Светлый угол — светодиоды • Почему взорвался драйвер
Обсуждаем построение светодиодных драйверов, особенности питания разных типов светодиодов.
Почему взорвался драйвер
Gonza » 14 авг 2011, 17:57
Профессионалы, подскажите новичку.Подлкючил к драйверу RLDD6 8 красных и 1 белый диод (1 ватные). Включил в сеть. Он немного задымился и взорвался конденсатор.
Рядом такой же драйвер с такими же диодами прекрасно работает.
Вопрос: ждать что второй тоже взорвется или искать какую-либо причину? В чем причина отказа драйвера?
Заранее спасибо откликнувшимся.
- Gonza
- Светлячок
- Сообщений: 1
- Зарегистрирован: 14 авг 2011, 17:48
- Благодарил (а): 0 раз.
- Поблагодарили: 0 раз.
Re: Почему взорвался драйвер
САН1973 » 14 авг 2011, 22:55
Заводской брак конденсатора — скорее всего, или сухой, или кз.
- САН1973
- Светильник
- Сообщений: 92
- Зарегистрирован: 05 июл 2011, 10:41
- Благодарил (а): 0 раз.
- Поблагодарили: 6 раз.
Re: Почему взорвался драйвер
kulibin » 14 авг 2011, 23:10
А при монтаже точно никаких ошибок не было ? Если уверены, то при следующем заказе положим вам исправный, только не забудьте напомнить.
Не спрашивай Россию — что она для тебя сделала. Спроси себя — что ты сделал для нее.
-
kulibin - Scio me nihil scire
- Сообщений: 19178
- Зарегистрирован: 18 дек 2009, 03:34
- Откуда: Барнаул
- Благодарил (а): 60 раз.
- Поблагодарили: 1046 раз.
Re: Почему взорвался драйвер
SIBERIABRN » 22 авг 2011, 18:51
Могу ли я подключить два драйвера RLDL-20 последовательно? мне нужно запитать линейку из 40 1Вт светодиодов включённых последовательно, но нужно это сделать таким образом, что бы на всю эту линейку от драйверов приходило не более двух проводов. Плюс и минус соответственно. Другими словами могу ли я соединить плюс одного драйвера с минусом другого а на оставшиеся свободные плюсовой и минусовой провода драйверов подключить 40 1Вт светодиодов.
- SIBERIABRN
- Светильник
- Сообщений: 54
- Зарегистрирован: 15 мар 2011, 20:08
- Откуда: Барнаул
- Благодарил (а): 0 раз.
- Поблагодарили: 0 раз.
Re: Почему взорвался драйвер
Ну раз никто не побывал то я поэкспериментирую правда на трёхватных драйверах, что бы недорого было, на случай если сгорят. А приеду то я завтречко.
- SIBERIABRN
- Светильник
- Сообщений: 54
- Зарегистрирован: 15 мар 2011, 20:08
- Откуда: Барнаул
- Благодарил (а): 0 раз.
- Поблагодарили: 0 раз.
Re: Почему взорвался драйвер
den737 » 24 авг 2011, 20:08
- Вложения
- фото драйвера
Skype den737
-
den737 - Искра знания
- Сообщений: 956
- Зарегистрирован: 03 июн 2011, 20:45
- Откуда: г. Кузнецк, Пензенская обл.
- Благодарил (а):
- Поблагодарили: 45 раз.
Re: Почему взорвался драйвер
kulibin » 24 авг 2011, 21:12
А из-за чего бахнул-то ?
Не спрашивай Россию — что она для тебя сделала. Спроси себя — что ты сделал для нее.
-
kulibin - Scio me nihil scire
- Сообщений: 19178
- Зарегистрирован: 18 дек 2009, 03:34
- Откуда: Барнаул
- Благодарил (а): 60 раз.
- Поблагодарили: 1046 раз.
Re: Почему взорвался драйвер
den737 » 24 авг 2011, 21:29
kulibin писал(а):А из-за чего бахнул-то ?
все работало нормально. потом просто вилку в розетку вставил, а он пшик и всё. да ну и ладно. главное чтоб микруха целой оказалась, а то х.з. где её брать.
Skype den737
-
den737 - Искра знания
- Сообщений: 956
- Зарегистрирован: 03 июн 2011, 20:45
- Откуда: г. Кузнецк, Пензенская обл.
- Благодарил (а): 49 раз.
Re: Почему взорвался драйвер
kulibin » 24 авг 2011, 21:31
Давайте мы вам его поменяем тогда. Будете следующий заказ делать — отпишите в примечании, напомните. И вообще, народ, если что-то дохнет — и вы уверены, что это не ваш косяк — не стесняйтесь обращаться за заменойНе спрашивай Россию — что она для тебя сделала. Спроси себя — что ты сделал для нее.
-
kulibin - Scio me nihil scire
- Сообщений: 19178
- Зарегистрирован: 18 дек 2009, 03:34
- Откуда: Барнаул
- Благодарил (а): 60 раз.
- Поблагодарили: 1046 раз.
Вернуться в Питание и подключение светодиодов
Кто сейчас на форуме
Зарегистрированные пользователи: БАЛАБОЛ, aizon, Aleksandr_A, Andrey54, ARTLIGHT-SPB, Антон80, Baikal, Bing [Bot], BVlad, Светоспектр, Светочъ, Dmitriy174, fss1954, George, Google [Bot], Google Feedfetcher, iamoskvin, ivanjiang, ivanko, kulibin, Ledsvet2017, mailru, Majestic-12 [Bot], MAQ, MSN [Bot], nae, olegbr, Pensioner, recolt, Reneo, S@shOK, Simona, skal, Victor-2019, Vladimir-city, voxy, willi, zQ, Пашка177, Василий177, искатель, ЛунСинь, ЭТИС, Яндексбот
ledway.ru
Ремонт светодиодного прожектора своими руками
Категория: Неисправности освещения
Светодиодные прожекторы являются тем вариантом осветительного оборудования, которое сочетает в себе высокую эффективность и экономичность работы. Несмотря на большой эксплуатационный ресурс, они тоже выходят из строя, и их владельцам приходится обращаться в ремонтные мастерские. Однако далеко не все неисправности настолько сложны, чтобы нельзя было провести ремонт светодиодного прожектора своими руками. Давайте рассмотрим причины поломок, способы диагностики и критерии, по которым можно узнать, возможен ли самостоятельный ремонт.
Устройство светодиодного прожектора и типовые неисправности
ЛЕД-прожектор (LED) представляет собой яркий осветительный прибор, состоящий из:
- светодиода, излучающего свет;
- драйвера, управляющего работой устройства;
- корпуса;
- рассеивателя, увеличивающего КПД прибора;
- линзы, определяющей форму, цвет и другие параметры светового потока.
Наиболее распространёнными неисправностями в прожекторе являются выход драйвера из строя или перегорание светодиодов. Последние сильно теряют яркость или сгорают из-за того, что тепловая энергия, которую они вырабатывают, плохо отводится в атмосферу. Такая проблема характерна для бюджетных производителей, которые экономят на радиаторах.
Сгорание или нестабильная работа драйвера – это проблема, характерная для прожекторов китайского производства, в которых производители тоже экономят буквально на всём. Тем не менее, использование этой продукции может быть выгодным, если вы умеете приводить электронику в порядок. Китайские прожекторы стоят очень дёшево и хорошо работают после восстановления драйвера.
Прожектор перестал гореть – как починить?
Прежде всего, в данной ситуации следует проверить, поступает ли на драйвер устройства питание с напряжением 220 В. Если с этим все в порядке, следует сначала провести диагностику и ремонт драйвера. Его можно проверить и без подключения светодиода, подав на вход электрический ток. Если устройство работает правильно, то измерение на выходе мультиметром должно показать постоянное напряжение, которое будет чуть выше номинального предела. Например, для драйвера с выходным напряжением 28-38 вольт при работе вхолостую мультиметр покажет ~40 вольт. Это объясняется тем, что увеличение сопротивления нагрузки (из-за холостой работы) ведёт к увеличению напряжения.
Правда, этот способ помогает точно проверить не все драйверы. Есть блоки, которые в исправном состоянии либо будут выдавать нелогичные данные, либо вовсе не запустятся. В такой ситуации проверить устройство поможет нагрузочный резистор, имитирующий потребление светодиода. Подбирать его нужно в соответствии с характеристиками драйвера. Например, при выходном постоянном токе 23-35V 600 mA сопротивление резистора должно быть в пределах от 23/0.6 = 38 Ом до 35/0.6=58 Ом.
Если выходное напряжение при подключённом нагрузочном резисторе соответствует нормативам, драйвер работает правильно.
Простейшим способом отремонтировать светодиодный прожектор при вышедшем из строя драйвере является замена этого компонента. Приобрести подходящую модель можно не только в специализированных магазинах, но и в интернете. Например, большое разнообразие запчастей предлагает Aliexpress, хотя там нужно быть очень внимательным, чтобы выбрать качественный товар (иногда даже сами продавцы плохо разбираются в вопросе). Иногда подходящие драйверы можно найти у мастеров, которые профессионально занимаются ремонтом прожекторов. А если светодиодный прожектор был сделан из диодов своими руками, то разобраться в его устройстве и устранить проблему будет ещё проще, чем покупать или собирать новый.
Как подбирать драйвер, если неизвестна мощность светодиодного модуля
У многих любителей возникают ситуации, когда необходимо работать с прожектором, мощность, ток и напряжение светодиодного чипа в котором неизвестны. Соответственно, в такой ситуации сложнее подобрать замену и драйвер.
Здесь необходимо посчитать количество диодов в матрице светодиода и сложить их показатели. В таких светодиодных модулях используются диоды с напряжением 3 В, током 300-330 мА и мощностью 1 Вт. Соответственно, общее напряжение матрицы составляет 27 В с силой тока 300 мА (при последовательном подключении). Соответственно, для работы необходим драйвер с выходным напряжением 20-36 В.
Приведём пример с более сложной матрицей, которая состоит из двух параллельно подключённых рядов диодов. Каждый ряд имеет напряжение приблизительно 30 В с током 300 мА. Из-за параллельного подключения драйвер должен иметь выходные показатели 30 вольт и 600 мА.
Устраняем мигание LED-прожектора
С проблемой мигания рано или поздно сталкивается каждый владелец светодиодного прожектора. Причиной такого поведения может быть неправильная работа электронных компонентов или потеря работоспособности светодиодов. В данном разделе мы рассматриваем, каким образом отремонтировать светодиодный прожектор с мощностью в 10 Вт. Такая мощность встречается чаще всего, а общая конструкция приборов схожа, поэтому решение проблемы универсально.
Светодиод представляет собой матрицу из 9 кристаллов, каждый из которых имеет мощность в 1 Вт. Эти кристаллы соединены в три последовательные схемы и залиты люминофором – веществом, преобразующим получаемую энергию в свет. Светодиод на 10 Вт состоит из трёх линеек кристаллов, которые параллельно подключаются к питанию, идущему от драйвера.
Перегорание одного из кристаллов в светодиоде приведёт к миганию во время работы. Характер мигания может быть как периодическим, с равными паузами, так и хаотическим. По разным причинам сгорание матрицы может вести к полному отключению светодиодного элемента, либо к отказу одной-двух линеек кристаллов.
Почему матрица мигает или не светится при перегорании
Кристаллы, залитые люминофором, соединяются между собой подводами, которые в случае с продукцией высокого качества делаются из золота, а в бюджетных приборах – из меди. Слишком сильное нагревание матрицы и соединительных контактов приводит к тому, что эти нити отслаиваются от кристаллов. Поэтому вся матрица или часть её отключается. После остывания нить возвращается в исходное положение и работа возобновляется. После повторного нагрева до критической отметки контакт снова прерывается и матрица гаснет. Этот цикл в процессе работы продолжается бесконечно, а для наблюдателя выглядит как мигание лампы. Полный выход светодиода из строя происходит, когда одна из нитей перегревается настолько, что отпадает от кристалла.
Зная о таком поведении, можно проверять состояние матрицы диодных прожекторов своими руками. Для этого нужно вооружиться не слишком острым предметом и нажать на те места матрицы, в которых проходят соединительные нити. Конечно, прожектор в это время должен быть включённым. Если при надавливании на один из путей прибор загорается, проблема найдена. В данном случае остаётся правильно заменить испорченный чип.
Важная информация! Матрицу, у которой перегорела хотя бы одна линейка кристаллов, следует незамедлительно менять. Оставшиеся осветительные элементы потеряют эффективность и быстро выйдут из строя.
Это происходит, потому что кристаллы соединяются в матрице параллельно-последовательно, а питание от драйвера подаётся в виде постоянного тока. Поэтому после выгорания одной линейки, две оставшиеся получают силу тока в 1,5 раза больше номинальной. Работа под повышенной нагрузкой приводит к ещё большему нагреванию матрицы и быстрому сгоранию других нитей.
Ремонтируем матрицу
Замена светодиода при перегорании кристаллов на матрице не является чрезмерно сложной процедурой. После приобретения аналогичного по характеристикам компонента и специальной термопасты, необходимой для монтажа, нужно:
- Разобрать корпус прожектора, открутив крепёжные болты на корпусе.
- Снять линзу или стекло.
- Демонтировать рассеиватель.
- Открутить крепёжные винтики матрицы и аккуратно отпаять токопроводящие выводы. Для этого лучше всего подойдёт бесконтактная паяльная станция с термофеном.
- Смазать новый светодиод термопастой.
- Припаять контактные выводы светодиода и закрутить обратно крепёж.
При подключении светодиода крайне важно соблюсти полярность выводов. Опытные монтажники также рекомендуют при замене светодиода в недорогих китайских прожекторах заменить проводки. Производители, как правило, используют материал с минимальным сечением, что не совсем надёжно. При этом лучше использовать термоусадочные трубки. Они сохраняют изоляционные свойства даже под действием тепла, исходящего от диода.
simplelight.info
Ремонт светодиодного прожектора своими руками
Несмотря на то, что светодиодная техника является очень надежной, она не может быть идеальной и иногда выходит из строя. Особенно, если вы решили сильно сэкономить и приобрели один из самых дешевых прожекторов. Так что же делать, если ваш светодиодный прожектор мерцает и мигает, или и того хуже – перестал работать вообще, а ваша гарантия на купленное изделие закончилась, либо и не начиналась вовсе. Вполне возможно, что вы приобрели не сертифицированный товар в надежном магазине с хорошей репутацией, а на свой страх и риск заказали максимально бюджетный светодиодный прожектор напрямую из Китая, посредством Алиэкспресс к примеру? И вот перед вами лежит и моргает или вообще не светит далеко не дешевой прибор освещения, а вы не знаете, что делать? Не опускайте руки. В этой статье мы расскажем, как осуществить ремонт устройства своими руками.
Для того, чтобы выполнить ремонт светодиодного процессора своими руками, вы должны уверенно держать в руках мультиметр (на картинке ниже) и паяльник. Это нужно, чтобы суметь определить причину поломки, и, собственно, в итоге устранить, вернув устройство к жизни.
Вероятные причины поломки и способы их устранения
Токоограничивающий конденсатор
Итак, прежде всего, необходимо определить причину неисправности вашего устройства. Если прожектор включается, но во включенном состоянии не горит равномерно, а мерцает и мигает – вероятно вышел из строя токоограничивающий конденсатор С1. Многие китайские производители грешат тем, что пытаясь добиться максимальной яркости от не самого мощного прожектора, используют токоограничивающий конденсатор, не подходящий по параметрам к драйверу. Токоограничивающий конденсатор на 400 Вольт номинального рабочего напряжения вполне подойдет.
Блок питания
Еще одной распространённой причиной может быть выход из строя блока питания. Вариантов выхода из ситуации два – обратиться в магазин электроники, где вам помогут подобрать подходящий блок питания (его характеристики указаны на нём, потому, желательно разобрать прожектор и прихватить блок с собой), либо подобрать блок питания (может подойти от сканера или принтера).
Второй вариант возможен, конечно, только если у вас вдруг завалялась ненужная и нерабочая оргтехника, которая может послужить донором блока питания. Сверьте блоки питания, чтобы они были схожи по параметрам. Точное совпадение не обязательно, но параметры не должны сильно расходиться. Как и говорилось ранее, при наличии навыков использования инструментов и понимания в вопросах электроники – вы легко сможете поменять блок питания самостоятельно.
Драйвер
Если в ремонте нуждается маломощный прожектор, вполне вероятно, что он может не иметь своего блока питания, а функцию изменения токов в нем выполняет светодиодный драйвер. Поскольку светодиод не может питаться напрямую от сети, нуждаясь в переменном токе, отличающемся от того, что может предложить ему сеть, в устройстве прожектора задействуется драйвер, учитывающий разброс характеристик светодиода в зависимости от рабочей температуры и времени, корректируя на выходе ток, подающийся на светодиод. Именно этот драйвер может выйти из строя.
Для его замены необходимо будет разобрать светодиодный прожектор и выяснить маркировку драйвера, чтобы купить или заказать замену. Если вы уверенный пользователь электроинструмента – можно найти вышедший из строя элемент драйвера и выпаять его и заменить. Если вы ремонтируете светодиодный прожектор, собранный своими руками, скорее всего вам будет достаточно легко найти проблему в драйвере или же найти аналогичный драйвер и произвести замену. Это будет однозначно дешевле, чем покупать или собирать новый прожектор с нуля.
Выгорание матрицы
Еще одним вариантом выхода из строя конструкции вашего светодиодного прожектора, помимо неисправности драйвера, блока питания или других мелких элементов, участвующих в процессе преобразования тока, может быть выгорание самой светодиодной матрицы. В случае выхода из строя самого светодиода, необходимо найти и приобрести аналогичный по характеристикам диод. После разбора прожектора, нужно будет аккуратно деинсталлировать сгоревшую матрицу, открутив четыре винтика крепления и отпаяв токопроводящие элементы. Затем нужно будет равномерно и аккуратно нанести слой термопасты на новый диод, припаять токоподводящие элементы и аккуратно прикрутить матрицу. Нужно учесть, что форма матрицы должна оставаться нетронутой, то есть желательно использовать те же винтики, что были использованы изначально. Они не должны иметь головки конической формы, так как при использовании таковых, если вы закрутите их с чуть большим усилием, они могут повредить матрицу, и вся ваша работа будет насмарку.
Подводим итоги
Чтобы произвести ремонт светодиодного прожектора самостоятельно, вы должны как минимум неплохо владеть навыками работы с паяльником, тестерами и мультиметром, а так же разбираться в схемах или уметь их читать, чтобы найти причину неисправности, выпаять неисправный элемент и заменить его.
Если в вашем прожекторе вышел из строя драйвер или блок питания – вы можете подобрать замену и вернуть осветительный прибор к жизни. Так же, как и с драйвером, замену можно произвести и со светодиодной матрицей – достаточно купить аналог со схожими характеристиками. Если почему-то после ваших манипуляций устройство не заработало, вероятно, есть смысл в приобретении нового. Но если вы уверены в своих силах, вы всегда можете собрать светодиодный прожектор своими руками – его будет проще починить в дальнейшем, или заменить некоторые элементы, постоянно продлевая срок эксплуатации устройства.
samosvetil.ru
LED драйвер. Зачем он нужен и как его подобрать?
В последнее время потребители всё чаще интересуются светодиодным освещением. Популярность LED ламп вполне обоснована – новая технология освещения не выделяет ультрафиолетового изучения, экономична, а срок службы таких ламп – более 10 лет. Кроме того, при помощи LED элементов в домашних и офисных интерьерах, на улице легко создать оригинальные световые фактуры.
Если вы решились приобрести для дома или офиса такие приборы, то вам стоит знать, что они очень требовательны к параметрам электросетей. Для оптимальной работы освещения вам понадобится LED — драйвер. Так как строительный рынок переполнен устройствами как различного качества так и ценовой политики, перед тем, как приобрести светодиодные устройства и блок питания к ним, не лишним будет ознакомиться с основными советами, которые дают специалисты в этом деле.
Для начала рассмотрим, для чего нужен такой аппарат как драйвер.
Каково предназначение драйверов?
Драйвер (блок питания) — это устройство, которое выполняет функции стабилизации тока, протекающего через цепь светодиодов, и отвечает за то, чтобы купленный вами прибор отработал гарантированное производителем количество часов. При подборе блока питания необходимо для начала досконально изучить его выходные характеристики, среди которых ток, напряжение, мощность, коэффициент полезного действия (КПД), а также степень его защиты т воздействия внешних факторов.
К примеру, от проходных характеристик тока зависит яркость светодиод. Цифровое обозначение напряжения отражает диапазон, в котором функционирует драйвер при возможных скачках напряжения. Ну и конечно чем выше КПД, тем более эффективно будет работать устройство, а срок его эксплуатации будет больше.
Где применяются LED драйвера?
Электронное устройство – драйвер — обычно питается от электрической сети в 220В, но рассчитан на работу и с очень низким напряжением в10, 12 и 24В. Диапазон рабочего выходного напряжения, в большинстве случаев, составляет от 3В до нескольких десятков вольт. К примеру, вам нужно подключить семь светодиодов напряжением 3В. В этом случае потребуется драйвер с выходным напряжением от 9 до 24В, который рассчитан на 780 мА. Обратите внимание, что, несмотря на универсальность, такой драйвер будет обладать малым коэффициентом полезного действия, если дать ему минимальную нагрузку.
Если вам нужно установить освещение в авто, вставить лампу в фару велосипеда, мотоцикла, в один или два небольших уличных фонаря или в ручной фонарь, питания от 9 до 36В вам будет вполне достаточно.
LED –драйверы по мощнее необходимо будет выбирать, если вы намерены подключить светодиодную систему, состоящую из трех и более устройств, на улице, выбрали её для оформления своего интерьера, или же у вас есть настольные офисные светильники, которые работают не менее 8 часов в день.
Как работает драйвер?
Как мы уже рассказывали, LED — драйвер выступает источником тока. Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.
Например, подключим к источнику напряжением 12 В резистор 40 Ом. Через него пойдет ток величиной 300мА.
Теперь включим сразу два резистора. Суммарный ток составит уже 600мА.
Блок питания поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40Ом к драйверу 300мА.
Блок питания создаст на резисторе падение напряжения 12В.
Если подключить параллельно два резистора, ток также будет 300мА, а напряжение упадет в два раза.
Каковы основные характеристики LED — драйвера?
При подборе драйвера обязательно обращайте внимание на такие параметры, как выходное напряжение, потребляемая нагрузкой мощность (ток).
— Напряжение на выходе зависит от падения напряжения на светодиоде; количества светодиодов; от способа подключения.
— Ток на выходе блока питания определяется характеристиками светодиодов и зависит от их мощности и яркости, количества и цветового решения.
Остановимся на цветовых характеристиках LED — ламп. От этого, к слову, зависит мощность нагрузки. Например, средняя потребляемая мощность красного светодиода варьирует в пределах 740 мВт. У зеленого цвета средняя мощность составит уже около 1.20 Вт. На основании этих данных можно заранее просчитать, какой мощности драйвер вам понадобится.
Чтобы вам легче было просчитать общую потребляемую мощность диодов, предлагаем использовать формулу.
P=Pled x N
где Pled — это мощность LED, N — количество подключаемых диодов.
Еще одно важное правило. Для стабильной работы блока питания запас по мощности должен быть хотя бы 25%. То есть должно выполняться следующее соотношение:
Pmax ≥ (1.2…1.3)xP
где Pmax — это максимальная мощность блока питания.
Как правильно подсоединять светодиоды-LED?
Подключать светодиоды можно несколькими способами.
Первый способ – это последовательное введение. Здесь потребуется драйвер напряжением 12В и током 300мА. При таком способе светодиоды в лампе или на ленте горят одинаково ярко, но если вы решитесь подключить большее число светодиодов, вам потребуется драйвер с очень большим напряжением.
Второй способ — параллельное подключение. Нам подойдет блок питания на 6В, а тока будет потребляться примерно в два раза больше, чем при последовательном подключении. Есть и недостаток — одна цепь может светить ярче другой.
Последовательно-параллельное соединение – встречается в прожекторах и других мощных светильниках, работающих и от постоянного, и от переменного напряжения.
Четвертый способ — подключение драйвера последовательно по два. Он наименее предпочтителен.
Есть еще и гибридный вариант. Он соединил в себе достоинства от последовательного и параллельного соединения светодиодов.
Специалисты советуют драйвер выбирать перед тем, как вы купите светодиоды, да еще и желательно предварительно определить схему их подключения. Так блок питания будет для вас более эффективно работать.
Линейные и импульсные драйверы. Каковы их принципы работы?
Сегодня для LED ламп и лент выпускают линейные и импульсные драйверы.
У линейного выходом служит генератор тока, который обеспечивает стабилизацию напряжения, не создавая при этом электромагнитных помех. Такие драйверы просты в использовании и не дорогие, но невысокий коэффициент полезного действия ограничивает сферу их применения.
Импульсные драйверы, наоборот, имеют высокий коэффициент полезного действия (около 96%), да еще и компактны. Драйвер с такими характеристиками предпочтительнее использовать для портативных осветительных приборов, что позволяет увеличить время работы источника питания. Но есть и минус – из-за высокого уровня электромагнитных помех он менее привлекателен.
Нужен светодиодный драйвер на 220В?
Для включения в сеть 220В выпускаются линейные и импульсные драйверы. При этом если блоки питания обладают гальванической развязкой (передача энергии или сигнала между электрическими цепями без электрического контакта между ним), они демонстрируют высокий коэффициент полезного действия, надежность и безопасность в эксплуатации.
Без гальванической развязки блок питания обойдется вам дешевле, но будет не столь надежным, потребует осторожности при подсоединении из-за опасности удара током.
При подборе параметров по мощности специалисты рекомендуют останавливать свой выбор на светодиодных драйверах с мощностью, превышающей необходимый минимум на 25%. Такой запас мощности не даст электронному прибору и питающему устройству быстро выйти из строя.
Стоит ли покупать китайские драйверы?
Made in China – сегодня на рынке можно встретить сотни драйверов различных характеристик, произведенных в Китае. Что же они собой представляют? В основном это устройства с импульсным источником тока на 350-700мА. Низкая цена и наличие гальванической развязки позволяют таким драйверам быть в спросе у покупателей. Но есть и недостатки прибора китайской сборки. Зачастую они не имеют корпуса, использование дешевых элементов снижает надежность драйвера, да еще и отсутствует защита от перегрева и колебаний в электросети.
Китайские драйверы, как и многие товары, выпускаемые в Поднебесной, недолговечны. Поэтому если вы хотите установить качественную систему освещения, которая прослужит вам ни один год, лучше всего покупать преобразователь для светодиодов от проверенного производителя.
Каков срок службы led драйвера?
Драйверы, как и любая электроника, имеют свой срок эксплуатации. Гарантийный срок службы LED — драйвера составляет 30 000 часов. Но не стоит забывать, что время работы аппарата будет зависеть еще от нестабильности сетевого напряжения, уровня влажности и перепада температур, влияния на него внешних факторов.
Неполная загруженность драйвера также снижает срок эксплуатации прибора. К примеру, если LED – драйвер рассчитан на 200Вт, а работает на нагрузку 90Вт, половина его мощности возвращается в электрическую сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания и прибор может перегореть, сослужив вам всего год.
Следуйте нашим советам и тогда не придется часто менять светодиодные устройства.
electrongrad.ru
TinyFL — драйвер фонарика на микроконтроллере / Habr
Привет, Habr!
