнергетику, а также солнечную энергию и храниться в виде водорода или в батареях.Электромобили с подзарядкой от электросети (PEV) — собирательный термин для подключаемых гибридных электромобилей (PHEV) и полностью электрических транспортных средств (EV) — могут потреблять электроэнергию от внешних источников электроэнергии (обычно из электросети) и хранение энергии в батареях. Хотя электромобили на топливных элементах еще не широко доступны, они вырабатывают электроэнергию из водорода на борту автомобиля.

Электроэнергия для транспортных средств

В PEV бортовые аккумуляторные батареи накапливают энергию для питания одного или нескольких электродвигателей.Эти батареи заряжаются с помощью электричества из сети и энергии, возвращаемой во время торможения, известного как рекуперативное торможение. Транспортные средства, работающие только на электроэнергии, не производят выбросов из выхлопной трубы, но есть выбросы, связанные с производством электроэнергии.

Электропитание PEV в настоящее время экономически выгодно по сравнению с использованием бензина, но PEV обычно обходятся дороже. Однако первоначальные затраты на транспортное средство могут быть компенсированы за счет экономии затрат на электроэнергию, федерального налогового кредита и государственных льгот.Электроэнергия для зарядки транспортных средств особенно рентабельна, если водители могут воспользоваться льготными тарифами для населения и другими стимулами, предлагаемыми многими коммунальными предприятиями. Стоимость электроэнергии может варьироваться в зависимости от региона, типа генерации, времени использования и точки доступа. Узнайте о факторах, влияющих на цены на электроэнергию, в Управлении энергетической информации США.

Электрические зарядные станции

Многие владельцы PEV предпочитают выполнять большую часть зарядки дома (или на объектах автопарка, в случае коммерческих автопарков).Некоторые работодатели предлагают возможность взимания платы на рабочем месте. Во многих городах водители PEV также имеют доступ к общественным зарядным станциям в различных местах, таких как торговые центры, общественные гаражи и стоянки, отели и предприятия. Инфраструктура зарядки быстро расширяется, обеспечивая водителям удобство, дальность действия и уверенность для удовлетворения своих транспортных потребностей.

Электроэнергетика будущего: пять менее известных альтернативных источников энергии | Энергия выбора

Ритмичные и мощные движения океанского течения и волн могут приводить в движение электрические генераторы, чтобы производить устойчивый поток и огромное количество энергии.Фотография: Getty Images

Солнце и ветер — два важных и знакомых источника возобновляемой энергии. Но список перспективных и широко используемых альтернативных источников энергии постоянно растет. Прокрутите, чтобы увидеть, как растет число вариантов экологически чистой энергии, которые могут обеспечить нашу жизнь.

Энергия океана

Ритмичные и мощные движения океанского течения и волн могут приводить в движение электрические генераторы, чтобы производить устойчивый поток и огромное количество энергии, которая затем будет транспортироваться на сушу по кабелям.Они представляют соблазнительное обещание чистой энергии.

Но разработка оборудования, которое будет эффективно улавливать эту механическую энергию и противостоять агрессивной соленой воде и другим природным элементам в океане, оказалась чрезвычайно сложной задачей. В стране нет коммерческих электростанций, использующих энергию океана, хотя ряд исследовательских и пилотных проектов был проведен в Калифорнии, Орегоне, Гавайях и Нью-Джерси. Эти проекты тестируют конструкции оборудования, которое напоминает все, от гигантской медузы до змеи, чтобы увидеть, насколько хорошо они работают в суровых условиях и могут ли они эффективно производить достаточно энергии, чтобы оправдать огромные затраты на их установку и эксплуатацию.

Биомасса Электроэнергия, производимая растениями или побочными продуктами животного происхождения, называется энергией биомассы. Фотография: Монти Ракузен / Getty Images

Электроэнергия, производимая растениями или побочными продуктами животного происхождения, называется энергией биомассы. Электростанции, работающие на биомассе, обычно напрямую сжигают сырье, такое как древесная щепа, сельскохозяйственные отходы, некоторые виды мусора или навоз, для производства электроэнергии. Или они могут преобразовать материалы в горючие газы, а затем сжечь их для выработки энергии. На энергию биомассы приходится 12% производства возобновляемой энергии в стране.Биомасса используется во всем мире для производства электроэнергии. Швеция, например, использует биомассу для производства 30% энергии, большая часть которой идет на отопление домов и предприятий, а также на работу заводов.

Топливные элементы Когда топливо, богатое водородом, такое как природный газ или биогаз, проходит через топливный элемент и вступает в реакцию с кислородом, он производит электричество. Фотография: Памела Мур / Getty Images

Топливные элементы вырабатывают энергию за счет химических реакций, в которых водород соединяется с кислородом.Когда топливо, богатое водородом, такое как природный газ или биогаз, проходит через топливный элемент и вступает в реакцию с кислородом, он производит электричество, тепло и воду. Топливные элементы, которые выбрасывают около половины выбросов электростанции, работающей на ископаемом топливе, недостаточно дешевы, чтобы стать основным источником энергии, но они используются все большим числом компаний для обеспечения резервного питания, а также для снижения выбросов углерода. следы. Топливные элементы также проникают в автомобильный мир для создания автомобилей с нулевым уровнем выбросов.

Геотермальная Люди использовали силу сверхгорячего пара под поверхностью Земли более 10 000 лет, но первый геотермальный генератор энергии не был построен до 1904 года в Италии.Фотография: Пиракит Джирачеттхакун / Getty Images

Люди использовали энергию сверхгорячих паров под поверхностью Земли более 10 000 лет, но первый геотермальный генератор энергии был построен только в 1904 году в Италии. Первая геотермальная электростанция в Соединенных Штатах была запущена в 1921 году для работы на курорте с горячими источниками в Гейзерах в северной Калифорнии. Гейзеры, занимающие 7 769 гектаров [19 197 акров], являются крупнейшим геотермальным полем в мире и домом для почти десятка электростанций.Геотермальная энергия составляет 3% от производства возобновляемой энергии в стране.

Гидроэнергетика Гидроэнергетика является одним из старейших источников электроэнергии в истории человечества и используется каждым штатом страны. Фотография: Крейг Козарт / Getty Images

Гидроэнергетика — один из старейших источников электроэнергии в истории человечества, который используется каждым штатом страны. Первая в мире коммерческая гидроэлектростанция была введена в эксплуатацию на реке Фокс в Аплтоне, штат Висконсин, в 1882 году.Гидроэнергетика также является крупнейшим источником возобновляемой энергии, на которую в 2014 году приходилось чуть более 6% производства электроэнергии в США и 92% производства возобновляемой энергии. В штате Вашингтон, в частности, более 70% выработки электроэнергии зависит от гидроэнергетики.

Содержимое этой страницы предоставлено вам компанией NRG Energy.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *