2 категория электроснабжения: Категории надежности электроснабжения: классификация, требования, нормативы

Содержание

Категории электроснабжения |НПК ЭНЕРГЕТИЧЕСКОЕ ОБОРУДОВАНИЕ

Потребители 1 категории надёжности электроснабжения – это электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения (п. 1.2.18 ПУЭ)

Для потребителей с 1 категорией надежнсоти электроснабжения необходимо осуществить энергоснабжение от двух источников питания. При этом источники питания должны быть независимые. Такая схема энергоснабжения применяется для снижения рисков аварийного отключения электроэнергии для электроприемников 1 категории надежности электроснабжения. При аварии на одном источнике питание, электроснабжение потребителя будет осуществляться по второму источнику (второму вводу). При этом для электроприемников 1 категории надежности допускается прекращение подачи электроэнергии при отключении одного источника питания только на время не превышающее автоматический переход на энергоснабжение потребителя по второму источнику питания.

Также среди потребителей 1 категории надежности электроснабжения выделяют отдельно особую группу. Электроприемники особой группы первой категории характеризуются тем, что их бесперебойная работа необходима для безаварийной остановки производства, предотвращения пожаров и других ЧС. При этом, энергоснабжение особой группы должно осуществляться от третьего независимого источника питания, который может быть дизельным генератором, подключением к аккумуляторным батареям. В случае отсутствия резервного питания электроприемников особой группы, допускается использование технологического резервирования и плавной остановки производственного процесса.

Для автоматического переключения на резервное питание, применяются устройства автоматического ввода резерва (АВР).  Комплекс АВР «МИГ» БАВР 072 предназначен для работы как на подстанциях, имеющих две секции шин с двумя рабочими вводами и секционным выключателем, так и для

двухсекционных или трехсекционных распределительных устройств.

ВТОРАЯ КАТЕГОРИЯ НАДЕЖНОСТИ ЭЛЕКТРОСНАБЖЕНИЯ

В соответствии с ПУЭ ко второй категории надёжности электроснабжения потребителей относят те электроприемники, перерыв в работе которых может привести к значительному снижению отпуска производимых потребителем товаров, имеющим место в связи с этим незанятостью персонала, простоем производственного оборудования или же может сказаться на нормальной жизнедеятельности большого количества граждан.

Также как для первой категории, для второй категории надежности необходимо резервирование источников питания. Т.е. энергоснабжение электроприемников 2 категории надежности электроснабжения необходимо осуществлять от двух независимых источников питания. При нарушении энергоснабжения от одного источника питания, допустимо временное отсутствие энергоснабжения на время переключения на резервный источник оперативным персоналом потребителя или же выездной бригадой электросетей.

При использовании комплекса АВР “МИГ” скорость переключения с основного ввода на резервный составляет 25-65 миллисекунд в зависимости от модели используемого секционного выключателя.

ТРЕТЬЯ КАТЕГОРИЯ НАДЕЖНОСТИ ЭЛЕКТРОСНАБЖЕНИЯ

К третьей категории надежности электроснабжения относят все те электроприемники, которые не вошли в 1 или 2 группу. К третьей категории надежности могут относиться магазины, небольшие производственные помещения, офисные здания и т.д. Срок на которой может быть прекращено энергоснабжение потребителей 3 категории надежности – не более 24 часов подряд и не более 72 часов за год суммарно.

Категории потребителей | Электрические сети и системы

Страница 22 из 33

При проектировании электрических сетей оценка потребителей в отношении обеспечения надежности электроснабжения производится в соответствии с некоторыми условными категориями, устанавливаемыми в ПУЭ [Л. 34]. В настоящее время к 1-й категории относятся потребители, нарушение электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение особо важных элементов городского хозяйства. Потребители 1-й категории должны обеспечиваться электроэнергией от двух независимых источников питания. Перерыв их электроснабжения может быть допущен только на время автоматического ввода резервного питания. Таким образом, для потребителей 1-й категории резервирование электроснабжения должно быть обеспечено обязательно. При этом следует иметь в виду, что полной бесперебойности электроснабжения путем изменения схем соединений электрической сети практически добиться не удается. Могут быть случаи, хотя и редкие, одновременного отключения нескольких линий. Поэтому в случаях особенно ответственных потребителей (установки связи, операционные палаты больниц и т. п.) необходимо иметь резервный источник питания на месте. Это может оказаться и более экономичным. В качестве подобных местных резервных источников могут быть, например, использованы установки с газовыми турбинами. Они требуют небольших первоначальных затрат, могут быть быстро включены в работу, но обладают относительно плохими эксплуатационными характеристиками. Поэтому их работа в длительных режимах неэкономична.

Ко 2-й категории относятся потребители, перерыв в электроснабжении которых связан с массовым недоот- пуском продукции, простоем рабочих, механизмов и промышленного транспорта, нарушением нормальной деятельности значительного количества городских жителей. Для этих потребителей допускаются перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной бригадой. Поэтому при питании потребителей 2-й категории воздушными линиями 6 кВ и выше, работа которых относительно надежна, а возможные повреждения восстанавливаются быстро, можно применять нерезервированные одиночные линии. При питании потребителей 2-й категории кабельными линиями нерезервированные линии можно применять при условии, что линия выполнена не менее чем двумя параллельными кабелями с разъединителями по концам каждого из них. Целесообразность резервирования электроснабжения потребителей 2-й категории решается путем сравнения народнохозяйственного ущерба при отсутствии резервирования и дополнительных затрат, необходимых для его осуществления.
К 3-й категории относятся все остальные потребители. Для них допускаются перерывы электроснабжения на время, необходимое для ремонта или замены поврежденного элемента сети, но не более одних суток.

Часто-задаваемые вопросы — Официальный сайт МУП «Горэлектросеть» г. Муром

В соответствии с Правилами устройства электроустановок (ПУЭ 7 издание) выделяют три категории надежности:

Электроприемники первой категории — электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения. Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.

Электроприемники первой категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

Электроприемники второй категории

— электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники второй категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников второй категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Электроприемники третьей категории — все остальные электроприемники, не подпадающие под определения первой и второй категорий.

Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

В соответствии с правилами технологического присоединения энергопринимающих устройств потребителей к электрическим сетям, утвержденных постановлением Правительства РФ от 27.12.2004 №861, категория надежности электроснабжения электроприемников потребителей определяется в процессе технологического присоединения энергопринимающих устройств к электрическим сетям. При этом потребитель самостоятельно определяет какая категория надежности энергоснабжения ему необходима.

Однако, стоит понимать, что при выборе 2 или 1 категории надежности, стоимость подключения электричества возрастет в 2 раза относительно присоединения по 3 категории надежности: ведь для энергоснабжения по 1 или 2 категории необходимо два независимых источника питания и присоединение к каждому из них будет стоить примерно одинаково.

Категории электроснабжения. Категории электроприемников по надежности электроснабжения :: BusinessMan.ru

Правила безопасности электропередачи на сегодняшний день являются одной из важных сторон работы поставщика электрической энергии. От имеющейся степени надежности электроприемников клиента зависит число неисправностей на предприятии, качество производимой продукции и, как результат, конкурентоспособность производства в целом. В связи с этим существуют определенные категории электроснабжения потребителей.

Первая группа безопасности электропередачи

Такая категория не допускает остановки электроснабжения. Перерыв подачи электроэнергии к любому объекту может стать следствием очень тяжелых исходов, таких как:

  • угроза для здоровья и жизни людей;
  • множественный дефект продукции;
  • сбои нормальной работы объектов коммунального хозяйства;
  • нарушение технологического процесса на производстве;
  • выход из строя дорогостоящего оборудования.

Наиболее весомую значимость данная категория надежности электроснабжения имеет в промышленности, где прерывание функционирования таких установок, как вентилятор основного проветривания шахты, к примеру, ведет к ее простою и эвакуации всех работников из нее. Таким образом, прекращается технологический процесс, который ставит под угрозу жизнь любого человека, а также может спровоцировать взрыв в шахте.

Большая часть клиентов первой группы электропередачи приходится на долю металлургической и химической промышленности. В других же областях удельный вес такой нагрузки порядком ниже. На комбинатах металлургии, имеющих недостаточный оборот изготовления металла (лишь доменные либо коксохимические цеха), число электроприемников первой категории может быть примерно 70-80%, а с хорошим циклом – 25-45%. На фабриках, производящих синтетический каучук, — где-то 70-90% полной нагрузки предприятия.

Что необходимо и что не допускается делать

Из первой категории электроприемников по надежности электроснабжения можно выделить специальную группу потребителей, которые нуждаются в беспрерывной подаче электроэнергии для безаварийной остановки хозяйства. Не допускается, чтобы произошли феноменальные случаи, угрожающие здоровью и жизнедеятельности людей, повреждающие дорогое оборудование, производящие взрывы, пожары.

При планировке электропередачи клиентов такой группы требуется как следует проанализировать особенность выработки и технологии процесса проектируемого объекта. Ни в коем случае 1 категория электроснабжения не должна иметь завышенную мощность без надобности. Еще нужно обязательно рассчитать запасное питание для приемников этой группы. Их примерами могут служить:

  • шахтные подъемные машины, которые обеспечивают поднятие работников из шахт при появлении аварийных случаев;
  • при остановленной технологической работе насосы охлаждения доменных печек;
  • системы канализации.

Вторая категория надежности электроснабжения

При сбоях в питании данной группы может случиться:

  1. Многочисленный недовыпуск продукции завода.
  2. Остановка электротранспорта.
  3. Массовые бездействия рабочих и техники.

Для таких приемников также допускают резервное питание, но если сравнивать с электроприемниками первой категории, то здесь предусматриваются остановки в электропередаче для ручного включения энергии либо для выхода ремонтной бригады, чтобы можно было переключить в ручном режиме подстанцию. Если АВР (автоматический ввод резерва) не несет особо ощутимых финансовых трат, то он может использоваться и для потребителей первой группы.

2 категория электроснабжения – самая мощная для всех областей промышленности. Она непроста. В этой группе могут быть нагрузки, приближенные по своим технологическим нормативам к электроприемникам первой категории, а многие ближе к третьей. К проблемам бесперебойности электроэнергии следует подходить предельно осторожно и не эксплуатировать резервирование беспрерывно, так как это делает первая категория электроснабжения.

Уровень безопасности питания устанавливают большей частью при помощи технико-экономических подсчетов, основываясь на минимальных затратах, производящихся при простое производства.

Третья категория безопасности электропередачи

В такую группу попали все оставшиеся приемники, которых нет ни в 1-й, ни во 2-й. Для бытовых клиентов это жилые дома и квартиры, для промышленности – цеха, где отсутствует серийное изготовление вещей либо вспомогательные цеха. Данная категория предполагает паузу в электроснабжении на период, необходимый для осуществления ремонта или замены электрооборудования. Она не должна быть больше, чем 1 день. При планировке электропередачи таких установок нужно учитывать методы прокладывания проводов, резервирование трансформатора (при его замене также) и то, чтобы ремонт был сделан по срокам, указанным в ПУЭ.

Отсюда идет вывод, что при планировке системы электропередачи как бытовых клиентов, так и промышленной компании, нужно брать в расчет разные обстоятельства, которые влияют на категорию надежности. Еще необходимо произвести анализ назначения электроприемников, определить их функцию в бытовой деятельности и установить дозволенное время остановки питания.

Несет ли ответственность поставщик

За качество и безопасность предоставляемой электрической энергии отвечает РЭС. Величина обязательств устанавливается по числу неблагоприятных последствий сбоев в электропередаче гражданским законодательством РФ об энергетике. В соглашении прописаны все требования подачи питания, а также перечисляются категории электроснабжения. При нарушении этих правил и причинении потребителю немалых денежных убытков он имеет полное право требовать свою компенсацию в судебном порядке.

Изменение группы надежности

Категория безопасности при надобности может меняться. Для этого клиент должен предупредить поставщика электроэнергии, написав заявление. Обычно потребитель спрашивает об увеличении надежности объекта. Это случается в ситуации с повышением рискованности на хозяйстве либо при переходе жилого здания в нежилое.

Электропередача в жилые местности идет по всеобщим распределительным сетям. Таких потребителей содержит 3 категория электроснабжения. Перед тем как давать питание клиентам 2 группы, ведется детальный анализ технологической работы и величины вреда от вероятных сбоев в системе электропередачи.

Потребителей 1 категории относительно немного, однако перед их подключением выполняются действия, идентичные для клиентов 2 группы. Работники РЭС ответственны за гарантирование безопасности поставки и подсоединения к сетям электрической энергии согласно договору.

Категории электроприемников по надежности электроснабжения

Касательно нужной безопасности электропередачи приемники разделяют на 3 группы.

В первую категорию по резервации входят только те электроприемники, остановка в электроснабжении которых способна повлечь за собой угрозу для людей, существенные потери в народном производстве, неисправность оборудования, многочисленный дефект продукции, нарушение технологического процесса и особенно значимых составляющих городского хозяйства.

Данные приемники, входящие в категории электроснабжения, должны обеспечиваться электрической энергией от двух отдельных источников, и пауза их электропередачи дозволяется только на этапе автоматического включения заряда. К ним относятся:

  • разливочные краны;
  • доменные цеха;
  • подъемные и водоотливные устройства горнорудных заводов;
  • приводы вагранок;
  • котельные производственного пара.

В особых случаях для специальных объектов производятся дополнительные действия, еще больше увеличивающие безопасность электропередачи.

Вторая категория электроприемников

Приемники, остановка которых в электроснабжении связана с простоем промышленного транспорта, отказом от работы сотрудников и механизмов, массовым недовыпуском продукции, а также сбоем в соответствующей деятельности огромного количества городского населения, относятся ко второй категории электроснабжения с менее жесткими условиями для схемы их питания.

Для таких электроприемников обычно допускается резервная электрическая энергия, но также разрешены перерывы электропередачи на какое-то время для того, чтобы можно было вручную включить резервное питание на предприятии или объекте дежурным персоналом. По большей части для приемников второй группы тоже используется автоматическое резервирование электрической энергии.

Вторая категория является самой популярной. К ней принадлежат электроустановки горных разработок (за исключением подъема и водоотлива), главных хозяйств текстильных фабрик, ряд электрооборудований цветной металлургии, прокатных цехов, компрессорные и практически все конструкции целлюлозно-бумажной промышленности.

Третья группа

Все остальные электроприемники цехов несерийного изготовления и вспомогательных цехов на неответственных складах причисляются к 3 категории электроснабжения и допускают остановку питания в период починки либо замены неисправной детали системы электропередачи длительностью до одних суток.

Из этой статьи теперь уже ясно, какие категории электроприемников и электроснабжения существуют на различных предприятиях и хозяйствах.

Требования надежности электроснабжения потребителей | Энергоснабжение сельскохозяйственных потребителей | Архивы

Страница 5 из 28

ТРЕБОВАНИЯ НАДЕЖНОСТИ ЭЛЕКТРОСНАБЖЕНИЯ ПОТРЕБИТЕЛЕЙ ЭЛЕКТРОЭНЕРГИИ

В соответствии с «Правилами устройства электроустановок» и «Нормами технологического проектирования электрических сетей сельскохозяйственного назначения» потребители электрической энергии разделяются на три категории, приведенные в табл. 2.
Рекомендуется приближать источники питания к центрам электрических нагрузок.
Для потребителей 1 категории и части потребителей II категории необходимо предусматривать резервирование электроснабжения.
Внешнее электроснабжение крупных ферм и комплексов (потребители I категории) должно получать питание от двух независимых источников питания.
При небольшой мощности потребителей I категории резервирование может быть осуществлено от дизельных электростанций, аккумуляторных батарей, перемычек пункта с автоматическим включением резерва (АВР). При отсутствии АВР питание должно быть обеспечено не позднее чем через 30 мин после отключения основного источника электроснабжения.
Для потребителей II категории, включая плановые отключения, длительность перерывов электроснабжения не должна превышать 3,5 ч. В течение суток допускаются повторные плановые отключения через 2 ч.

Таблица 2. Категория надежности потребителей электроэнергии сельскохозяйственных районов


Наименование

Категория
надежности
электроснабжения

Крупные животноводческие
фермы и комплексы, производящие продукцию
на промышленной основе

Фермы и комплексы
крупного рогатого скота

Фермы и комплексы по производству молока на 800 коров и
более

I

В том числе:

 

приемники электроэнергии системы доения, охлаждения, сбора,
первичной обработки молока, микроклимата, дежурного освещения

I

приемники электроэнергии системы обогрева животных, раздачи
кормов, водоснабжения, уборки

II

навоза

 

остальные приемники электроэнергии

III

Фермы и комплексы по выращиванию и откорму молодняка

I

КРС 10 тыс. голов в год и более

 

В том числе:

 

приемники электроэнергии линий
подготовки и раздачи, кормов
для телят до 4-месячного возраста
на выращивании, установки микроклимата, помещения для телят
на выращивание, дежурного освещения

I

приемники электроэнергии линий
подготовки и раздачи кормов и установок микроклимата для молодняка КРС на откорме, установок
навозоудаления, установок приготовления и раздачи кормов на
открытых площадках

II

остальные приемники электроэнергии

III

Открытые площадки по откорму
КРС на 20 тыс. ското-мест и более

I

Фермы и комплексы по откорм)
коров мясных пород (с законченным оборотом стада) на 600 голов
и более

I

Свиноводческие комплексы

 

Фермы и комплексы по выращиванию и откорму свиней на 12 тыс.

I

голов в год и более

 

Продолжение табл. 2


Наименование

Категория
надежности
электро
снабжения

В том числе:

 

приемники электроэнергии линий
подготовки и раздачи для подсосных поросят, установок микроклимата, дежурного освещения

I

приемники электроэнергии линий
подготовки и раздачи кормов для
взрослых свиней, установок навозоудаления

II

Остальные приемники электроэнергии

III

Птицеводческие комплексы

 

Птицефабрики яичного направления с количеством кур-несушек
100 тыс. голов и более

I

Птицефабрики для уток, гусей,
индюшат на 10 тыс. голов и более

I

Племенные птицеводческие хозяйства по выведению пород кур
с количеством 25 тыс. голов и более

I

Хозяйства по

 

выращиванию ремонтного молодняка кур с количеством 25 тыс. голов и более

I

 

То же гусей, уток, индюшат с количеством 10 тыс. голов и более

I

Птицефабрики мясного направления с количеством 1 млн. цыплят
и более

I

В том числе:

 

приемники электроэнергии установок кормоприготовления, приема
и раздачи кормов, поения птицы,
местного обогрева молодняка 1-го
возраста, сбора, приема и обработки яиц, инкубации яиц, системы
вентиляции микроклимата и технологического освещения

I

приемники электроэнергии установок уборки помета, убоя и пере
работки птицы

II

остальные приемники электроэнергии

III

Птичники для содержания любого
вида птицы от 1 дня и более

I

То же от 30 дней и более

11

Инкубатории

II

Птицебойни

II

Продолжение табл. 2


Наименование

Категории надежности электроснабжения

Основные и подсобные здания
в составе существующих и реконструируемых

животноводческих и птицеводческих ферм

Фермы по производству молока
Коровники с электромеханизированным доением, кормлением и
навозоудалением

II

 

 

Коровники без механизации технологических процессов

III

Электромеханизированные доильные отделения и помещения по
первичной обработке молока, молочные молокоперерабатывающие
цехи с холодильными установками

II

Телятники с механизацией производственных процессов

II

То же без механизации

III

Фермы по выращиванию
и откорму КРС

 

Коровник для отела и выращивания телят

II

Здание для ремонтного и откормочного молодняка с механизацией производственных процессов

II

Здание для ремонтного и откормочного молодняка без механизации производственных процессов

III

Здание по откорму коров мясных
пород с механизацией производственных процессов

II

То же без механизации производственных процессов

III

Свиноводческие и племенные фермы

 

Свинарник-маточник для проведения опоросов с электрообогревом
Свинарник-хрячник

I
III

Свинарник для отъемышей (с электрическим обогревом)

I

Свинарник для холостых и супоросных маток и для ремонтного
молодняка

II

Свинарник-откормочник

II

Помещение для кормления свиней

II

Помещения и линии подготовки
и раздачи кормов

II

Продолжение табл. 2


Наименование

Категория
надеж
ности электроснабжения

Птицеводческие фермы

 

Птичники по аналогии с птицеводческими комплексами

 

Овцеводческие фермы

III

Коневодческие фермы
и постройки для лошадей

III

Звероводческие и кролиководческие
фермы

III

Подсобные здания и сооружения
В том числе:

 

кормоцехи, кормоприготовитель-
ные

II

сенажные башни

III

корнеплодохранилище в составе
кормоцехов

III

бардохранилище, бардонапорные
башни

III

навесы для хранения грубых кормов

III

яйцесклады, склады подстилки,
склады тары

III

служебно-бытовые и конторские
здания (бригадные дома, административные здания и т. п.)

III

здания санитарно-ветеринарного
назначения (ветсанпропускники,
ветпункты и т. п.)

III

Навозосборники и навозохранилища

III

Наружное освещение ферм и комплексов

III

г
Предприятия по послеуборочной обработке

и хранению зерновых культур,

производству комбикормов

и приготовлению травяной муки

Зерноочистительно-сушильные
пункты, цехи

III

Пункты по обработке семян травы

III

Механизированные зерно- и семянохранилища

III

Комбикормовые цехи

III

Склады рассыпных и гранулированных кормов

III

Цех по приготовлению травяной
муки
Здания и сооружения для хранения сельскохозяйственного производства, склады

III

Механизированные корнеплодо-
хранилища, лукохранилища, хра-нилища семенного и продовольственного картофеля, овощехранилища

III

Проекты распространяет институт «Сельэнергопроект», остальные проекты — Свердловский филиал ЦИТП.

Продолжение табл. 2


Наименование

Категория
надеж
ности
электро
снабже
ния

Фруктохранилища

III

Склады концентрированных
кормов

III

Предприятия по товарной
обработке и переработке
плодов и овощей в колхозах
и совхозах

Консервные заводы, цехи, соковые
заводы, цехи, квасильно-засолочные цехи

III

Растениеводство

Парники с электрическим обогревом

II

Теплицы с электрическим обогревом
Предприятия по ремонту,
техническому обслуживанию
и хранению сельхозтехники

II

Центральные ремонтные мастерские, металло- и деревообрабатывающие цехи

III

Металлообрабатывающие цехи с
термическим отделением

II

Автомобильные и тракторные

11

парки

 

Гараж вместимостью более: 800
легковых автомобилей II и III категорий; 50 грузовых автомобилей
IV категории

II

Автозаправочные станции

III

Механические мойки

III

Площадки тепловой стоянки автотранспорта

III

Сараи для комбайнов и другой

III

сельхозтехники

 

Материально-технические склады,

III

нефтесклады, маслосклады

 

Кузницы

III

Лесопильный цех с пилорамой
Склады минеральных удобрений,
химических средств
защиты растений

III

Закрытые склады сухих минеральных удобрений, ядохимикатов,
прирельсовые склады

III

Продолжение табл. 2


Наименование

Категория належ- ности электроснабжения

Тепло-, газо-, водоснабжение, канализация

Котельные установки

 

Поселковые и производственные котельные с паровыми котлами давлением 6,8 кПа и водогрейными котлами с температурой теплоносителя 115’С и выше Котельные с водогрейными котлами с температурой до 115 С с паровыми котлами давлением до 68 кПа

1
II

Холодильники

 

Холодильники вместимостью: более 600 т до 600 т

 

Газоснабжение

 

Групповые установки сжиженного газа
Газораспределительные пункты (ГРП)
Водопроводные, водозаборные и гидропневматические станции

II) III

Противопожарные и объединенные противопожарные водопроводные насосные станции без наличия в водопроводной сети емкостей противопожарного запаса воды
Противопожарные и объединенные противопожарные водопроводные станции при наличии на сети емкостей с необходимым противопожарным запасом воды Хозяйственно-питьевые водопроводные станции в населенных пунктах с количеством жителей более 5000 чел.
Противопожарные и объединенные противопожарные водопроводные станции при расходе воды на наружное пожаротушение до 20 л/с в населенных пунктах с количеством жителей до 6000 чел. Хозяйственно-питьевые водопроводные насосные станции в населенных пунктах с количеством жителей до 5000 чел.

 

 

III

Продолжение табл. 2


Наименование

Категория
надеж
ности
электро
снабже
ния

Водопроводные насосные станции
для подачи воды на орошение
и поливку

III

Водопроводные насосные станции
для подачи воды на вспомогательные производственные здания

III

Водопроводные насосные станции
при подаче воды к потребителю
по одному водоводу
Водоразборные скважины

III

Скважины хозяйственно-питьевых
водопроводов населенных пунктов
с числом жителей более 50000 чел.,
а также производственных зданий,
комплексов и ферм с I категорией
электроснабжения

I

Скважины групповых водопроводов сельскохозяйственных потребителей

II

Скважины хозяйственно-питьевых
водопроводов населенных пунктов
с числом жителей до 50000 чел.

II

Скважины вспомогательных
производственных зданий, систем
орошения сельскохозяйственных
земель

III

Скважины хозяйственно-питьевых
водопроводов населенных пунктов
с числом жителей до 500 чел.

III

Водонапорные башни

Ul

Канализационные насосные

 

станции

 

Насосные станции для перекачки
бытовых сточных вод при отсутствии возможности использования

I

Продолжение табл. 2


Наименование

Категория
надеж
ности
электро
снабже
ния

емкости сети до насосной станции
для аккумуляции сточных вод
в населенных пунктах с числом
жителей 5000 чел. и более

 

Насосные станции для перекачки
бытовых сточных вод при наличии устройства аварийного вы
пуска сточных вод или при возможности использования емкости
сети до насосной станции для

II

аккумуляции сточных вод в на
селенных пунктах с числом жителей до 5000 чел.

 

Очистительные сооружения
сооружения искусственной биологической очистки сточных вод
производительностью до 1400 м3/
сут при наличии аэротенков, ЦОК

II

То же без аэротенков и ЦОК

III

сооружения искусственной биологической очистки сточных вод
производительностью более

I

1400 м3/сут при наличии аэротенков

 

То же без аэротенков при других способах очистки
Дренажные и ливневые

II

насосные станции

 

Дренажные насосные станции

II

Станции перекачки дождевой канализации

III

При этом плановые отключения не допускаются в часы работы электродоилок и других ответственных приемников электроэнергии. Питание потребителей II категории возможно по одной воздушной линии напряжением 6—10 кВ или по одной кабельной линии, но расщепленной не менее чем на два кабеля, присоединенных через самостоятельные разъединители.
Для потребителей III категории допустимы перерывы в подаче питания на время, необходимое для ремонта или замены поврежденного элемента системы электроснабжения, но не более одних суток.

3. ДОПУСТИМЫЕ ОТКЛОНЕНИЯ НАПРЯЖЕНИЙ У ПРИЕМНИКОВ ЭЛЕКТРОЭНЕРГИИ

У приемников электроэнергии животноводческих комплексов и птицефабрик допустимы отклонения напряжения от номинального от —5 до +5%, других потребителей сельскохозяйственных районов от —7,5 до + 7,5%.
Покрытие нагрузок приемников I и II категорий оставшихся источников должно обеспечиваться при понижении напряжения у них не более чем на 5% дополнительно к нормированному.
На. всех новых центральных пунктах должны предусматриваться трансформаторы с РПН, а на действующих подстанциях с трансформаторами без РПН — специальные дополнительные устройства централизованного регулирования напряжения под нагрузкой (УЦРН).
Сети 110 кВ, имеющие двухстороннее питание, рассматриваются, как правило, замкнутыми, а сети 35 кВ — разомкнутыми.
При двух линиях 35 кВ, идущих от подстанции 110/35/10 кВ к подстанции 35/10 кВ, следует рассматривать режим параллельной работы обеих линий 35 кВ.
Наибольшие значения напряжений в питающих пунктах допускаются:
Номинальное напряжение сетей, кВ. …          110 35 20 10 6 0,38
Наибольшее напряжение, кВ . . .          121 38,5 21 11 6,6 0,41

2 Категория надежности электроснабжения время отключения

Категория надежности электроснабжения

Электроснабжение

Проектирование отопления

Согласование

Что такое категоря надежности электроснабжения?

Категория электроснабжения опрделена в ПУЭ. (выписка из ПУЭ)

Категории электроприемников и обеспечение надежности электроснабжения

1.2.17. Категории электроприемников по надежности электроснабжения определяются в процессе проектирования системы электроснабжения на основании нормативной документации, а также технологической части проекта.
1.2.18. В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории электроснабжения.
Электроприемники первой категории — электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.
Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.
Электроприемники второй категории — электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.
Электроприемники третьей категории — все остальные электроприемники, не подпадающие под определения первой и второй категорий.
1.2.19. Электроприемники первой категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.
Для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.
В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), предназначенные для этих целей агрегаты бесперебойного питания, аккумуляторные батареи и т.п.
Если резервированием электроснабжения нельзя обеспечить непрерывность технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.
Электроснабжение электроприемников первой категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление нормального режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.
1.2.20. Электроприемники второй категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания.
Для электроприемников второй категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.
1.2.21. Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

Категория надежности электроснабжения выписка из СП 31-110-2003

Степень обеспечения надежности электроснабжения электроприемников жилых и общественных зданий отражена в таблице 5.1.

Здания и сооружения

Степень обеспечения надежности электроснабжения

противопожарные устройства (пожарные насосы, системы подпора воздуха, дымоудаления, пожарной сигнализации и оповещения о пожаре), лифты, аварийное освещение, огни светового ограждения

Согласно п.1.2.18 ПУЭ 7 (Правила устройства электроустановок в седьмой редакции), по обеспечению надежности электроснабжения электроприемники разделяются на следующие категории:

  • Первой категории — электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.
  • Особая группа ( выделяется из состава первой категории ) электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.
  • Второй категории — электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.
  • Третьей категории — все остальные электроприемники, не подпадающие под определения первой и второй категорий.

Электроснабжение первой и особой категории

Согласно п. 1.2.19 ПУЭ 7 электроприемники первой категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Согласно п. 1.2.19 ПУЭ 7 для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), предназначенные для этих целей агрегаты бесперебойного питания, аккумуляторные батареи и т.п.

Если резервированием электроснабжения нельзя обеспечить непрерывность технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприемников первой категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление нормального режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

Электроснабжение второй категории

Согласно п. 1.2.20 ПУЭ 7, электроприемники второй категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников второй категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Электроснабжение третьей категории

Согласно п.1.2.21 ПУЭ 7, для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

Электроприемник (приемник электрической энергии) — аппарат, агрегат и др., предназначенный для преобразования электрической энергии в другой вид энергии

Требования к надежности электроснабжения в настоящий момент является одним из важных аспектов работы потребителей. От существующего уровня надежности энергоснабжения электроприемников потребителя зависит количество брака на производстве, качество изготовляемой продукции и, как следствие, конкурентоспособность компании в целом.

Сразу стоит отметить, что вопросы надежности энергоснабжения затрагиваются в основном в Правилах устройства электроустановок. Ответственность поставщика электроэнергии за низкие показатели качества электроэнергии и низкую надежность электроснабжения в действующем законодательстве в электроэнергетике прописано слабо. Однако некоторые моменты все-таки определены. Как не допустить простоя предприятия из-за отключения электроэнергии или с кого взыскать убытки от возникновения брака вследствие несоблюдения поставщиком электроэнергии показателей, определенных для различных категорий надежности электроснабжения, об этом и попытаемся разобраться в этой статье.

Для начала предлагаем разобраться с особенностями надежности энергоснабжения потребителей. В соответствии с Правилами устройства электроустановок (ПЭУ 7 издание) выделяют три категории надежности электроснабжения.

При этом ПЭУ не устанавливает конкретные требования к времени восстановления энергоснабжения электроприемников 1 или 2 категории надежности. Для 3 категории надежности электроснабжения установлено время восстановления не более 24 часов.

Категории надежности энергоснабжения

Стоит отметить, что время восстановления энергоснабжения потребителей в соответствии с п. 31.6 «Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг», утвержденных Постановлением Правительства РФ от 27.12.2004 №861, определяется следующим:

Для третьей категории надежности электроснабжения: допустимое число часов отключений в год составляет 72 часа, но не более 24 часов подряд, включая срок восстановления электроснабжения, за исключением случаев, когда для производства ремонта объектов электросетевого хозяйства необходимы более длительные сроки, согласованные с Федеральной службой по экологическому, технологическому и атомному надзору,

Для второй и первой категории надежности энергоснабжения число часов отключений должно определяться в договоре оказания услуг по передаче электроэнергии (если у потребителя нет такого договора – то в договоре энергоснабжения с гарантирующим поставщиком) с учетом его фактической схемы, источников энергоснабжения, наличия резервного питания и др.

Таким образом, важным моментом для потребителей с 1 или 2 категорией надежности для обеспечения требуемого уровня надежности электроснабжения, определить параметры восстановления подачи электроэнергии в случае возникновения аварийных ситуаций и др. вне регламентных отключений еще на этапе заключения договора энергоснабжения с поставщиком электроэнергии.

Также стоит особо отметить обязательное требования по закреплению величин аварийной брони и технологической брони. Указанные параметры определяются в акте аварийной и технологической брони и являются неотъемлемой частью договора потребителя. Очень часто потребители, имеющие аварийную или технологическую бронь не имеют оформленного акта согласования брони, что может привести (в случае отключения электроэнергии) к значительным убыткам для самого потребителя, а в худшем случае и к экологическим последствиям.

Определение границ зоны ответственности за надёжность электроснабжения с учетом существующих категорий.

При этом, качество и надежность электроснабжения потребителей определяется на границе балансовой принадлежности потребителя и сетевой компании.

Ответственность поставщика электроэнергии за вопросы энергоснабжения (в т.ч. надежность энергоснабжения) определяются п. 7 «Основных положений функционирования розничных рынков электрической энергии», утв. Постановлением Правительства РФ от 04.05.2012 №442, который говорит о том, что наличие оснований и размер ответственности субъектов электроэнергетики перед потребителями за действия (бездействие), повлекшие за собой неблагоприятные последствия, определяются в соответствии с гражданским законодательством Российской Федерации и законодательством Российской Федерации об электроэнергетике.

Таким образом, даже если у потребителя согласована в договоре энергоснабжения первая или вторая категория надежности электроснабжения, количество источников питания у него 2 или более, и на электроприемники потребителя есть согласованный акт о технологической или аварийной брони, то при возникновении случая временного прекращения поставок электроэнергии и возникновения у предприятия убытков вследствие этого, у него (потребителя) есть возможность получить компенсацию своих убытков только в судебном порядке. Поэтому важно дополнительно в договоре закреплять ответственность сторон за нарушение параметров надежности энергоснабжения.

При возникновении каких-либо ситуаций, связанных с надежности энергоснабжения, потребитель должен предъявлять требования к компенсации своих расходов (упущенной выгоды) к гарантирующему поставщику (энергосбытовой компании) если у потребителя заключен договор энергоснабжения и к электросетевой компании (владельцу электросетевых объектов) если у потребителя заключен договор купли-продажи электроэнергии и договор оказания услуг по передаче.

Выбор или изменение категории надежности электроснабжения.

В соответствии с правилами технологического присоединения энергопринимающих устройств потребителей к электрическим сетям, утвержденных постановлением Правительства РФ от 27.12.2004 №861, категория надежности электроснабжения электроприемников потребителей определяется в процессе технологического присоединения энергопринимающих устройств к электрическим сетям. При этом потребитель самостоятельно определяет какая категория надежности энергоснабжения ему необходима.

«Технологическое присоединение энергопринимающих устройств в целях обеспечения надежного их энергоснабжения и качества электрической энергии может быть осуществлено по одной из трех категорий надежности. Отнесение энергопринимающих устройств заявителя (потребителя электрической энергии) к определенной категории надежности осуществляется заявителем самостоятельно.

Отнесение энергопринимающих устройств к первой категории надежности осуществляется в случае, если необходимо обеспечить беспрерывный режим работы энергопринимающих устройств, перерыв снабжения электрической энергией которых может повлечь за собой угрозу жизни и здоровью людей, угрозу безопасности государства, значительный материальный ущерб. В составе первой категории надежности выделяется особая категория энергопринимающих устройств, бесперебойная работа которых необходима для безаварийной остановки производства с целью предотвращения угрозы жизни людей, взрывов и пожаров».

Однако, стоит понимать, что при выборе 2 или 1 категории надежности, стоимость подключения электричества возрастет в 2 раза относительно присоединения по 3 категории надежности: ведь для энергоснабжения по 1 или 2 категории необходимо два независимых источника питания и присоединение к каждому из них будет стоить примерно одинаково.

На какие категории подразделяются электроприемники в отношении обеспечения надежности энергоснабжения?

Согласно пункту 1.2.17 Правил устройства электроустановок в отношении обеспечения надежности электроснабжения электроприемники подразделяются на 3 следующие категории:

электроприемники I категории — электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования;

электроприемники II категории — электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей;

электроприемники III категории — все остальные электроприемники, не подходящие под определение I и II категории.

Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения может быть допущен лишь на время автоматического восстановления питания.

Для энергоснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников I категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), специальные агрегаты бесперебойного питания, аккумуляторные батареи и др.

Электроснабжение электроприемников I категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление рабочего режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

Электроприемники II категории рекомендуется обеспечивать электроэнергией от двух независимых взаимно резервирующих источников питания. Для электроприемников II категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 сутки.

В чем разница между источниками питания класса 2 и класса II?

Понятно, что часто возникает путаница относительно разницы между источниками питания переменного и постоянного тока с номинальными характеристиками Класса 2 и Класса II. Различия существенны и важны для понимания. Обозначение класса 2 NEC (Национальный электротехнический кодекс) относится к выходному напряжению и мощности источников переменного / постоянного тока, в то время как обозначение защиты IEC (Международной электротехнической комиссии), класс II, относится к внутренней конструкции источника питания и электрической изоляции. .

Выходное напряжение и мощность класса 2 NEC

Обозначение класса 2 NEC важно при установке электрической системы в здании. Нормы электропитания класса 2 касаются требований к проводке (сечение и изоляция проводов, коэффициенты снижения номинальных характеристик проводов, пределы защиты от перегрузки по току и методы монтажа проводки) между выходом источника питания и входом нагрузки. Признано, что ограниченное выходное напряжение и возможности подачи питания источников питания класса 2 имеют меньший риск возникновения пожара и поражения электрическим током, что позволяет использовать более дешевые методы электромонтажа.

Электропроводка зависит от источника питания NEC класса 2

Защита изоляции IEC класса II

Классы защиты IEC определяют конструкцию и изоляцию источников питания для защиты пользователя от поражения электрическим током. В источнике питания класса II имеется два слоя изоляции (или один слой усиленной изоляции) между пользователем и внутренними токонесущими проводниками. В источниках питания с двухслойной изоляцией первый слой изоляции обычно называют «базовой изоляцией».«Типичным примером базовой изоляции является изоляция проводов. Второй слой изоляции часто представляет собой изолирующий кожух, закрывающий продукт, такой как пластиковый кожух, присутствующий на настенных и настольных блоках питания.

Наклейка с обозначением класса защиты IEC

Источники питания класса II защиты IEC будут иметь двухжильный шнур питания, а не трехжильный шнур питания с защитным заземлением. Продукты, разработанные с изоляцией класса II, часто обозначаются как «класс II» или «двойная изоляция», или на этикетке безопасности будет отображаться символ концентрического квадрата.

Понимание разницы между блоками питания, предназначенными для NEC класса 2 и IEC класса II, является простым, но важным фактором для обеспечения того, чтобы в пользовательских приложениях были указаны правильные продукты. В конечном итоге, выбрав сертифицированный силовой модуль класса 2 или класса II, вы лучше защитите свою конструкцию от поражения электрическим током и других опасностей и сбоев, которые могут произойти.

Категории: Безопасность и соответствие

Дополнительные ресурсы


У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
Отправьте нам письмо по адресу powerblog @ cui.ком

Классификация источников питания

и их различные типы

Блок питания — это часть оборудования, которое используется для преобразования мощности, подаваемой из розетки, в полезную мощность для многих частей внутри электрического устройства. Каждый источник энергии должен управлять своей нагрузкой, которая к нему подключена. В зависимости от конструкции блок питания может получать энергию от различных типов источников энергии, таких как системы передачи электроэнергии, электромеханические системы, такие как генераторы и генераторы переменного тока, преобразователи солнечной энергии, устройства хранения энергии, такие как аккумулятор и топливные элементы, или другие источник питания.Существуют два типа источников питания: переменного и постоянного тока. В зависимости от электрических характеристик электрического устройства оно может использовать питание переменного или постоянного тока.


Что такое блок питания?

Источник питания можно определить как электрическое устройство, используемое для подачи электроэнергии на электрические нагрузки. Основная функция этого устройства — изменение электрического тока от источника на точное напряжение, частоту и ток для питания нагрузки. Иногда эти блоки питания можно назвать преобразователями электроэнергии.Некоторые типы расходных материалов представляют собой отдельные элементы нагрузки, тогда как другие изготавливаются в виде устройств, которыми они управляют.

Блок-схема источника питания

Схема источника питания используется в различных электрических и электронных устройствах. Цепи питания подразделяются на различные типы в зависимости от мощности, которую они используют для обеспечения цепей или устройств. Например, схемы на основе микроконтроллера обычно представляют собой схемы регулируемого источника питания (RPS) 5 В постоянного тока, которые могут быть спроектированы с помощью различных методов для изменения мощности с 230 В переменного тока на 5 В постоянного тока.

Блок-схема источника питания и пошаговое преобразование 230 В переменного тока в 12 В постоянного тока обсуждаются ниже.

  • Понижающий трансформатор преобразует 230 В переменного тока в 12 В.
  • Мостовой выпрямитель используется для преобразования переменного тока в постоянный.
  • Конденсатор используется для фильтрации пульсаций переменного тока и подает их на регулятор напряжения.
  • Наконец, регулятор напряжения регулирует напряжение до 5 В и, наконец, используется блокирующий диод для измерения пульсирующей формы волны.
Блок-схема источника питания

Классификация источников питания и ее различных типов

Здесь мы обсудим различные типы источников питания, которые существовали на рынке.В таблице ниже указаны основные типы источников питания для следующих условий.

ВЫХОД = DC

ВЫХОД = AC

ВХОД = AC

  • Настенная бородавка
  • Зарядное устройство
Аккумулятор
  • Разделительный трансформатор
  • Переменный источник питания переменного тока
  • Преобразователь частоты

ВХОД = DC

Источник переменного тока

Различные напряжения переменного тока генерируются с помощью трансформатор.Трансформатор может иметь несколько обмоток или ответвлений, и в этом случае прибор использует переключатели для выбора различных уровней напряжения. В качестве альтернативы можно использовать регулируемый трансформатор (регулируемый автотрансформатор) для непрерывного изменения напряжения. Некоторые источники переменного тока включают измерители для контроля напряжения, тока и / или мощности.


Переменный источник питания переменного тока

Нерегулируемый линейный источник питания

Нерегулируемый источник питания содержит понижающий трансформатор, выпрямитель, конденсатор фильтра и спускной резистор.Этот тип источника питания из-за простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Главный недостаток — непостоянство выходного напряжения. Оно будет меняться в зависимости от входного напряжения и тока нагрузки, а пульсации не подходят для электронных приложений. Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр LC (катушка индуктивности-конденсатор), но стоимость будет выше.

Нерегулируемый линейный источник питания
Входной трансформатор

Входной трансформатор используется для преобразования входящего линейного напряжения до необходимого уровня источника питания.Он также изолирует выходную цепь от сети. Здесь мы используем понижающий трансформатор.

Выпрямитель

Выпрямитель, используемый для преобразования входящего сигнала из формата переменного тока в необработанный постоянный ток. Пожалуйста, обратитесь по этим ссылкам. Доступны различные типы выпрямителей: однополупериодный и двухполупериодный выпрямители.

Конденсатор фильтра

Пульсирующий постоянный ток от выпрямителя подается на сглаживающий конденсатор. Это устранит нежелательную рябь в пульсирующем постоянном токе.

Сглаживающий резистор
Сглаживающий резистор

также известен как резистор стока источника питания. Он подключается к конденсаторам фильтра для отвода накопленного заряда, поэтому источник питания системы не представляет опасности.

Программируемый источник питания

Этот тип источника питания позволяет дистанционно управлять его работой через аналоговый вход или цифровые интерфейсы, такие как GPIB или RS232. Контролируемые свойства этого источника питания включают ток, напряжение, частоту.Эти типы расходных материалов используются в широком спектре приложений, таких как производство полупроводников, генераторов рентгеновского излучения, мониторинг роста кристаллов, автоматическое тестирование оборудования.

Как правило, в этих типах источников питания используется необходимый микрокомпьютер для управления, а также мониторинга работы источника питания. Блок питания, снабженный интерфейсом компьютера, использует стандартные (или) проприетарные протоколы связи и язык управления устройством, такой как SCPI (стандартные команды для программируемых инструментов)

Компьютерный блок питания

Блок питания в компьютер — это часть оборудования, которая используется для преобразования мощности, подаваемой из розетки, в полезную мощность для нескольких частей компьютера.Он преобразует переменный ток в постоянный.

Он также контролирует перегрев с помощью управляющего напряжения, которое может изменяться вручную или автоматически в зависимости от источника питания. Блок питания или блок питания также называют преобразователем мощности или блоком питания.

В компьютере внутренние компоненты, такие как корпуса, материнские платы и блоки питания, доступны в различных конфигурациях, размеры которых известны как форм-фактор. Все эти три компонента должны быть хорошо согласованы, чтобы правильно работать вместе.

Регулируемый линейный источник питания

Регулируемый линейный источник питания аналогичен нерегулируемому линейному источнику питания, за исключением того, что вместо резистора утечки используется трехконтактный стабилизатор. Основная цель этого источника питания — обеспечить нагрузку требуемым уровнем мощности постоянного тока. Источник питания постоянного тока использует источник переменного тока в качестве входа. Для разных приложений требуются разные уровни атрибутов напряжения, но в настоящее время источники питания постоянного тока обеспечивают точное выходное напряжение. И это напряжение регулируется электронной схемой, так что оно обеспечивает постоянное выходное напряжение в широком диапазоне выходных нагрузок.Блок-схема регулируемого источника питания

Здесь представлена ​​основная принципиальная схема регулируемого линейного источника питания, представленная ниже.

Регулируемый линейный источник питания

Основными особенностями этого источника питания являются следующие.

  • Эффективность этого источника питания колеблется от 20 до 25%.
  • В качестве магнитных материалов, используемых в этом источнике питания, используются сердечники из CRGO или стали.
  • Он более надежный, менее сложный и громоздкий.
  • Дает более быстрый ответ.

К основным преимуществам линейного источника питания можно отнести надежность, простоту, дешевизну и низкий уровень шума.Наряду с этими преимуществами, есть и некоторые недостатки, такие как

. Они лучше всего подходят для нескольких приложений с низким энергопотреблением, в результате, когда требуется высокая мощность; недостатки становятся более очевидными. К недостаткам этого источника питания можно отнести большие потери тепла, габариты и низкий уровень эффективности. Когда линейный источник питания используется в приложениях большой мощности; для управления мощностью требуются большие компоненты.

Сглаживание

После выпрямления из сигнала переменного тока необходимо сглаживать постоянный ток, чтобы удалить изменяющийся уровень напряжения.Для этой цели обычно используются конденсаторы большой емкости.

Регулятор напряжения

Линейный регулятор имеет активное (BJT или MOSFET) проходное устройство (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного уровня выходного напряжения. Есть два основных типа линейных источников питания. Узнайте больше о различных типах регуляторов напряжения с принципом работы.

Регулятор серии

Это наиболее широко используемые регуляторы для линейных источников питания.Как следует из названия, в цепь помещается последовательный элемент, как показано на рисунке ниже, и его сопротивление изменяется с помощью управляющей электроники, чтобы гарантировать, что правильное выходное напряжение генерируется для потребляемого тока.

Концепция последовательного регулятора напряжения или последовательного регулятора прохода
Шунтирующий регулятор

Шунтирующий регулятор менее широко используется в качестве основного элемента в регуляторе напряжения. При этом переменный элемент размещается поперек нагрузки, как показано ниже. Сопротивление истока установлено последовательно со входом, а шунтирующий регулятор регулируется, чтобы гарантировать, что напряжение на нагрузке остается постоянным.

Шунтирующий регулятор напряжения с обратной связью

Импульсный источник питания (SMPS)

SMPS имеет выпрямитель, фильтрующий конденсатор, последовательный транзистор, регулятор, трансформатор, но он более сложен, чем другие источники питания, которые мы обсуждали.

Импульсный источник питания

Показанная выше схема представляет собой простую блок-схему. Напряжение переменного тока выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет значительно уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера.Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться по индивидуальному заказу, а сложность источника питания не подходит для низкопроизводительных или экономичных применений с низким энергопотреблением. Пожалуйста, перейдите по этой ссылке, чтобы узнать все о SMPS.

Импульсный источник питания (SMPS)

Источник бесперебойного питания (ИБП)

ИБП

— это резервный источник питания, который в случае сбоя или колебаний напряжения дает достаточно времени для правильного отключения системы или для резервного генератора. запускать.ИБП обычно состоит из группы аккумуляторных батарей и схем измерения и кондиционирования мощности. Кроме того, ознакомьтесь с принципиальной схемой ИБП и различными типами, пожалуйста, перейдите по этой ссылке, чтобы узнать больше о принципиальной схеме и работе ИБП.

Источник бесперебойного питания (ИБП)

Источник питания постоянного тока

Источник постоянного тока — это источник постоянного напряжения, обеспечивающий постоянное постоянное напряжение на нагрузке. Согласно его плану, источник питания постоянного тока может управляться от источника постоянного тока или от источника переменного тока, такого как сеть электропитания.

Источник питания постоянного тока

Это все о различных типах источников питания, включая линейные источники питания, импульсный источник питания, источник бесперебойного питания. Кроме того, для реализации проектов в области электроники и электротехники или любой информации о типах источников питания вы можете оставить свой отзыв, чтобы дать свои предложения, комментарии в разделе комментариев ниже.

Классификация и использование цепей классов 1, 2 и 3

Цепи классов 1, 2 и 3 классифицируются как цепи дистанционного управления, сигнализации и ограничения мощности в Национальном электрическом кодексе (NEC).NEC определяет такие цепи как часть системы проводки между стороной нагрузки устройства защиты от перегрузки по току (OCPD) или источником с ограничением мощности и всем подключенным оборудованием.

Эти схемы характеризуются своим использованием и ограничением электрической мощности, что отличает их от световых и силовых цепей. Эти схемы также классифицируются в соответствии с их соответствующими ограничениями по напряжению и мощности.

Цепи класса 1. NEC делит цепи класса 1 на два типа: цепи с ограничением мощности и цепи дистанционного управления и сигнализации.Цепи класса 1 с ограничением мощности ограничены до 30 В и 1000 ВА. Цепи дистанционного управления и сигнализации класса 1 ограничены до 600 В, но есть ограничения на выходную мощность источника.

Цепи с ограничением мощности класса 1 имеют ограничитель тока на источнике питания, который их питает. Этот ограничитель представляет собой OCPD, который ограничивает величину тока питания в цепи в случае перегрузки, короткого замыкания или замыкания на землю. Трансформатор или другой тип источника питания подает питание на цепи класса 1.

Как правило, цепи дистанционного управления и сигнализации Класса 1 должны соответствовать большинству тех же требований к проводке для силовых и световых цепей. Мы обычно используем схемы дистанционного управления класса 1 в контроллерах двигателей (которые управляют механическими процессами), лифтах, конвейерах и в оборудовании, управляемом из одного или нескольких удаленных мест. Цепи сигнализации класса 1 используются в системах вызова медсестер в больницах, в электрических часах, системах банковской сигнализации и заводских системах вызова.

Проводники разных цепей.Цепи класса 1 могут занимать один и тот же кабель, корпус или кабельный канал независимо от того, являются ли отдельные цепи класса 1 переменным или постоянным током, при условии, что все проводники класса 1 изолированы для максимального напряжения любого проводника в кабеле, корпусе или дорожка качения. NEC позволяет цепям класса 1 и цепям питания занимать один и тот же кабель, корпус или кабельный канал в ситуациях, когда система питания оборудования функционально связана.

Одним из примеров является ситуация, когда проводники источника питания и проводники цепи управления проложены в одном кабелепроводе для управления и работы одного и того же оборудования, такого как контроллер двигателя.

Исключение 1 к п. 725-26 (b) поясняет, что вы можете смешивать эти цепи при установке в центрах управления, собранных на заводе или на месте. Исключение 2 из разд. 725-26 (b) допускает смешивание подземных проводников в колодце, если вы соблюдаете все следующие условия: (1) проводники источника питания или цепи класса 1 находятся в кабеле в металлическом корпусе или кабеле типа UF; (2) проводники постоянно отделены от проводов источника питания сплошным и прочно закрепленным непроводником, например гибкой трубкой, в дополнение к изоляции на проводе; и (3) проводники постоянно и эффективно отделены от проводов источника питания и надежно закреплены на стойках, изоляторах или других одобренных опорных средствах.

Требования к снижению номинальных характеристик. Если в кабельном канале находятся только проводники цепи класса 1, вы можете определить количество проводников в соответствии с положениями, изложенными в разд. 300-17. Коэффициенты снижения номинальных характеристик, приведенные в гл. 310-15 (b) (2) (a) и прилагаемая таблица применяются только в том случае, если такие проводники несут постоянные нагрузки, превышающие 10% допустимой токовой нагрузки каждого управляющего проводника, проложенного через систему дорожек качения.

Вы должны использовать разд. 300-17, чтобы определить количество проводов источника питания и проводов цепи класса 1, которые можно протянуть через кабельный канал [в соответствии с правилами разд.725-28 (a), (b) и (c)]. Коэффициенты снижения номинальных характеристик, указанные в Ст. 310, Таблица 310-15 (b) (2) (a) применяется к: (1) всем проводникам, в которых проводники цепи класса 1 несут постоянную нагрузку, превышающую 10% допустимой токовой нагрузки каждого проводника, и где общее количество проводников четыре или больше; (2) Только проводники источника питания, где проводники цепи класса 1 не несут непрерывную нагрузку, превышающую 10% допустимой токовой нагрузки каждого проводника, и где количество проводов источника питания составляет четыре или более.

Если вы устанавливаете проводники цепи класса 1 в системах кабельных лотков, они должны соответствовать нормам и положениям разд. С 318-9 по 318-11 ст. 318.

Вы можете использовать проводники № 18 и № 16 для цепей класса 1, если они питают нагрузки, не превышающие значения тока, указанные в гл. 402-5, и если вы устанавливаете их в кабельном канале, в утвержденном корпусе или в указанном кабеле. Проводами больше №16 не разрешается обеспечивать нагрузку, превышающую значения амплитуды, указанные в разд.310-15. Гибкие шнуры должны соответствовать требованиям ст. 400.

Требуется, чтобы изоляция проводов для цепей класса 1 соответствовала напряжению 600 В. Проводники крупнее №16 должны соответствовать требованиям ст. 310. Жилы типоразмеров № 18 и 16 должны быть типа FFH-2, KF-2, KFF-2, PAF, PAFF, PF, PFF, PGF, PGFF, PTF, PTFF, RFH-2, RFHH-2, RFHH. -3, SF-2, SFF-2, TF, TFF, TFFN, TFN, ZF или ZFF. Однако вы можете использовать проводники с другими типами и толщиной изоляции, если они указаны для использования в цепи класса 1 [см.725-27 (а) и (b)].

Цепи класса 2 и 3. NEC определяет цепи класса 2 и класса 3, а в таблицах 11 (a) и (b) в главе 9 приведены ограничения мощности для источников питания: один для переменного тока и один для постоянного тока. Как правило, чаще всего используется цепь класса 2 (работающая при 24 В с источником питания, имеющим прочную маркировку «Class 2» и не превышающим 100 ВА).

NEC определяет цепь класса 2 как часть системы электропроводки между стороной нагрузки источника питания класса 2 и подключенным оборудованием.Из-за ограничений мощности цепь класса 2 считается безопасной с точки зрения возгорания и обеспечивает приемлемую защиту от поражения электрическим током.

Кодекс определяет цепь класса 3 как часть системы электропроводки между стороной нагрузки источника питания класса 3 и подключенным оборудованием. Поскольку цепи класса 3 имеют более высокие уровни тока, чем цепи класса 2, в нем указаны дополнительные меры безопасности для защиты от поражения электрическим током, с которым вы можете столкнуться на стройплощадке.

Мощность для цепей класса 2 и класса 3 ограничена либо по своей сути (в которых не требуется защита от сверхтоков), либо за счет комбинации источника питания и защиты от сверхтока.

Максимальное напряжение цепи составляет 150 В переменного или постоянного тока для источника с ограничениями по своей природе класса 2 и 100 В переменного или постоянного тока для источника с ограничениями по своей природе класса 3. Максимальное напряжение цепи составляет 30 В переменного тока и 60 В постоянного тока для источника питания класса 2 с ограничением максимальной токовой защиты и 150 В переменного или постоянного тока для источника питания класса 3 с ограничением максимальной токовой защиты.

Например, термостаты системы отопления обычно относятся к системам класса 2, а большинство систем маленького звонка, зуммера и сигнализатора относятся к контурам класса 2. Класс 2 также включает небольшие телефонные системы внутренней связи, в которых батарея и цепь вызывного сигнала питают речевой канал.

Если цепь класса 2 проложена на расстоянии, где падение напряжения становится проблемой (из-за отсутствия напряжения, которое будет возбуждать оборудование), цепи класса 3 иногда используются для обеспечения необходимого напряжения и тока.Схема и аксессуары класса 3 могут быть разработаны для устранения проблемы чрезмерного падения напряжения.

Системы

класса 2 и 3 не требуют тех же методов подключения, что и системы питания, освещения и класса 1. Бывают случаи, когда 2-дюйм. между этими системами требуется разделение.

Цепи, разные типы и их работа

Источник питания является важным компонентом любой электрической или электронной системы. Существуют различные требования, которые необходимо учитывать при выборе точного источника питания, например: Потребности в питании цепи или нагрузки в основном включают напряжение и ток.Функции безопасности цепи питания, такие как ограничения по току и напряжению для защиты нагрузки, КПД, физические размеры и помехозащищенность системы. В этой статье мы рассмотрим определение блока питания , различные типы блоков питания и принципы их работы. Эти источники питания в основном используются для измерения, технического обслуживания, тестирования и расширения ассортимента продукции.

Что такое блок питания?

Источник питания может быть определен как , поскольку это электрическое устройство, используемое для подачи электроэнергии на электрические нагрузки.Основная функция этого устройства — изменение электрического тока от источника на точное напряжение, частоту и ток для питания нагрузки. Иногда эти блоки питания можно назвать преобразователями электроэнергии. Некоторые типы расходных материалов представляют собой отдельные элементы нагрузки, тогда как другие изготавливаются в виде устройств, которыми они управляют.

Цепь электропитания

Цепь источника питания используется в различных электрических и электронных устройствах. Цепи питания подразделяются на различные типы в зависимости от мощности, которую они используют для обеспечения цепей или устройств.Например, схемы на основе микроконтроллера обычно представляют собой схемы регулируемого источника питания (RPS) 5 В постоянного тока, которые могут быть спроектированы с помощью различных методов для изменения мощности с 230 В переменного тока на 5 В постоянного тока.

Схема источника питания показана выше, а пошаговое преобразование 230 В переменного тока в 12 В постоянного тока обсуждается ниже.

  • Понижающий трансформатор преобразует 230 В переменного тока в 12 В.
  • Мостовой выпрямитель используется для изменения переменного тока на постоянный
  • Конденсатор используется для фильтрации пульсаций переменного тока, подаваемых на регулятор напряжения.
  • Наконец, регулятор напряжения регулирует напряжение до 5 В и, наконец, используется блокирующий диод для измерения пульсирующей формы волны.

Блок-схема источника питания

Различные типы источников питания

Различные типы источников питания классифицируются следующим образом.

1) Импульсный источник питания — импульсный источник питания

Источник питания SMPS или компьютерный источник питания — это один из типов источников питания, который включает в себя импульсный стабилизатор для мощного преобразования электроэнергии.Подобно другим источникам питания, этот источник питания передает мощность от источника постоянного или переменного тока на нагрузки постоянного тока, такие как ПК (персональный компьютер), изменяя при этом характеристики тока и напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о Know All about Switch Mode Power Supply

SMPS — импульсный источник питания

2) Источник бесперебойного питания

ИБП (источник бесперебойного питания) — это электрическое устройство, позволяющее ПК продолжать работать в течение некоторого времени при отключении основного источника питания.Это устройство также защищено от перетока энергии.

ИБП — Источник бесперебойного питания

ИБП включает аккумулятор для хранения энергии, когда устройство обнаруживает потерю мощности от основного источника. Например, если вы используете ПК, когда источник бесперебойного питания обнаруживает потерю мощности, вам необходимо сохранить данные до того, как ИБП (вторичный источник питания) разрядится.

Когда оба источника питания исчерпаны, как первичный, так и вторичный, все данные в оперативной памяти (оперативной памяти) вашего ПК стираются.Когда происходит потеря мощности, вторичный источник питания останавливает потерю мощности, чтобы не повредить персональный компьютер. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о принципиальной схеме источника бесперебойного питания и работе

3) Источник питания переменного тока

Обычно источник питания переменного тока получает напряжение от сети, и напряжение может повышаться или понижаться с помощью трансформатора до требуемого напряжения, при этом может иметь место некоторая фильтрация. Различные типы источников питания переменного тока предназначены для обеспечения почти стабильного тока, и напряжение п / п может изменяться в зависимости от импеданса нагрузки.В некоторых случаях, поскольку источником питания является постоянный ток, для преобразования его в переменный ток могут использоваться повышающий трансформатор и инвертор. Некоторые виды изменения мощности переменного тока не используют трансформатор.

Блок питания переменного тока

Если входное и выходное напряжения одинаковы, основная функция устройства — фильтрация переменного тока. Если устройство предназначено для обеспечения резервного питания, то его можно назвать источником бесперебойного питания (ИБП). В настоящее время источники питания переменного тока подразделяются на два типа: однофазные системы и трехфазные системы.Основное различие между ними — надежность доставки. Эти источники могут также применяться для изменения напряжения и частоты.

4) Источник питания постоянного тока

Источник питания постоянного тока — это источник постоянного напряжения, обеспечивающий его нагрузку постоянным напряжением. Согласно его плану, источник питания постоянного тока может управляться от источника постоянного тока или от источника переменного тока, такого как сеть электропитания.

Источник питания постоянного тока

5) Регулируемый источник питания

RPS (регулируемый источник питания) — это фиксированная схема, используемая для преобразования нерегулируемого переменного тока в стабильный постоянный ток.

Здесь выпрямитель используется для изменения источника переменного тока на постоянный, и его основная функция состоит в том, чтобы подавать стабильное напряжение на устройство или схему, которые должны работать в определенных пределах источника питания. Выход RPS может быть изменяющимся (или) однонаправленным, но всегда DC (постоянный ток).

Регулируемый источник питания

Тип используемой стабилизации можно контролировать, чтобы гарантировать, что o / p остается в определенных ограничениях при различных условиях нагрузки.

6) Программируемый источник питания

Этот тип источника питания позволяет дистанционно управлять его работой через аналоговый вход или цифровые интерфейсы, такие как GPIB или RS232.Контролируемые свойства этого источника питания включают ток, напряжение, частоту. Эти типы расходных материалов используются в широком спектре приложений, таких как производство полупроводников, генераторов рентгеновского излучения, мониторинг роста кристаллов, автоматическое тестирование оборудования.