Хочу рассказать историю о том, как мне в руки попал китайский налобный фонарик на светодиоде Cree XM-L и что дальше с ним стало.
Предыстория
Когда-то давно я заказал с одного китайского сайта фонарик с ярким светодиодом. Фонарик оказался довольно эргономичным (хотя он мог быть и полегче), но вот его драйвер оставлял желать лучшего.
Светил он достаточно ярко, но у драйвера было только 3 режима — очень яркий, яркий и стробоскоп, переключение между которыми производилось нажатием кнопки. Для того, чтобы просто включить и выключить фонарь, требовалось каждый раз перебирать эти 3 режима. Вдобавок, этот фонарик, будучи включенным, разряжал батарею до последнего – так пара моих банок 18650 ушли в глубокий разряд.
Все это было неудобно и надоедало, поэтому в какой-то момент я решил сделать для него свой драйвер, о чем и будет дальнейшее повествование.
Фонарик со старым драйвером
Вот такой фонарик, наверняка многие имели дело с подобными
Так выглядит оригинальный драйвер
Техническое задание
Как известно, для достижения хорошего результата любая разработка должна иметь хорошее ТЗ, поэтому постараюсь сформулировать его для себя. Итак, драйвер должен:
- Уметь включаться/отключаться по короткому нажатию кнопки (кнопка без фиксации). Пожалуй, это основная причина, по которой все это затеялось.
- Иметь плавную (бесступенчатую) регулировку яркости, от самого яркого — «турбо», до «мунлайта», когда диод еле светится. Яркость должна изменяться равномерно.
- Запоминать установленную яркость на время выключения.
- Контролировать заряд батареи, предупреждая когда она почти разряжена (примерно 3.3В) и отключаясь, когда разряжена полностью (примерно 2.9В). Для разных АКБ эти параметры могут быть иными. Соответственно, рабочее напряжение должно быть в диапазоне 2.7~4.5В.
- Иметь 2 специальных режима — аварийный маячок и стробоскоп (ну а почему бы и нет?)
- Уметь включать/выключать задний светодиод (это актуально при езде на велосипеде ночью, получается что-то вроде габаритного огня).
- Иметь защиту от переполюсовки и статического электричества. Не обязательно, но будет приятным дополнением, поскольку в темноте можно по ошибке поставить АКБ неправильной стороной.
- Быть меньше изначального драйвера по размерам, но при этом иметь те же посадочные места. Китайский драйвер просто огромен, сделать крупнее будет непросто.
Ну и если фонарик подвергается моддингу, почему бы не встроить в него зарядное устройство с micro-USB разъемом? У меня под рукой всегда есть такой кабель и USB зарядка, а родной блок питания приходится искать.
Железо
У меня есть кое-какой опыт работы с Arduino, поэтому было решено делать драйвер на МК семейства AVR. Они широко доступны, легко программируются и имеют режимы пониженного энергопотребления (сна).
В качестве «мозга» драйвера был выбран микроконтроллер Attiny13a — это один из самых дешевых МК фирмы Atmel (ныне поглощенной компанией Microchip), он имеет на борту все необходимое — GPIO для подключения кнопки и светодиода, таймер для генерации ШИМ-сигнала, АЦП для измерения напряжения и EEPROM для сохранения параметров. Доступно всего 1 КБ флеш-памяти (но много ли надо для фонарика), а так же 64 Б RAM и столько же EEPROM.
Attiny13 выпускается в нескольких вариантах корпуса, в частности в DIP-8, который можно воткнуть прямо в обычную макетную плату с шагом 2.54мм.
Поскольку от задней части к голове фонаря идет всего 3 провода, кнопка вынуждена замыкаться на землю (о невозможности замыкать на плюс — позже), придется коммутировать светодиод по плюсу — а значит, нужен P-канальный полевик. В качестве такого транзистора я взял AO3401, но можно взять SI2323, он дороже, но имеет меньшее сопротивление открытого канала (40 мОм, тогда как у AO3401 60 мОм, при 4.5 В), следовательно драйвер будет меньше греться.
От слов к делу, собираю на макетке предварительную версию
Питается оно пока что напрямую от программатора, напряжением 5 В (на самом деле меньше из-за потерь в кабеле USB). Вместо светодиода XM-L пока воткнул обычный светодиод на ножках и поставил слабый транзистор с высоким пороговым напряжением.
Затем в программе Altium Designer была начерчена схема, которую я дополнил защитой от переполюсовки и ESD.
Подробное описание и предназначение всех компонентов
Обязательные компоненты:
U1 – микроконтроллер Attiny13a в корпусе 8S1 (индекс SSU)
С1 — развязывающий конденсатор по питанию микроконтроллера, должен быть в районе 0.1 мкф, корпус 1206 или 0805, температурный коэффициент X7R
R1-R2 — резисторный делитель для измерения напряжения батареи, номиналы можно ставить любые, тут главное соотношение (750К/220K, коэффициент деления 4.41) и ток утечки, который будет больше, если увеличить номиналы (при текущих он порядка 4 мкА). Поскольку используется внутренний ИОН (1.1 В, согласно даташиту он может быть в пределах 1.0 В — 1.2 В), максимальное напряжение на выходе делителя не должно быть более 1 В. При делителе 750/220 максимально допустимое напряжение на входе делителя будет 4.41 В, что более чем достаточно для всех типов литиевых аккумуляторов.
Делитель я рассчитывал при помощи вот этого калькулятора .
R3 — защита вывода порта микроконтроллера от замыкания (если вдруг PB1 окажется притянуто к VCC, через пин потечет большой ток и МК может сгореть)
R4 — подтяжка RESET МК к питанию, без него возможны перезагрузки от наводок.
Q1 — P-канальный полевой транзистор в корпусе SOT-23, я поставил AO3401, но можно и любой другой с подходящей распиновкой (например SI2323)
R7 — токоограничительный резистор затвора. Поскольку затвор транзистора имеет некоторую емкость, при зарядке этой емкости через пин может проходить большой ток и пин может выйти из строя. Можно ставить в районе 100-220 Ом (больше не следует, транзистор начнет долго находиться в полузакрытом состоянии, и, как следствие, будет сильнее греться).
R6 — резистор подтяжки затвора к питанию. На случай, если PB0 перейдет в высокоимпедансное состояние, через этот резистор на затворе Q1 установится логическая 1 и транзистор будет закрыт. Такое может произойти из-за ошибки в коде или в режиме программирования.
D2 — «запирающий» диод — позволяет при «проседании» напряжения (когда светодиод включается на короткий период на полную яркость) питаться МК от конденсатора какое-то время, так же защищает от переполюсовки.
Можно ставить любой диод шоттки в корпусе SOD323 с минимальным падением напряжения, я поставил BAT60.
Изначально, защита от неправильной полярности питания была сделана на полевом транзисторе (это можно увидеть на платах, изготовленных лутом). После распайки вылезла неприятная особенность — при включении нагрузки возникала просадка напряжения и МК перезагружался, поскольку полевик не ограничивает ток в обратном направлении. Сначала я припаял между VCC и GND электролитический конденсатор на 200 мкФ, но мне не понравилось такое решение из-за его размеров. Пришлось отпаивать транзистор и на его место ставить диод, благо SOT-23 и SOD-323 имеют похожие размеры.
Итого, в схеме всего 10 компонентов, обязательных для установки.
Необязательные компоненты:
R5 и D1 отвечают за заднюю подсветку (LED2). Минимальный номинал R5 — 100 Ом. Чем больше номинал, тем слабее светится задний светодиод (он включается в постоянном режиме, без ШИМ). D1 — любой светодиод в корпусе 1206, я поставил зеленый, т.к. визуально они ярче при тех же токах, чем прочие.
D3 и D4 — защитные диоды (TVS), я использовал PESD5V0 (5.0В) в корпусе SOD323. D3 защищает от перенапряжения по питанию, D4 — по кнопке. Если кнопка закрыта мембраной, то в нем нету особого смысла. Защитные диоды наверное имеет смысл использовать двунаправленные, иначе при переполюсовке через них пойдет ток и они выгорят (см. ВАХ двунаправленного защитного диода).
C2 — танталовый конденсатор в корпусе А (похож на 1206), имеет смысл ставить при нестабильной работе драйвера (напряжение питания мк может просаживаться при больших токах коммутации светодиода)
Все резисторы типоразмера 0603 (для меня это адекватный предел для пайки вручную)
С компонентами все ясно, можно делать печатную плату по вышеприведенной схеме.
Первым делом для этого нужно построить 3D модель будущей платы, вместе с отверстиями — имхо, в Altium Designer это самый удобный способ определить геометрию ПП.
Измерил размеры старого драйвера и его посадочных отверстий — плата должна крепиться к ним же, но иметь меньшие габариты (для универсальности, вдруг куда-то еще придется встроить).
Разумный минимум здесь получился где-то 25х12.5мм (соотношение сторон 2:1) с двумя отверстиями диаметром 2мм для крепления к корпусу фонаря родными винтами.
3D-модель я сделал в SolidWorks, затем экспортировал в Altium Designer как STEP.
Затем я разместил компоненты по плате, контакты сделал по углам (так паять удобнее и проще разводить землю), Attiny13 поставил по центру, транзистор поближе к контактам LED.
Развел силовые дорожки, разместил остальные компоненты как получится и развел сигнальные дорожки. Для удобства подключения ЗУ я вывел под него отдельные контакты, которые дублируют контакты батареи.
Всю разводку (за исключением одной перемычки) я сделал на верхнем слое — для того, чтобы была возможность изготовить плату в домашних условиях ЛУТом.
Минимальная ширина сигнальных дорожек — 0.254 мм / 10 mil, силовые имеют максимальную ширину там, где это возможно.
Так выглядит разведенная плата в Altium Designer
В Altium Designer есть возможность посмотреть, как будет выглядеть плата в 3D (для этого необходимо наличие моделей для всех компонентов, некоторые пришлось строить самому).
Возможно, кто-то тут скажет, что 3D режим для трассировщика не нужен, но лично для меня это удобная функция, которая облегчает размещение компонентов для удобства пайки.
На момент написания статьи было сделано 3 версии платы — первая под ЛУТ, вторая для промышленного изготовления и 3-я, финальная с некоторыми исправлениями.
Изготовление плат
Самодельный способ
ЛУТ — лазерно-утюжная технология, способ производства плат при помощи травления по маске, полученной переводом тонера с бумаги на медь. Этот способ отлично подходит для несложных односторонних плат — таких как этот драйвер.
В сети достаточно много статей по этой технологии, поэтому я не буду углубляться в подробности, а лишь расскажу вкратце про то, как это делаю я.
Для начала нужно подготовить шаблон, который будет распечатан на термобумаге. Экспортирую в PDF слой top_layer, получаю векторное изображение.
Поскольку плата маленькая, есть смысл брать кусок текстолита с габаритами в несколько раз больше и делать то, что в промышленности называют панелизацией.
Для этих целей весьма удобен CorelDraw, но можно пользоваться и любым другим векторным редактором.
Размещаю копии шаблонов на документе, между платами делаю промежутки в 0.5-1мм (зависит от способа разделения, об этом позже), платы должны быть расположены симметрично — иначе будет сложно их разделить.
Подбираю кусок одностороннего текстолита размерами чуть больше, чем скомпонованная панель, зачищаю и обезжириваю (предпочитаю тереть ластиком и потом спиртом). Печатаю на термобумаге шаблон для травления (тут важно не забыть отзеркалить шаблон).
При помощи утюга и терпения, аккуратно поглаживая по бумаге, перевожу на текстолит. Жду пока остынет и осторожно отдираю бумагу.
Свободные участки меди (не покрытые тонером) можно покрыть лаком или заклеить скотчем (чем меньше площадь меди, тем быстрее идет реакция травления).
Такая вот домашняя панелизация — большое количество плат позволяет компенсировать брак производства
Я травлю платы лимонной кислотой в растворе перекиси водорода, это самый доступный способ, хотя и довольно медленный.
Пропорции такие: на 100мл перекиси 3% идет 30г лимонной кислоты и примерно 5г соли, это все перемешивается и выливается в емкость с текстолитом.
Подогревание раствора ускорит реакцию, но может привести к отслаиванию тонера.
Начинается неведомая химическая магия: медь покрывается пузырями, а раствор приобретает синий оттенок
Через какое-то время достаю протравленую плату, очищаю от тонера. У меня его не получается смывать какими-либо растворителями, поэтому я удаляю его механически — мелкозернистой наждачной бумагой.
Теперь остается залудить плату — это поможет при пайке и защитит медь от окисления и облегчит пайку. Лудить я предпочитаю сплавом Розе — этот сплав плавится при температуре около 95 градусов, что позволяет лудить им в кипящей воде (да, возможно не самый надежный состав для лужения, но для самодельных плат годится).
После лужения я сверлю плату (для контактов использую твердосплавные сверла ф1.0, для перемычек — ф0.7), сверлю дремелем за неимением другого инструмента. Пилить текстолит я не люблю из-за пыли, поэтому после сверления разрезаю платы канцелярским ножом — с двух сторон делаю несколько надрезов по одной линии, затем разламываю по надрезу. Это напоминает метод V-cut, используемый в промышленности, только там надрез делается фрезой.
Так выглядит плата, готовая к пайке
Когда плата готова, можно приступать к распайке компонентов. Сначала я запаиваю мелочь (резисторы 0603), затем все остальное. Резисторы примыкают вплотную к МК, поэтому в обратной последовательности запаять может быть проблематично. После пайки я проверяю, нет ли КЗ по питанию драйвера, после чего уже можно приступать к прошивке МК.
Драйверы, готовые к загрузке прошивки
Промышленный способ
ЛУТ — это быстро и доступно, но технология имеет свои недостатки (как и почти все «домашние» методы изготовления ПП). Проблематично сделать двухсторонную плату, дорожки могут быть перетравлены, а о металлизации отверстий остается только мечтать.
Благо, предприимчивые китайцы давно предлагают услуги изготовления печатных плат промышленным способом.
Как ни странно, однослойная плата у китайцев будет стоить дороже, чем двухслойная, поэтому я решил добавить второй (нижний) слой к печатной плате. На этом слое продублированы силовые дорожки и земля. Так же, появилась возможность сделать теплоотвод от транзистора (медные полигоны на нижнем слое), что позволит драйверу работать на более высоких токах.
Нижний слой платы в Altium Designer
Для этого проекта я решил заказать печатную плату на сайте PcbWay. На сайте есть удобный калькулятор расчета стоимости плат в зависимости от их параметров, размеров и количества. После расчета стоимости я загрузил gerber-файл, созданный ранее в Altium Designer, китайцы его проверили и плата отправилась на производство.
Изготовление комплект из 10 плат TinyFL обошлось мне в $5. При регистрации нового пользователя дается скидка $5 на первый заказ, поэтому я оплачивал только доставку, которая тоже стоит где-то в районе $5.
На этом сайте есть возможность выложить проект в общий доступ, поэтому если кто-то захочет заказать эти платы, можно просто добавить в корзину этот проект.
Спустя пару-тройку недель мне пришли те же самые платы, только красивенькие изготовленные промышленным способом. Их остается только распаять и залить в них прошивку.
Программа (прошивка)
Основная трудность, которая возникла при написании прошивки драйвера, связана она с крайне малым размером flash-памяти — у Attiny13 ее всего-навсего 1024 байта.
Так же, поскольку изменение яркости плавное, нетривиальной задачей оказалось равномерное ее изменение — для этого пришлось делать гамма-коррекцию.
Алгоритм управления драйвером
Драйвер включается по короткому нажатию на кнопку, выключается по нему же.
Выбранный режим яркости сохраняется на время выключения.
Если во время работы сделать двойное короткое нажатие кнопки (двойной клик), будет включен/выключен дополнительный светодиод.
При длинном нажатии во время работы начнет плавно изменяться яркость фонаря. Повторное длинное нажатие изменяет направление (сильнее/слабее).
Драйвер периодически проверяет напряжение батареи, и если оно ниже установленных значений, предупреждает пользователя о разряде, а затем отключается во избежание глубокого разряда.
Более подробное описание алгоритма работы драйвера
- При подаче питания на МК производится настройка периферии и МК погружается в сон (если STARTSLEEP определено). При подаче питания на драйвер оба светодиода мигают некоторое количество раз, если STARTBLINKS определено.
- Сон. Attiny13 засыпает в режиме power-down (это самый экономичный режим, по даташиту потребление МК составит ~ 1 мкА), выйти из которого оно может только по какому-либо прерыванию. В данном случае это прерывание INT0 — нажатие кнопки (установка PC1 в логическое 0).
На PC1 при этом должна быть включена внутренняя слабая подтяжка к питанию. АЦП и компаратор являются основным потребителями тока из всей периферии, поэтому их тоже нужно отключить. На время сна содержимое регистров и оперативной памяти сохраняется, поэтому EEPROM не нужен для запоминания яркости. - После сна периферия и ШИМ включается и драйвер входит в бесконечный цикл, в котором отслеживается нажатие кнопки и периодически проверяется напряжение батареи.
- Если кнопка нажата — засекается время нажатия.
4.1. Если нажатие короткое — ожидается двойной клик (если BTN_DBCLICK определено).
Если он был, переключается дополнительный светодиод LED2
Если нет, то переход к п.2 (сон)
4.2. Если нажатие долгое (дольше, чем BTN_ONOFF_DELAY) — включается режим управления яркостью. В этом режиме:- Инвертируется направление изменения (больше/меньше) и изменяется % заполнения ШИМ, пока нажата кнопка.
- Если достигнуто максимальное/минимальное значение (RATE_MAX / RATE_MIN), светодиод начинает мигать;
- Если прошло n-миганий (AUXMODES_DELAY) и кнопка все еще нажата, включается дополнительный режим. Таких режимов два — стробоскоп ( включается на 25 мс, частота 8 Гц) и аварийный маячок (включается на полную яркость на 50мс, частота 1 Гц). В этих режимах не происходит проверки заряда батареи, а для выхода нужно какое-то время держать нажатой кнопку.
- Если пришло время проверять напряжение батареи — считываются показания с ADC2, результат сравнивается с предустановленными значениями.
- Если значение АЦП больше значения BAT_WARNING – все нормально
- Если меньше BAT_WARNING – пользователь предупреждается о разряде, драйвер мигает основным светодиодом. Кол-во вспышек будет пропорционально степени разряда. Например, с дефолтными значениями при полном разряде фонарь мигнет 5 раз.
- Если меньше BAT_SHUTDOWN — МК переходит в п.2 (сон).
Управление яркостью светодиода
Как известно, самый простой способ управлять яркостью — изменять скважность ШИМ, при этом светодиод на какое-то время включается на полную яркость, затем выключается. Из-за особенностей человеческого глаза кажется, что светодиод светит менее ярко, чем если бы он был включен постоянно. Поскольку светодиод подключен через P-канальный полевой транзистор, для его открытия необходимо притянуть затвор к земле, а для закрытия — наоборот, к питанию. Время открытия транзистора по отношению ко времени его закрытого состояния будет коррелировать с заполнением ШИМ.
За скважность шим отвечает переменная rate, 255 rate = 100% ШИМ.
При частоте тактирования 1.2 МГц и предделителе таймера в 1, частота ШИМ будет равна 1200000/256 = 4.7 КГц. Поскольку это частота звуковая (воспринимаемая человеческим ухом), на некоторой скважности ШИМ драйвер может начать пищать (точнее, пищит не драйвер, а провода, либо элементы питания). Если мешает, можно увеличить рабочую частоту до 9.6 (CKSEL[1:0]=10, CKDIV8=1) или 4.8 МГц (CKSEL[1:0]=01, CKDIV8=1), тогда частота ШИМ будет в 8 или в 4 раза больше, но энергопотребление МК так же вырастет пропорционально.
Считается, что диод нужно питать путем стабилизации тока через него, а в таком режиме он быстро выйдет из строя. Тут я соглашусь и скажу, что у меня в фонаре (да и во многих налобниках аналогичной конструкции) светодиод не подключается напрямую к драйверу, а до него идут достаточно длинные и тонкие провода, сопротивление которых, а так же внутреннее сопротивление батареи и сопротивление драйвера ограничивают максимальный ток в районе 1.5 А, что в 2 раза меньше максимального тока для данного светодиода (максимальный ток для Cree XM-L согласно документации — 3 А).
Если у Вас драйвер подключен к светодиоду короткими проводами и у держателя батареи хорошие контакты, ток при максимальной яркости (rate=255) может превышать значение в 3А. В этом случае данный драйвер Вам скорее всего не подойдет, так как есть риск выхода светодиода из строя. Тем не менее, можно скорректировать параметр RATE_MAX до получения приемлемых значений тока. К тому же, хоть по спецификации транзистора SI2323DS его максимальный ток и превышает 4 А, лучше выставить порог в 2 А, иначе драйверу может потребоваться охлаждение.
Гамма-коррекция
Человеческий глаз воспринимает яркость объектов нелинейно. В случае с этим драйвером, разница между 5-10% ШИМ будет восприниматься как многократное увеличение яркости, тогда как разница между 75-100% будет практически не будет заметна глазу. Если увеличивать яркость светодиода равномерно, со скоростью n процентов в секунду, будет казаться, что в начале яркость очень быстро растет от нуля до среднего значения, затем очень медленно увеличивается от середины до максимума.
Это весьма неудобно, и для компенсации этого эффекта пришлось сделать упрощенный алгоритм гамма-коррекции. Его суть в том, что шаг изменения яркости увеличивается от 1 при минимальных значениях ШИМ до 12 при максимальных значениях. В графическом представлении это выглядит как кривая, точки которой сохранены в массиве rate_step_array. Таким образом, кажется, что яркость изменяется равномерно на всем диапазоне.
Контроль напряжения батареи
Каждые n-секунд (за интервал в миллисекундах отвечает параметр BAT_PERIOD) происходит замер напряжения батареи. Положительный контакт батареи, который подключается к VIN и попадает на резисторный делитель R1-R2, к средней точке которого подключен пин PB4 (он же ADC2 у мультиплексора АЦП).
Поскольку напряжение питания изменяется вместе с измеряемым напряжением, не получится измерить его, использовав в качестве опорного напряжения Vref, поэтому в качестве ИОН я применил внутренний источник на 1.1 В. Как раз для этого и нужен делитель — МК не может измерить напряжение, большее чем напряжение опорного источника (так, напряжению 1.1 В будет соответствовать значение АЦП в 1023 или 255, если использовать 8-битное разрешение). Проходя через делитель, напряжение в средней его точке будет в 6 раз меньше входного, значению 255 будет соответствовать уже не 1.1 В, а целых 4.33 В (делитель на 4.03), что с запасом покрывает диапазон измерений.
В итоге получается некоторое значение, которое дальше сравнивается с предустановленными значениями минимальных напряжений. При достижении значения BAT_WARNING светодиод начинает мигать некоторое количество раз (чем сильнее разряжено, тем больше мигает — за это отвечает BAT_INFO_STEP, подробнее в коде), а при достижении BAT_SHUTDOWN драйвер отключается.
Значение АЦП переводить в милливольты я не вижу смысла, т.к. это тратит лишную память, которой в тиньке и так мало.
Кстати, делитель является основным потребителем питания, когда МК находится в режиме сна. Так, делитель на 4.03 с R1 = 1M и R2 = 330К, будет иметь общее R = 1330K и ток утечки при 4 В = 3 мкА.
На время измерения напряжения нагрузка (светодиод) отключается примерно на 1 мс. Это почти не заметно для глаз, но помогает стабилизировать напряжение, иначе измерения будут некорректные (а делать какие-либо поправки на скважности шим и прочее — слишком сложно).
Внесение изменений в прошивку
Это нетрудно сделать, особенно если был опыт работы с Arduino или просто с C/C++.
Даже если такого опыта не было, можно настроить почти все рабочие параметры путем редактирования определений (defines) заголовочного файла flashlight.h.
Для редактирования исходного кода нужно будет поставить Arduino IDE с поддержкой Attiny13(a) или Atmel Studio – оно не сложнее, чем Arduino IDE, но гораздо удобнее.
Arduino IDE
Сперва необходимо будет установить поддержку Attiny13 в IDE. Достаточно подробная инструкция имеется в этой статье.
Далее нужно выбрать в меню Tools>Board Attiny13(a) и в меню Tools>Frequency 1.2MHz.
«Скетч» содержится в файле с расширением .ino, он содержит всего одну строчку кода — это включение в проект заголовочного файла. По сути дела, данный скетч — просто способ скомпилировать прошивку через Arduino IDE. Если Вы захотите внести в проект какие-либо изменения, работайте с файлом .cpp.
После открытия проекта нужно нажать на галочку, пойдет компиляция, в случае успеха в логе будет ссылка на файл *.hex. Его нужно залить в микроконтроллер по инструкции ниже.
Atmel Studio
Проект для этого IDE содержится в файле flashlight.atsln, а исходники — в файлах flashlight.h содержит определения (настройки) и flashlight.cpp содержит собственно код.
Расписывать более подробно содержимое исходников не вижу смысла — в коде полно комментариев.
После внесения изменений в код надо нажать F7, прошивка скомпилируется (или нет, тогда компилятор укажет, где ошибка). В папке debug появляется flashlight.hex, который можно загрузить в микроконтроллер по инструкции ниже.
Загрузка прошивки в микроконтроллер
Для загрузки прошивки и настройки фьюзов я использую программатор USBASP в сочетании с программой AVRDUDEPROG. Программа представляет из себя подобие GUI для программы avrdude, есть удобный встроенный калькулятор фьюзов — достаточно поставить галочки возле нужных битов. В списке контроллеров нужно выбрать подходящий (в данном случае Attiny13(a), зайти на вкладку Fuses и нажать кнопку read. Только после того, как значения фьюзов считаны из МК, можно их изменять. После изменения нужно нажать programm, новые фьюзы будут записаны в МК. Подходящие значения фьюзов записаны в файле flashlight.h
Для заливки прошивки надо перейти на вкладку Program, в строке Flash выбрать скомпилированный файл прошивки в формате HEX (flashlight.hex) и нажать Program. Статус прошивки будет отображаться в окне снизу. Если загрузка неудачна, возможно дело в плохом контакте, так бывает — стоит попробовать еще раз. Кстати, именно для этого был сделан параметр STARTBLINKS — однократное мигание LED2 в момент подачи питания на драйвер служит индикацией контакта драйвера с программатором.
Вместо USBASP для загрузки прошивки можно использовать Arduino, подробнее тут и тут
Программатор USBASP, подключенный к драйверу через клипсу со шлейфом
Для подключения USBASP к тиньке я использую клипсу под 8-контактный SOIC. Не очень удобное приспособление, приходится помучаться минут 10, прежде чем поймаешь контакт (возможно, мне просто попалась бракованная клипса). Бывают так же адаптеры SOIC-DIP, куда вставляется микросхема до пайки и в нее заливается прошивка — этот вариант удобнее, но теряется возможность программировать драйвер внутрисхемно (то есть обновлять прошивку после пайки МК на плату).
Если всего этого нет, то можно просто припаять проводки к выводам МК, которые затем прикрепить к Arduino.