Как правило, в этих типах источников питания используется необходимый микрокомпьютер для управления, а также мониторинга работы источника питания. Блок питания, снабженный интерфейсом компьютера, использует стандартные (или) проприетарные протоколы связи и язык управления устройством, такой как SCPI (стандартные команды для программируемых инструментов)

7) Блок питания компьютера

Блок питания в компьютере — это часть аппаратного обеспечения, которое используется для преобразования мощности, подаваемой из розетки, в полезную мощность для нескольких частей компьютера.Преобразует переменный ток в постоянный

Он также контролирует перегрев посредством управления напряжением, которое может изменяться вручную или автоматически в зависимости от источника питания. Блок питания или блок питания также называют преобразователем мощности или блоком питания.

В компьютере внутренние компоненты, такие как корпуса, материнские платы и блоки питания, доступны в различных конфигурациях, размеры которых известны как форм-фактор. Все эти три компонента должны быть хорошо согласованы, чтобы правильно работать вместе.

8) Линейный источник питания

Схема LPS (линейный источник питания) или LR (линейный регулятор) используется в различных электрических и электронных схемах для подачи постоянного тока на всю цепь. Линейный источник питания в основном включает в себя понижающий трансформатор, выпрямитель, схему фильтра и регулятор напряжения. Основная функция этой схемы — во-первых; понижает напряжение переменного тока, а затем преобразует его в постоянный ток. К основным характеристикам этого блока питания можно отнести следующее.

  • КПД данного блока питания составляет от 20 до 25%
  • В этом источнике питания используются магнитные материалы: сердечник из CRGO или нержавеющий сплав.
  • Он более надежный, менее сложный и громоздкий.
  • Дает более быстрый ответ.

К основным преимуществам линейного источника питания можно отнести надежность, простоту, дешевизну и низкий уровень шума. Наряду с этими преимуществами есть и недостатки, такие как

Они лучше всего подходят для нескольких приложений с низким энергопотреблением, поскольку требуется высокая мощность; недостатки становятся более очевидными.К недостаткам этого источника питания можно отнести большие потери тепла, габариты и низкий уровень эффективности. Когда линейный источник питания используется в приложениях большой мощности; для управления мощностью требуются большие компоненты.

Таким образом, речь идет о разных типах источников питания, которые используются для эффективного обеспечения питания различных систем. Источники питания являются важными компонентами каждой системы, обеспечивающими электрическую энергию для работы. Таким образом, некоторые аспекты источника питания, такие как дизайн или разработка, имеют более важное значение.Потому что с каждым днем ​​изобретение технологий, а также источников питания расширяются для обеспечения защиты электрических и электронных устройств.

Класс защиты IEC для источников питания

Безопасность

Блоки питания

подразделяются на один из трех классов защиты в зависимости от необходимости или отсутствия защитного заземления.

Класс I — защита пользователя от поражения электрическим током достигается за счет комбинации изоляции и защитного заземления.

Класс II — защита пользователя от поражения электрическим током достигается за счет двух уровней изоляции (двойной или усиленной)

Class III — где вход подключен к цепи безопасного сверхнизкого напряжения (SELV), что означает отсутствие необходимости в дополнительной защите.

Основное руководство по источникам питания — У вас есть копия?

Классовое различие

Важно отметить различие между блоком питания класса II, как описано выше, и блоком питания класса 2.Источник питания с ограниченным питанием (LPS), который относится к номинальной мощности ограничиваемого выхода в ВА.

Источник питания класса 2 имеет максимальную выходную мощность в ВА 100 ВА при коэффициенте мощности менее 0,9 или 100 Вт при коэффициенте мощности более 0,9. Кроме того, максимально допустимый выходной ток при любых условиях составляет 8 А, а максимальное выходное напряжение при любых условиях составляет 30 В постоянного тока. Требования к источнику питания класса 2, соответствующему UL1310, такие же, как и к источнику питания с ограниченным питанием (LPS) UL60950-1 и UL62368-1.

Использование внешнего источника питания класса II не вызывает затруднений, поскольку для безопасной работы требуется только двухжильный сетевой шнур, который отличает его от продукта класса I.

Компонент класса II или источник питания с открытой рамой не требует заземления для безопасной работы, но необходимо соблюдать минимальное расстояние от любой токоведущей части до корпуса независимо от того, является ли корпус токопроводящим или нет, чтобы поддерживать два уровня защиты, необходимые от одного сбой в системе.

Хотя источник питания класса II не требует защитного заземления, некоторые изделия с более низким уровнем мощности класса II находят применение в системах класса I, а некоторые приложения класса II используют в системе функциональное заземление.

Источник питания класса II разработан с учетом требований ЭМС по излучению и невосприимчивости, но если выход источника питания подключен к защитному заземлению или функциональному заземлению, он создаст путь с низким сопротивлением для шума, изменяющего характеристики источника питания, и вероятно, что дополнительные компоненты фильтра необходимо будет установить вне источника питания для соответствия требованиям по выбросам.

Как выбрать блок питания ПК

Один из наименее интересных, но наиболее важных компонентов ПК — это блок питания. Конечно, компьютеры работают на электричестве, и оно не подается напрямую от стены к каждому компоненту в корпусе ПК. Вместо этого электричество переходит от переменного тока (AC), поставляемого энергокомпанией, в постоянный ток (DC), используемый компонентами ПК с требуемым напряжением.

Заманчиво купить любой блок питания для работы вашего ПК, но это не лучший выбор. Источник питания, который не обеспечивает надежное или чистое питание, может вызвать множество проблем, в том числе нестабильность, которую трудно определить. Фактически, отказ источника питания часто может вызывать другие проблемы, такие как случайные перезагрузки и зависания, которые в противном случае могут оставаться загадочными.

Таким образом, вы захотите уделить выбору источника питания столько же времени и внимания, сколько вашему ЦП, графическому процессору, оперативной памяти и вариантам хранения.Правильный выбор блока питания обеспечит наилучшую производительность и поможет продлить срок службы.

Обсуждаемые цены и наличие продуктов были верны на момент публикации, но могут быть изменены.

Выходная мощность: сколько вам нужно?

Несмотря на то, что при выборе источника питания необходимо учитывать несколько важных факторов — как и в случае с любым другим компонентом ПК, — определить один из наиболее важных факторов невероятно просто.Вам не нужно проводить тесты или читать обзоры, чтобы узнать, какая мощность вам нужна. Вместо этого вы можете использовать такой инструмент, как калькулятор блоков питания Newegg , чтобы точно определить, сколько мощности необходимо для вывода вашего нового блока питания.

Чтобы использовать инструмент, вам необходимо выбрать компоненты из раскрывающихся списков для каждой категории. Приведенный выше инструмент обновлен с использованием новейших опций для центрального процессора (ЦП), материнской платы, графического процессора (ГП), оперативной памяти (ОЗУ) и многого другого.Хотя инструмент не детализирует детали каждого компонента, он делает это там, где это необходимо, и исключает догадки при принятии решения о том, сколько энергии вам нужно.

Например, если вы собираете (или покупаете) ПК с процессором серии Ryzen7, графическим процессором Nvidia GeForce RTX 2060, 16 гигабайт (ГБ) оперативной памяти, состоящей из двух флешек по 8 ГБ, твердотельного накопителя емкостью 256 ГБ (SSD) ) и жесткий диск (HDD) емкостью 1 ТБ 7200 об / мин, тогда рекомендуется мощность 576 Вт. В целях безопасности вы можете выбрать блок питания на 600 Вт, а покупка подходящего варианта осуществляется одним нажатием кнопки.

Ожидайте обновления при покупке блока питания

Конечно, вы можете запустить несколько сценариев, чтобы убедиться, что вы справитесь со своими долгосрочными потребностями. Например, при обновлении до Nvidia GeForce RTX 2080 рекомендуемая мощность повышается до 631 Вт, в то время как удвоение ОЗУ увеличивает рекомендацию до 582 Вт. Если со временем вы сможете сделать и то, и другое, то вам понадобится как минимум 637 Вт.

Вы поняли. Не планируйте просто сегодня, чтобы удовлетворить свои потребности, вместо этого немного загляните в будущее и подумайте, какие изменения вы, возможно, захотите внести позже.А если вы покупаете предварительно собранный ПК, вам нужно знать, какой блок питания он использует, чтобы убедиться, что он может справиться со всем, что вы можете добавить, или что его достаточно легко заменить в какой-то момент. .

Важное замечание относительно мощности: длительная мощность и пиковая мощность — это разные вещи. Как правило, показатель «максимальная мощность» блока питания относится к непрерывной (стабильной) мощности, которую блок питания будет постоянно выдавать, в то время как пиковая мощность относится к повышенной максимальной (импульсной) мощности, которую может выдавать блок питания, хотя и за очень короткое время. времени (напр.г., 15 секунд). При покупке блока питания убедитесь, что его постоянная мощность соответствует вашим потребностям, иначе у вас могут возникнуть проблемы, когда ваш компьютер будет работать с полной нагрузкой.

Наконец, не беспокойтесь о том, что покупка блока питания с более высоким номиналом означает, что вы обязательно будете использовать больше энергии. Блок питания будет потреблять только электроэнергию, необходимую для компонентов вашего ПК, и поэтому, хотя покупка блока питания большего размера, чем вам нужно, может оказаться пустой тратой денег, вам не придется больше платить за работу с ПК из-за того, что Это.

Защита

Некоторые производители блоков питания встраивают средства защиты, чтобы защитить ваши компоненты от проблем, связанных с питанием. Эти средства защиты часто увеличивают стоимость источника питания, но они также могут обеспечить некоторое дополнительное спокойствие.

Первый — защита от перенапряжения, которая относится к схеме или механизму, отключающим блок питания, если выходное напряжение превышает указанный предел напряжения, который часто превышает номинальное выходное напряжение.Эта защита важна, поскольку высокое выходное напряжение может вызвать повреждение компонентов компьютера, подключенных к источнику питания.

Вторая — защита от перегрузки и сверхтока. Это схемы, которые защищают блок питания и компьютер путем отключения блока питания при обнаружении чрезмерного тока или силовой нагрузки, включая токи короткого замыкания.

Эффективность имеет значение с блоком питания

Ваттность — это лишь мера производительности источника питания.Другой — это его рейтинг эффективности, который является мерой того, сколько мощности постоянного тока он посылает на ПК и сколько теряется в основном на тепло. Эффективность важна, потому что от нее зависит, сколько вы потратите на поддержание работы своего компьютера.

В качестве примера рассмотрим ПК, которому требуется мощность 300 Вт. Если вы используете блок питания с КПД 85%, ваш компьютер будет потреблять около 353 Вт входной мощности от вашей энергетической компании. С другой стороны, блок питания с КПД всего 70% потребляет от стены 428 Вт мощности.Выбор более эффективного источника питания сэкономит немного денег на ежемесячном счете за электроэнергию.

В то же время, блок питания с более высоким рейтингом эффективности позволит вашему ПК также работать с меньшим охлаждением. Каждый компонент ПК выделяет некоторое количество тепла, что снижает его производительность. Более эффективный источник питания будет рассеивать меньше тепла, что будет означать более тихую систему благодаря вентиляторам, которым не нужно работать так же быстро или долго, большей надежности и более длительному сроку службы.

Что такое сертификация 80 PLUS?


Когда вы будете искать блоки питания, вы увидите многие из них с наклейками сертификации 80 PLUS.80 Plus — это программа сертификации, которую производители могут использовать, чтобы гарантировать, что их блоки питания будут соответствовать определенным требованиям к эффективности. 80 PLUS имеет различные уровни, от базовой сертификации до Titanium, а источники питания оцениваются независимыми лабораториями, чтобы обеспечить следующие уровни эффективности для потребительских систем питания 115 В:

Когда вы покупаете блок питания в Newegg, вы можете выбрать фильтрацию по уровню сертификации 80 PLUS. Это упрощает достижение именно того уровня эффективности, которого вы хотите достичь на своем новом ПК.

Рельсы не только для поездов Однако мощность

— не единственный показатель способности источника питания поддерживать все ваши компоненты. Питание компонентов осуществляется по шинам, и, хотя каждая шина напряжения требует внимания, наибольшее внимание следует уделять шине (-ам) +12 В, которые обеспечивают питание наиболее энергоемких компонентов, поскольку процессор и видеокарты PCIe получают питание. их сила от них.

Современный источник питания должен выдавать не менее 18 А (ампер) на шине (ах) +12 В для современного компьютера массового потребления, более 24 А для системы с одной видеокартой класса энтузиастов и не менее 34A, когда речь идет о высококачественной системе SLI / CrossFire.Значение выходной силы тока, о котором мы говорим, является совокупным значением для блоков питания с более чем одной шиной +12 В.

Конечно, вам следует искать это суммарное общее количество выходных сигналов, и вы не всегда можете сложить шины +12 В для расчета объединенного выхода. Например, блок питания с маркировкой + 12V1 @ 18A и + 12V2 @ 16A может иметь суммарную выходную мощность только 30A вместо 34A. Ищите эту информацию в подробных технических характеристиках элемента или на информационной этикетке блока питания.

Если вы собираетесь использовать конфигурацию SLI / Crossfire, вы должны убедиться, что шина (и) +12 В обеспечивает не менее 34 А. Разные источники питания обозначены по-разному — некоторые показывают максимальную силу тока, обеспечиваемую каждой шиной, а некоторые обеспечивают максимальную суммарную максимальную мощность, например, 396 Вт, что равняется 396 Вт / 12 В = 33 А.

Еще одно важное соображение — это количество шин, по которым блок питания питает свои компоненты. Проще говоря, источник питания может обеспечивать только одну шину +12 В для обеспечения всего питания компонентов вашего ПК, или он может иметь несколько шин.Использование одной шины означает, что вся мощность доступна для всех подключенных к ней компонентов — это упрощает настройку, поскольку вам не нужно беспокоиться о согласовании компонентов с направляющими, но это также означает, что сбой источника питания, такой как скачок напряжения, повлияет на все компоненты. И наоборот, наличие нескольких направляющих дает некоторую защиту от катастрофического отказа, но требует большей осторожности при настройке.

Форм-фактор — Подойдет ли ваш блок питания?

Следующее соображение простое — вам нужно выбрать форм-фактор, который, как вы уверены, физически впишется в ваш корпус.К счастью, в отношении блоков питания есть стандарты, как и в отношении корпусов и материнских плат.

Эта тема может оказаться довольно сложной, но важно помнить, что вам нужно согласовать свой блок питания с корпусом и материнской платой. Ниже приводится общий обзор наиболее важных на сегодняшний день форм-факторов источников питания.

ATX

Несмотря на то, что блоки питания с форм-фактором AT все еще доступны для покупки, блоки питания с форм-фактором AT, несомненно, являются устаревшими продуктами, которые скоро исчезнут.Даже более поздние блоки питания форм-фактора ATX (ATX 2.03 и более ранние версии) теряют популярность. Основные различия между форм-факторами блоков питания ATX и AT:

  1. Источники питания ATX обеспечивают дополнительную шину напряжения + 3,3 В.
  2. Блоки питания
  3. ATX используют один 20-контактный разъем в качестве основного разъема питания.
  4. Блоки питания
  5. ATX поддерживают функцию мягкого отключения, позволяющую программно отключать питание.

ATX12V

Форм-фактор ATX12V сейчас является наиболее распространенным выбором.Существует несколько различных версий форм-фактора ATX12V, и они могут сильно отличаться друг от друга. Спецификация ATX12V v1.0 добавила к оригинальному форм-фактору ATX 4-контактный разъем +12 В для подачи питания исключительно на процессор, а также 6-контактный вспомогательный разъем питания, обеспечивающий напряжение + 3,3 В и + 5 В. В следующей спецификации ATX12V v1.3, помимо всего прочего, был добавлен 15-контактный разъем питания SATA.

Существенное изменение произошло в спецификации ATX12V v2.0, которая изменила формат основного разъема питания с 20-контактного на 24-контактный, удалив 6-контактный вспомогательный разъем питания.Кроме того, спецификация ATX12V v2.0 также изолировала ограничение тока на 4-контактном разъеме питания процессора для шины 12 В 2 (ток + 12 В разделен на шины 12 В 1 и 12 В 2). Позже спецификации ATX12V v2.1 и v2.2 также повысили требования к эффективности и потребовали различных других улучшений.

Все блоки питания ATX12V имеют такую ​​же физическую форму и размер, что и форм-фактор ATX.

EPS12V, SFX12V и другие

В форм-факторе блока питания EPS12V используется 8-контактный разъем питания процессора в дополнение к 4-контактному разъему форм-фактора ATX12V (это не единственное различие между этими двумя форм-факторами, но для большинства пользователей настольных компьютеров, знающих этого должно быть достаточно).Форм-фактор EPS12V изначально был разработан для серверов начального уровня, но все больше и больше материнских плат для настольных ПК высокого класса теперь оснащены 8-контактным разъемом питания процессора EPS12V, который позволяет пользователям выбрать блок питания EPS12V.

Обозначение малого форм-фактора (SFF) используется для описания ряда меньших блоков питания, таких как SFX12V (SFX означает малый форм-фактор), CFX12V (CFX означает компактный форм-фактор), LFX12V (LFX означает низкопрофильный Форм-фактор) и TFX12V (TFX означает тонкий форм-фактор).Все они меньше стандартных блоков питания форм-фактора ATX12V с точки зрения физических размеров, и блоки питания малого форм-фактора необходимо устанавливать в соответствующие компьютерные корпуса малого форм-фактора.

Разъемы

Блок питания бесполезен, если он не подключается к каждому компоненту вашего ПК и не питает его. Это означает, что он должен иметь все необходимые типы разъемов.

Первый разъем, который следует рассмотреть, — это главный разъем, питающий материнскую плату.Этот разъем бывает двух типов: 20-контактный и 24-контактный. Последний становится все более популярным, и вполне вероятно, что ваш блок питания предоставит оба варианта. Просто проверьте, чтобы убедиться.

Далее идет разъем питания процессора, который выпускается в 4-контактном и 8-контактном вариантах. Как и в случае с основным разъемом питания, многие современные материнские платы перешли на больший формат. Опять же, убедитесь, что ваш блок питания совместим.

Наиболее часто используемый разъем питания — это 4-контактный разъем Molex.Он используется для множества компонентов, включая старые жесткие диски, оптические приводы, вентиляторы и некоторые другие устройства. Более новые компоненты SATA имеют собственный разъем питания SATA, и вы также можете использовать адаптеры Molex для SATA, если они у вас закончились. И вы даже можете использовать кабели-разветвители, чтобы увеличить количество подключаемых компонентов, но помните о верхних пределах вашего источника питания.

Шум вентилятора и удобство кабеля

Теперь, когда мы рассмотрели наиболее важные факторы, связанные с питанием, при выборе источника питания следует учитывать еще несколько моментов.Это не так важно, но они могут повлиять на то, насколько приятным будет источник питания в течение всего срока службы вашего ПК.

Шум вентилятора

Как мы уже говорили, источники питания вырабатывают тепло. Это означает, что они требуют, чтобы вентиляторы оставались прохладными и работали эффективно. Вы должны подумать о том, насколько тихо вы хотите, чтобы ваш компьютер работал, что во многом будет зависеть от вашей среды. Если ваш компьютер работает в тихом месте, то более крупные вентиляторы, которые вращаются медленнее для перемещения того же количества воздуха, скорее всего, приведут к более тихому ПК.

Нет никаких реальных стандартов в отношении охлаждения блоков питания, поэтому вам нужно будет сравнить маркетинговые материалы для ваших вариантов блоков питания. Это одна из областей, где подробные обзоры будут особенно полезны, поскольку они, как правило, измеряют, насколько громким является источник питания на разных уровнях работы, и поэтому предлагают некоторые рекомендации относительно того, насколько громко вы можете рассчитывать на работу вашего ПК.

Кабели

Наконец, существует три основных типа кабелей питания. Независимо от того, выберете ли вы проводную, модульную или гибридную систему, будет зависеть, насколько чистым будет внутри вашего корпуса и сколько работы вам потребуется, чтобы ваш компьютер оставался чистым и организованным.

Жесткая разводка кабелей означает, что каждый разъем напрямую подключен к источнику питания и поэтому будет присутствовать независимо от того, нужен он или нет. Преимущество проводных систем — и оно невелико при использовании современных источников питания — состоит в том, что они проще и не требуют дополнительного сопротивления из-за дополнительных разъемов.

Модульная кабельная разводка означает, что каждый разъем может быть добавлен по мере необходимости. Это упрощает поддержание чистоты и лаконичности вашего корпуса, но также вносит некоторую дополнительную сложность — и цену — и некоторое дополнительное сопротивление благодаря дополнительным физическим соединениям.Однако для большинства пользователей это, скорее всего, неактуально.

В гибридных системах

есть некоторые кабели, такие как подключение к основному источнику питания, которые физически подключены, а другие являются дополнительными. Гибридная система может представлять собой хороший компромисс, поскольку требуются определенные кабели, и даже если дополнительное сопротивление модульных соединений минимально, этого достаточно легко избежать.

Время включения

Очевидно, что нужно многое выбрать для выбора блока питания, и это важное решение при сборке нового ПК.Но если вы потратите немного времени на то, чтобы убедиться, что ваш блок питания обеспечивает компоненты вашего ПК надежным, стабильным и безопасным питанием, вы сэкономите огромное количество времени в долгосрочной перспективе и сделаете ваш компьютер лучше и эффективнее. машина.

Общие сведения об источниках питания переменного / постоянного тока | Статья

.

СТАТЬЯ ОБРАЗОВАНИЯ


Получайте ценные ресурсы прямо на ваш почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания — это электрическое устройство, которое преобразует электрический ток, поступающий от источника питания, такого как сеть, в значения напряжения и тока, необходимые для питания нагрузки, такой как двигатель или электронное устройство.

Назначение источника питания — обеспечить нагрузку надлежащим напряжением и током. Ток должен подаваться контролируемым образом — и с точным напряжением — на широкий диапазон нагрузок, иногда одновременно, и все это без изменения входного напряжения или других подключенных устройств, влияющих на выход.

Источник питания может быть внешним, что часто встречается в таких устройствах, как ноутбуки и зарядные устройства для телефонов, или внутренним, например, в более крупных устройствах, таких как настольные компьютеры.

Источник питания может быть регулируемым или нерегулируемым. В регулируемом источнике питания изменения входного напряжения не влияют на выход. С другой стороны, в нерегулируемом источнике питания выходная мощность зависит от любых изменений на входе.

Все источники питания объединяет то, что они берут электроэнергию от источника на входе, каким-то образом преобразуют ее и доставляют в нагрузку на выходе.

Питание на входе и выходе может быть переменным (AC) или постоянным (DC) током:

  • Постоянный ток (DC) возникает, когда ток течет в одном постоянном направлении.Обычно он поступает от батарей, солнечных элементов или преобразователей переменного тока в постоянный. Постоянный ток — предпочтительный тип питания для электронных устройств.
  • Переменный ток (AC) возникает, когда электрический ток периодически меняет свое направление. Переменный ток — это метод, используемый для подачи электроэнергии по линиям электропередачи в дома и на предприятия

Следовательно, если переменный ток — это тип питания, подаваемого в ваш дом, а постоянный ток — это тип питания, который вам нужен для зарядки телефона, вам понадобится источник питания переменного / постоянного тока для преобразования переменного напряжения, поступающего из электросети к напряжению постоянного тока, необходимому для зарядки аккумулятора вашего мобильного телефона.

Общие сведения о переменном токе (AC)

Первым шагом в разработке любого источника питания является определение входного тока. И в большинстве случаев источником входного напряжения электросети является переменный ток.

Типичная форма волны переменного тока — синусоидальная (см. Рисунок 1) .`

Рисунок 1: Форма сигнала переменного тока и основные параметры

Есть несколько показателей, которые необходимо учитывать при работе с блоком питания переменного тока:

  • Пиковое напряжение / ток: максимальное значение амплитуды волны может достигать
  • Частота: количество циклов, которые волна завершает в секунду.Время, необходимое для завершения одного цикла, называется периодом.
  • Среднее напряжение / ток: Среднее значение всех точек напряжения в течение одного цикла. В чисто переменном токе без наложенного постоянного напряжения это значение будет равно нулю, потому что положительная и отрицательная половины компенсируют друг друга.
  • Среднеквадратичное напряжение / ток: определяется как квадратный корень из среднего значения за один цикл квадрата мгновенного напряжения. В чистой синусоидальной волне переменного тока его значение можно рассчитать с помощью уравнения (1) :
  • $$ V_ {PEAK} \ over \ sqrt 2 $$
  • Также может быть определена как эквивалентная мощность постоянного тока, необходимая для достижения такого же нагревающего эффекта.Несмотря на сложное определение, он широко используется в электротехнике, поскольку позволяет найти эффективное значение переменного напряжения или тока. По этой причине его иногда обозначают как V AC .
  • Фаза: угловая разница между двумя волнами. Полный цикл синусоидальной волны делится на 360 °, начиная с 0 °, с пиками на 90 ° (положительный пик) и 270 ° (отрицательный пик) и дважды пересекая начальную точку, на 180 ° и 360 °. Если две волны изображены вместе, и одна волна достигает своего положительного пика в то же самое время, когда другая достигает своего отрицательного пика, то первая волна будет иметь угол 90 °, а вторая волна — 270 °; это означает, что разность фаз составляет 180 °.Считается, что эти волны находятся в противофазе, так как их значения всегда будут иметь противоположные знаки. Если разность фаз равна 0 °, мы говорим, что две волны находятся в фазе.