Калибровка
Токи, проходящие через драйвер и светодиод, не должны превышать максимальных значений. Для светодиода XM-L это 3 А, для драйвера оно зависит от используемого транзистора, например для SI2323 максимальный ток около 4 А, но лучше гонять на меньших токах из-за чрезмерного нагрева. Для уменьшения тока на максимальной яркости используется параметр RATE_MAX (#define RATE_MAX xx, где xx — максимальная яркость от 0 до 255).
Калибровка АЦП не является обязательной процедурой, но если хочется, чтобы драйвер точно отслеживал пороговое напряжение, то придется с этим повозиться.
Расчеты не дадут высокой точности измерений, т. к. во-первых, номиналы резисторов могут варьироваться в пределах допуска (обычно 1-5%), а во-вторых, внутренний ИОН может иметь разброс от 1.0 до 1.2 В.
Поэтому, единственный приемлемый способ — выставить значение в единицах АЦП (BAT_WARNING и BAT_SHUTDOWN), экспериментально подбирая его под нужное. Для этого понадобится терпение, программатор и регулируемый источник питания.
Я выставлял в прошивке значение BAT_PERIOD в 1000 (проверка напряжения раз в секунду) и постепенно снижал напряжение питания. Когда драйвер начинал предупреждать о разряде, я оставлял текущее значение BAT_WARNING как нужное.
Это не самый удобный способ, возможно в будущем надо сделать процедуру автоматической калибровки с сохранением значений в EEPROM.
Сборка фонарика
Когда плата была готова и прошивка была залита, можно было наконец ставить ее на место старого драйвера. Я выпаял старый драйвер и припаял на его место новый.
Новый драйвер подключается вместо старого по этой схеме
Проверив, нет ли короткого замыкания по питанию, подключил питание и проверил работоспособность. Затем смонтировал плату зарядки (TP4056), для этого пришлось немного дремелем рассверлить отверстие разъема зарядки, и зафиксировал ее термоклеем (тут важно было, чтобы клей не затек в разъем, достать его оттуда будет сложно).
Я не стал прикручивать плату винтами, т. к. резьба в корпусе сорвалась от многократных закручиваний, а просто залил ее клеем, провода тоже заклеил в местах пайки, дабы они не перетирались. Драйвер и ЗУ я решил покрыть акриловым бесцветным лаком, это должно помочь от коррозии.
Тестирование и расчет стоимости изготовления
После всех операций можно было приступать к тестированию драйверов. Ток измерял обычным мультиметром, подключив его в разрыв цепи питания.
Энергопотребление старого драйвера (измерялось при 4.04 В):
- Во время сна — не измерялось
- Максимальный режим: 0.60 А
- Средний режим: 0.30 А
- Стробоскоп: 0.28 А
Энергопотребление нового драйвера (измерялось при 4.0 В):
- В режиме сна потребляет в районе 4 мкА, это намного меньше тока саморазряда литий-ионной батареи. Основной ток в этом режиме протекает через резисторный делитель.
- На минимальном режиме, «мунлайт» — около 5-7 мА, если считать, что емкость одной ячейки 18650 около 2500 мА*ч, то получается около 20 дней непрерывной работы. Сам МК потребляет где-то 1.2-1.5 мА (при рабочей частоте 1.2 МГц).
- На максимальном режиме, «турбо» — потребляет около 1.5 А, в таком режиме проработает около полутора часов. Светодиод на таких токах начинает сильно нагреваться, поэтому данный режим не предназначен для длительной работы.
- Аварийный маячок — потребляет в среднем около 80 мА, в таком режиме фонарь проработает до 30 часов.
- Стробоскоп — потребляет около 0.35 А, проработает до 6 часов.
Цена вопроса
Если покупать компоненты в Чип и Дипе, выйдет около 100р (60р Attiny13, ~40р остальная рассыпуха). С китая заказывать имеет смысл, если делается несколько штук — тогда в пересчете на штуку выйдет дешевле, китайцы продают как правило партиями от 10 штук.
Платы выйдут по цене в районе 300р за 10 штук (без доставки), если заказывать их в Китае.
Распайка и прошивка одного драйвера у меня занимает где-то час.
Заключение
Китайский фонарик стал гораздо удобнее, хотя теперь у меня появились претензии к его механике — передняя часть слишком тяжелая, да и фокусировка не особо нужна.
В будущем планирую сделать версию этого драйвера для фонарей с кнопкой по питанию (с фиксацией). Правда, меня смущает обилие подобных проектов. Как вы считаете, стоит ли делать еще один такой?
Драйвер крупным планом (версия 2_t)
UPD: Добавлена поддержка Arduino IDE.
Исходники прошивки, схема, и разводка платы теперь лежит на гитхабе, скачать можно тут: https://github.com/madcatdev/tinyfl_t
habr.com
Светлый угол — светодиоды • Почему сгорел драйвер
Здравствуйте!Хочу понять, почему сгорел драйвер и как не допустить, если это возможно, сгорания других. Прошу участников форума помочь советом.
Ситуация такая: цепочка последовательно соединенных светодиодов, суммарное падение напряжения 78 В (замерено мультиметром). Запитано от драйвера с параметрами 300 мА, 70-110 В. Таких цепочек две, каждая от своего драйвера (между собой цепи не связаны). Оба драйвера одинаковые, покупались одновременно. Обе цепочки работают последние 5 месяцев, светят по 14 часов каждый день (по таймеру, для растений). Профиль со светиками едва теплый, корпуса драйверов (они в пластике) вообще снаружи не греются, почти каждый день к ним прикасаюсь.
И вот сегодня обнаружилось, что одна цепочка не светит (вчера вечером светила). Если запитать ее от второго драйвера, то светит, следовательно, светики в порядке, проблема в драйвере. На выходе сломанного драйвера напряжения нет. Вскрытие драйвера показало черное обугленное пятно на плате со стороны выводов элементов и на внутренней стороне корпуса, соприкасавшейся с обугленным местом на плате. В эпицентре: выводы некоего трехногого элемента с надписью FQPF5N60C (транзистора, если верить гуглу), на которого прикручен радиатор, и еще две мелкие детали, расположенные на стороне платы с выводами (одна вроде резистор, а вторая имеет 4 вывода, что это?).
Что могло произойти? Какой-нибудь внешний фактор, наверно, отразился бы на обоих драйверах (от розетки в стене идет обычный бытовой удлиннитель, а в него воткнуты вилки обоих драйверов, сгорел только один). Или это брак в драйвере? Можно ли было его спрогнозировать и предотвратить поломку? Может ли это «обугливание» не ограничиться платой, а представлять угрозу пожара?
Пожалуйста, поделитесь своими соображениями.
ledway.ru
Светлый угол — светодиоды • Линейный драйвер
Обсуждаем построение светодиодных драйверов, особенности питания разных типов светодиодов.
Re: Линейный драйвер
Invisible_Light » 22 янв 2015, 23:29
Как вы представляете себе линейный драйвер 3W на 220V? Линейный, значит — не ШИМ (не импульсный). Должен поддерживать выходной ток, гасящие излишки входного напряжения на себе.
У вас что-то типа аналога Акрича. Световую пульсации не убрать! За простоту надо платить…
- Invisible_Light
- Scio me nihil scire
- Сообщений: 5807
- Зарегистрирован: 17 июн 2012, 01:53
- Откуда: Киров
- Благодарил (а): 13 раз.
- Поблагодарили: 930 раз.
Re: Линейный драйвер
Oleg112 » 22 янв 2015, 23:51
Если посмотреть на рисунок где sm2082 там фильтр есть. Как я понимаю чип аналог. Ещё видел решение параллельно светодиоду конденсатор
- Oleg112
- Светлячок
- Сообщений: 6
- Зарегистрирован: 22 янв 2015, 12:47
- Откуда: Московская область Где-то возле г Бронницы
- Благодарил (а): 0 раз.
- Поблагодарили: 0 раз.
Re: Линейный драйвер
Oleg112 » 23 янв 2015, 00:08
Обзор: SM2087 является высокий коэффициент мощности линейный драйвер светодиодов постоянного тока чипы, используемые в поле освещения LED. Чип с помощью уникального постоянный Текущий контроль запатентованной технологии. Постоянный ток точностью менее ± 5% выходной ток может быть внешним REXT, регулировка сопротивления. Чип обеспечивает высокий коэффициент мощности и низкий коэффициент гармонических искажений без трансформатора и высоковольтных конденсаторов. система проста. пакетное задание светодиодных осветительных решений с различными функциями защиты. особенности: 1. без трансформатора и высоковольтных конденсаторов. интегрированный высокого напряжения электропитания запуска выходной регулируемый ток до 100 ма Максимальный ток отклонение <± 5% КПД:> 90% коэффициент мощности:> 0.95 7-й день.THD: <20% 8. с функцией защиты от перегрева. фишка приложения EMI 10. Пакет: поле ESOP8 приложения: 1.Светодиодные постоянного тока 2.T5/T8 серии LED флуоресцентные трубки 3.Светодиодные лампы 4.Светодиодные потолочные
- Oleg112
- Светлячок
- Сообщений: 6
- Зарегистрирован: 22 янв 2015, 12:47
- Откуда: Московская область Где-то возле г Бронницы
- Благодарил (а): 0 раз.
- Поблагодарили: 0 раз.
Re: Линейный драйвер
Oleg112 » 23 янв 2015, 01:18
Произвел замеры. Сопротивление 2 шт по 52ома. На каждый светодиод приходит по 60вольт и 99hz (очень удивился) Напряжения в сети (ac)230вольт после диод моста (dc)210вольт. За время замерОв зайчики в глазах- Oleg112
- Светлячок
- Сообщений: 6
- Зарегистрирован: 22 янв 2015, 12:47
- Откуда: Московская область Где-то возле г Бронницы
- Благодарил (а): 0 раз.
- Поблагодарили: 0 раз.
Re: Линейный драйвер
adapter » 23 янв 2015, 09:41
За время замерОв зайчики в глазах
Нужно приобрести очки с жёлтыми светофильтрами.
Очки есть в строительном инструменте.
- adapter
- Scio me nihil scire
- Сообщений: 1077
- Зарегистрирован: 12 фев 2010, 21:09
- Откуда: Новосибирск
- Благодарил (а): 0 раз.
- Поблагодарили: 59 раз.
- Oleg112
- Светлячок
- Сообщений: 6
- Зарегистрирован: 22 янв 2015, 12:47
- Откуда: Московская область Где-то возле г Бронницы
- Благодарил (а): 0 раз.
- Поблагодарили: 0 раз.
Re: Линейный драйвер
Oleg112 » 25 янв 2015, 21:38
Испытания законченны. За время испытания взорвался диод мост (вина навесной монтаж) Чип и led оказались в моём случае неубиваемые. Фильтр C работает , если штатные сопротивления 51ом увеличить до ###ом(Схема чисто для эксперемента повторять нерекомендую ).Пока проводил опыты много интересного прочитал. В целом как говорили пользователи »работает техника не мешай ей работать».
- Oleg112
- Светлячок
- Сообщений: 6
- Зарегистрирован: 22 янв 2015, 12:47
- Откуда: Московская область Где-то возле г Бронницы
- Благодарил (а): 0 раз.
- Поблагодарили: 0 раз.
Re: Линейный драйвер
pti_led » 26 янв 2015, 04:31
Oleg112 писал(а): Конденсатр 4’7мкф 400вольт сопротивление 900к ставлю после моста напряжения становится вместо dc 210v dc 309v
2)Как убрать скачек напряжения ?
Конденсатор после моста зарядился до действующего напряжения сети.
220х1,41.
Для начала с нуля надо долго ползти вверх.
-
pti_led - Светильник
- Сообщений: 89
- Зарегистрирован: 15 авг 2013, 19:13
- Откуда: Соловьиный край
- Благодарил (а): 4 раз.
- Поблагодарили: 5 раз.
Re: Линейный драйвер
nae » 20 ноя 2015, 17:17
Модифицировал эту линейку.
В оффлайн магазине купил неполярный конденсатор 4,7 мкФ 400 В (Аналог К73-17). Припаял его после моста, последовательно к конденсатору добавил 80 Ом токоограничивающий резистор, параллельно 1М Ом резистор для разряда конденсатора после выключения.
Включаю — светится, подключенный к щупу осциллографа светодиод не показывает мерцаний, измеряю входной ток, получаю 11Вт вместо предидущих 5,4Вт (хотя линейка вроде как на 6Вт).
По информации с других сайтов есть рекомендация для такого случая — чтобы уровнять потребление в схеме с конденсатором нужно удвоить номиналы токозадающих резисторов. Так и сделал, заменил два по 15 Ом на два по 30 Ом. Потребелние модифицированной и немодифицированной линейки сравнялись.
По той же информации из интернетов одна микросхема zonopo 8260 реально используется на мощность 7.5Вт максимум, т.е. номиналы резисторов без опаски можно немного опустить если надо больше света.
В итоге получился свет без пульсаций. Не уверен что электролитический конденсатор прослужит меньше чем неполярный, особенно если его не привязывать к плате…
Вольность ведёт человека к рабству, тогда как дисциплина — путь к свободе. (восточная мудрость)
-
nae - Искра знания
- Сообщений: 496
- Зарегистрирован: 24 сен 2012, 19:47
- Откуда: Бердск
- Благодарил (а): 29 раз.
- Поблагодарили: 20 раз.
Re: Линейный драйвер
nae » 22 ноя 2015, 00:56
Ещё про конденсатор — формально аналогичны электролит на 4.7мкФ существенно меньше и втрое дешевле, но… на такой ёмкости пульсация составляет примерно 100В (почти вся она высаживается на стабилизаторе), что слишком много для электролита. Так и получается что для счастливой жизни электролита он должен быть 47мкф, пульсация станет в десять раз меньше, но мы не можем менять количество установленных диодов, поэтому пользы от малой пульсации в схеме не будет, только стабилизатору придется высаживать на себе ещё большую мощность. Т.е. конденсатор типа К73-17 — на 4.7мкФ — это очень удачное решение.
Вольность ведёт человека к рабству, тогда как дисциплина — путь к свободе. (восточная мудрость)
-
nae - Искра знания
- Сообщений: 496
- Зарегистрирован: 24 сен 2012, 19:47
- Откуда: Бердск
- Благодарил (а): 29 раз.
- Поблагодарили: 20 раз.
Re: Линейный драйвер
NovoTemp » 29 ноя 2016, 04:30
Здравствуйте.Есть LED-линейки с Али с Zanopo 8260, вот такие:
https://drive.google.com/open?id=0B_5lM … kN4dUxuM1U
Мерцают ужасно, аж глаза болят.
Как их правильно модифицировать? Пока припаял только конденсатор 4,7 мкФ 400 В к выходу диодного моста, получилось как на фото ниже:
https://drive.google.com/open?id=0B_5lM … 0JBQl9tdlE
Можно по пунктам, что и куда припаивать. С паяльником в общем-то знаком, но со схематехникой, увы, не очень.
Буду заранее благодарен.
- NovoTemp
- Светлячок
- Сообщений: 3
- Зарегистрирован: 29 ноя 2016, 03:13
- Благодарил (а): 1 раз.
- Поблагодарили: 0 раз.
Re: Линейный драйвер
nae » 30 ноя 2016, 13:45
Добрый день. Для успокоения души последовательно с конденсатором припаивают резистор скажем 40 Ом — для предотвращения перегрузки по току в момент вкл/выкл. Параллельно конденсатору припаивают резистор типа 1М для разрядки конденсатора. С помощью осциллографа надо убедиться что ток на выходе линейного стабилизатора не имеет провалов, т.е. ёмкости конденсатора достаточно. Убедиться что уровень пульсаций на конденсаотре соответствует рабочему режиму этого конденсатора, если нет, то надо повышать емкость до тех пор пока пульсации не упадут до приемлемого уровня.
После припайки конденсатора мощность линейки удвоится, ели есть опасения что от стабилизатора не удастся хорошо отвести тепло, то надо уменьшить ток — чтобы вернуть мощность модуля к исходной надо удвоить номиналы двух чипрезисторов.
Вольность ведёт человека к рабству, тогда как дисциплина — путь к свободе. (восточная мудрость)
-
nae - Искра знания
- Сообщений: 496
- Зарегистрирован: 24 сен 2012, 19:47
- Откуда: Бердск
- Благодарил (а): 29 раз.
- Поблагодарили: 20 раз.
Re: Линейный драйвер
Invisible_Light » 30 ноя 2016, 20:17
NovoTemp писал(а):Здравствуйте.
Есть LED-линейки с Али с Zanopo 8260, вот такие:
https://drive.google.com/open?id=0B_5lM … kN4dUxuM1U
Мерцают ужасно, аж глаза болят.Как их правильно модифицировать? Пока припаял только конденсатор 4,7 мкФ 400 В к выходу диодного моста, получилось как на фото ниже:
https://drive.google.com/open?id=0B_5lM … 0JBQl9tdlEМожно по пунктам, что и куда припаивать. С паяльником в общем-то знаком, но со схематехникой, увы, не очень.
Буду заранее благодарен.
На фото по верхней ссылке — микросхема управления. Это АС линейка со всеми вытекающими…
Годится только для освещения в ЖКХ, где люди «пробегают». Для дома/для семьи лучше убрать микруху управления и включить по схеме обычного конденсаторного драйвера (пленочный конденсатор перед диодным мостом в качестве балластного сопротивления), а лучше — нормальный сетевой ШИМ драйвер с гальванической развязкой.
Кстати, светодиоды там фуфловые, больше греются, чем светят.
- Invisible_Light
- Scio me nihil scire
- Сообщений: 5807
- Зарегистрирован: 17 июн 2012, 01:53
- Откуда: Киров
- Благодарил (а): 13 раз.
- Поблагодарили: 930 раз.
Вернуться в Питание и подключение светодиодов
Кто сейчас на форуме
Зарегистрированные пользователи: БАЛАБОЛ, aizon, Aleksandr_A, Andrey54, ARTLIGHT-SPB, Антон80, Baikal, Bing [Bot], BVlad, Светоспектр, Светочъ, Dmitriy174, fss1954, George, Google [Bot], Google Feedfetcher, iamoskvin, ivanjiang, ivanko, kulibin, Ledsvet2017, mailru, Majestic-12 [Bot], MAQ, MSN [Bot], nae, olegbr, Pensioner, recolt, Reneo, S@shOK, Simona, skal, Victor-2019, Vladimir-city, voxy, willi, zQ, Пашка177, Василий177, искатель, ЛунСинь, ЭТИС, Яндексбот
ledway.ru