Переменный ток (AC) — это способ передачи электроэнергии от генерирующих объектов конечным пользователям. Он используется для транспортировки электроэнергии, потому что в процессе транспортировки электроэнергию необходимо преобразовывать несколько раз.

Электрические генераторы вырабатывают напряжение около 40 000 В или 40 кВ.Затем это напряжение повышается до любого значения от 150 кВ до 800 кВ, чтобы снизить потери мощности при транспортировке электрического тока на большие расстояния. Когда он достигает места назначения, напряжение снижается до 4–35 кВ. Наконец, прежде чем ток достигнет отдельных пользователей, он снижается до 120 В или 240 В, в зависимости от местоположения.

Все эти изменения напряжения будут либо сложными, либо очень неэффективными по сравнению с постоянным током (DC), потому что линейные трансформаторы зависят от колебаний напряжения для передачи и преобразования электрической энергии, поэтому они могут работать только с переменным током (AC).

Линейный и импульсный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока

Линейный источник питания переменного / постоянного тока имеет простую конструкцию.

При использовании трансформатора входное напряжение переменного тока (AC) снижается до значения, более подходящего для предполагаемого применения. Затем пониженное напряжение переменного тока выпрямляется и превращается в напряжение постоянного тока (DC), которое фильтруется для дальнейшего улучшения качества формы сигнала (Рисунок 2) .

Рисунок 2: Блок-схема линейного источника переменного / постоянного тока

Традиционная конструкция линейного источника питания переменного / постоянного тока развивалась с годами, улучшаясь с точки зрения эффективности, диапазона мощности и размера, но эта конструкция имеет некоторые существенные недостатки, которые ограничивают ее интеграцию.

Огромным ограничением линейного источника питания переменного / постоянного тока является размер трансформатора. Поскольку входное напряжение преобразуется на входе, необходимый трансформатор должен быть очень большим и, следовательно, очень тяжелым.

На низких частотах (например, 50 Гц) необходимы большие значения индуктивности для передачи большого количества энергии от первичной обмотки ко вторичной. Это требует больших сердечников трансформатора, что делает практически невозможной миниатюризацию этих источников питания.

Еще одним ограничением линейных источников питания переменного / постоянного тока является регулировка напряжения большой мощности.

Линейный источник питания переменного / постоянного тока использует линейные регуляторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают лишнюю энергию в виде тепла.Для малой мощности особых проблем не представляет. Однако для высокой мощности тепло, которое должен рассеивать регулятор для поддержания постоянного выходного напряжения, очень велико и потребует добавления очень больших радиаторов.

Импульсный источник питания переменного / постоянного тока

Новая методология проектирования была разработана для решения многих проблем, связанных с проектированием линейных или традиционных источников питания переменного / постоянного тока, включая размер трансформатора и регулировку напряжения.

Импульсные источники питания теперь возможны благодаря развитию полупроводниковой технологии, особенно благодаря созданию мощных полевых МОП-транзисторов, которые могут очень быстро и эффективно включаться и выключаться даже при больших напряжениях и токах.

Импульсный источник питания переменного / постоянного тока позволяет создавать более эффективные преобразователи мощности, которые больше не рассеивают избыточную мощность.

Блоки питания

AC / DC, в которых используются импульсные преобразователи мощности, называются импульсными блоками питания. Импульсные источники питания переменного / постоянного тока имеют несколько более сложный метод преобразования переменного тока в постоянный.

В импульсных источниках питания переменного тока входное напряжение больше не снижается; скорее, он выпрямляется и фильтруется на входе.Затем постоянное напряжение проходит через прерыватель, который преобразует напряжение в серию высокочастотных импульсов. Наконец, волна проходит через другой выпрямитель и фильтр, который преобразует ее обратно в постоянный ток (DC) и устраняет любую оставшуюся составляющую переменного тока (AC), которая может присутствовать до достижения выхода (см. Рисунок 3) .

При работе на высоких частотах катушка индуктивности трансформатора может передавать больше мощности, не достигая насыщения, что означает, что сердечник может становиться все меньше и меньше.Следовательно, трансформатор, используемый для переключения источников питания переменного / постоянного тока для уменьшения амплитуды напряжения до заданного значения, может составлять часть размера трансформатора, необходимого для линейного источника питания переменного / постоянного тока.

Рисунок 3: Блок-схема импульсного источника питания переменного / постоянного тока

Как и следовало ожидать, этот новый метод проектирования имеет некоторые недостатки.

Импульсные преобразователи мощности переменного / постоянного тока могут создавать в системе значительный уровень шума, который необходимо устранить, чтобы исключить его на выходе.Это создает потребность в более сложных схемах управления, что, в свою очередь, усложняет конструкцию. Тем не менее, эти фильтры состоят из компонентов, которые можно легко интегрировать, поэтому они не оказывают существенного влияния на размер блока питания.

Меньшие трансформаторы и повышенная эффективность регуляторов напряжения в импульсных источниках питания переменного / постоянного тока — вот причина, по которой теперь мы можем преобразовать напряжение переменного тока 220 В ¬RMS в напряжение 5 В постоянного тока с помощью преобразователя питания, который поместится у вас на ладони.

Таблица 1 суммирует различия между линейными и импульсными источниками питания переменного / постоянного тока.

Транзисторы
Линейный источник питания переменного / постоянного тока Импульсный источник питания переменного / постоянного тока
Размер и вес Необходимы большие трансформаторы, что значительно увеличивает размер и вес Более высокие частоты позволяют при необходимости использовать трансформаторы гораздо меньшего размера.
КПД Если не регулировать, потери в трансформаторе являются единственной существенной причиной потери эффективности.В случае регулирования приложения с большой мощностью будут иметь решающее влияние на эффективность. обладают небольшими коммутационными потерями, поскольку они ведут себя как малые сопротивления. Это обеспечивает эффективных мощных приложений .
Шум Нерегулируемые источники питания могут иметь значительный шум, вызванный пульсациями напряжения, но регулируемые линейные источники питания постоянного тока переменного тока могут иметь чрезвычайно низкий уровень шума. Вот почему они используются в медицинских приложениях. Когда транзисторы переключаются очень быстро, они создают шум в цепи. Однако это может быть либо отфильтровано, либо частота переключения может быть сделана чрезвычайно высокой, превышающей предел человеческого слуха, для аудиоприложений
Сложность Линейный источник питания переменного / постоянного тока, как правило, имеет меньше компонентов и более простые схемы, чем импульсный источник питания переменного / постоянного тока. Дополнительный шум, создаваемый трансформаторами, вынуждает добавлять большие сложные фильтры, а также схемы управления и регулирования для преобразователей.

Таблица 1: Линейные и импульсные источники питания

Сравнение однофазных и трехфазных источников питания

Источник питания переменного тока может быть однофазным или трехфазным:

  • Трехфазный источник питания состоит из трех проводников, называемых линиями, каждая из которых передает переменный ток (AC) той же частоты и амплитуды напряжения, но с относительной разностью фаз 120 °, или одной трети цикл (см. рисунок 4) .Эти системы являются наиболее эффективными при передаче большого количества энергии и поэтому используются для доставки электроэнергии от генерирующих объектов в дома и на предприятия по всему миру.
  • Однофазный источник питания является предпочтительным методом подачи тока в отдельные дома или офисы, чтобы равномерно распределять нагрузку между линиями. В этом случае ток течет от линии питания через нагрузку, а затем обратно через нейтральный провод. Это тип питания, который используется в большинстве установок, за исключением крупных промышленных или коммерческих зданий.Однофазные системы не могут передавать столько энергии на нагрузку и более подвержены сбоям питания, но однофазное питание также позволяет использовать гораздо более простые сети и устройства.

Рисунок 4: Форма кривой переменного тока трехфазного источника питания

Существует две конфигурации для передачи энергии через трехфазный источник питания: конфигурация треугольника $ (\ Delta) $ и конфигурация звезды (Y), также называемые конфигурациями треугольника и звезды, соответственно.

Основное различие между этими двумя конфигурациями заключается в возможности добавления нейтрального провода (см. Рисунок 5) .

Соединения

треугольником обеспечивают большую надежность, но соединения типа Y могут подавать два разных напряжения: фазное напряжение, которое является однофазным напряжением, подаваемым в дома, и линейное напряжение для питания больших нагрузок. Соотношение между фазным напряжением (или фазным током) и линейным напряжением (или линейным током) в конфигурации Y заключается в том, что амплитуда линейного напряжения (или тока) в √3 раз больше, чем амплитуда фазы.

Поскольку стандартная система распределения электроэнергии должна обеспечивать питанием как трехфазные, так и однофазные системы, большинство сетей распределения электроэнергии имеют три линии и нейтраль.Таким образом, и дома, и промышленное оборудование могут быть снабжены одной и той же линией электропередачи. Поэтому конфигурация Y наиболее часто используется для распределения мощности, тогда как конфигурация треугольника обычно используется для питания трехфазных нагрузок, таких как большие электродвигатели.

Рисунок 5: Трехфазные конфигурации Y и треугольника

Напряжение, при котором электросеть поставляет однофазную электроэнергию своим пользователям, имеет различные значения в зависимости от географического положения.Вот почему очень важно проверить диапазон входного напряжения источника питания перед его покупкой или использованием, чтобы убедиться, что он предназначен для работы в электросети вашей страны. В противном случае вы можете повредить блок питания или подключенное к нему устройство.

В таблице 2 сравниваются напряжения в сетях в разных регионах мира.

Действующее значение (AC) Напряжение Пиковое напряжение Частота Регион
230 В 310 В 50 Гц Европа, Африка, Азия, Австралия, Новая Зеландия и Южная Америка
120 В 170 В 60 Гц Северная Америка
100 В 141V 50 Гц / 60 Гц Япония *

* Япония имеет две частоты в своей национальной сети из-за истоков ее электрификации в конце 19 века.В западном городе Осака поставщики электроэнергии купили генераторы 60 Гц в Соединенных Штатах, а в Токио, который находится на востоке Японии, они купили немецкие генераторы 50 Гц. Обе стороны отказались изменить свою частоту, и по сей день Япония все еще имеет две частоты: 50 Гц на востоке и 60 Гц на западе.

Как упоминалось ранее, трехфазное питание используется не только для транспортировки, но также для питания больших нагрузок, таких как электродвигатели или зарядки больших аккумуляторов. Это связано с тем, что параллельное приложение мощности в трехфазных системах может передавать гораздо больше энергии нагрузке и может делать это более равномерно из-за перекрытия трех фаз (см. Рисунок 6) .

Рисунок 6: Передача энергии в однофазных (слева) и трехфазных (справа) системах

Например, при зарядке электромобиля (EV) количество энергии, которое вы можете передать аккумулятору, определяет, насколько быстро он заряжается.

Однофазные зарядные устройства подключаются к сети переменного тока (AC) и преобразуются в постоянный ток (DC) внутренним силовым преобразователем переменного / постоянного тока автомобиля (также называемым бортовым зарядным устройством). Мощность этих зарядных устройств ограничена сетью и розеткой переменного тока.

Ограничение варьируется от страны к стране, но обычно составляет менее 7 кВт для розетки на 32 А (в ЕС 220 x 32 А = 7 кВт). С другой стороны, трехфазные источники питания преобразуют мощность из переменного в постоянный извне и могут передавать более 120 кВт на батарею, обеспечивая сверхбыструю зарядку.

Сводка

Источники питания переменного / постоянного тока есть повсюду. Основная задача источника питания переменного / постоянного тока — преобразовывать переменный ток (AC) в стабильное постоянное напряжение (DC), которое затем может использоваться для питания различных электрических устройств.

Переменный ток используется для транспортировки электроэнергии по всей электрической сети от генераторов до конечных потребителей. Цепь переменного тока (AC) может быть сконфигурирована как однофазная или трехфазная система. Однофазные системы проще и могут обеспечивать мощность, достаточную для питания всего дома, но трехфазные системы могут обеспечивать гораздо больше мощности более стабильным образом, поэтому они часто используются для питания промышленных приложений.

Разработка эффективных источников питания переменного / постоянного тока — непростая задача, поскольку современные рынки требуют мощных, чрезвычайно эффективных и миниатюрных источников питания, способных поддерживать эффективность в широком диапазоне нагрузок.

Способы проектирования источников питания переменного / постоянного тока со временем изменились. Линейные источники питания переменного / постоянного тока ограничены по размеру и эффективности, поскольку они работают на низких частотах и ​​регулируют выходную температуру, рассеивая избыточную энергию в виде тепла. Напротив, импульсные источники питания стали чрезвычайно популярными, потому что в них используются импульсные регуляторы для преобразования переменного тока в постоянный. Импульсные блоки питания работают на более высоких частотах и ​​преобразуют электроэнергию намного эффективнее, чем предыдущие разработки, что позволило создать мощные блоки питания переменного / постоянного тока размером с ладонь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *